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Abstract. The Wigner function appeared to discuss the
quantum correction of thermodynamic equilibrium, and it
has become a tool for the analysis of quantum systems,
especially the harmonic oscillator, which states describe
the quantum field in a cavity. We discuss a matrix
approach for the computation of the Wigner function.
The numerical techniques here discussed are applied to
obtain the time-dependent Wigner function of the field
for the Jaynes-Cummings Model, which is widely known
to describe the fundamental matter-field interactions in a
perfect cavity.
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1 Introduction

According to the foundations of the quantum
mechanics, the complete description of a quantum
system relies on the knowledge of the state vector
ψ that belongs to the space states [5]. However,
it is difficult to extract, in a transparent manner,
the most relevant physical insights of a quantum

system through the single analysis of its vector
state. Fortunately, several useful representations
can demystify its abstract nature, among them
we find the Wigner function. It is primordially
appropriated to discuss the connection between
the classical and the quantum domain [15].

The initial emergence of the field Wigner function
in cavities has become increasingly important as
fundamental Quantum question has received a
renewed attention and that demanded of a handy
theoretical, numerical and experimental tool able,
as the Wigner function, to express its analysis.
This is particularly important in composite quantum
systems [11], where its complexity limits quite
frequently our ability to provide fully solvable
results.

In those systems, the Wigner function becomes
far too complex to be solved analytically and
the need to have a fully numerical approach is
required. The aim of this work is to introduce
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a numerical approach that can explore from its
basics.

Several equivalent definitions allow the compu-
tation of the Wigner function. If it is known the
quantum system stationary wave function φ (x), we
can easily compute the Wigner function through
the following expression [15]:

W (x, p) =
1

2πh̄

∫
dξ exp

(
−
i

h̄
pξ

)
φ∗
(
x−

1

2
ξ

)
φ

(
x+

1

2
ξ

)
.

(1)

An alternative and equivalent way to compute
the Wigner function is through [3]:

W (α,α∗) = 2Tr
[
ρD (α) eiπa

†aD−1 (α)
]

. (2)

Let us notice that while the equation 1 is valid for
a system described by the wave function φ (x), the
equation 2 is of more general application because
applies to a quantum system described by the
density operator ρ.

Maybe, the most widely discussed model in
quantum optics is the Jaynes-Cummings Model
(JCM), which in its simplest form describes the
interactions between a two-level atom and the
quantized field in a perfect cavity [10]. The analysis
of the field Wigner function in this model is a
standard tool to inquire on the properties of the
cavity quantum field. To compute the JCM Wigner
function, it has been proposed the factorization of
JCM the wave function as:

|φ (t)〉 = |φ−1 (t)〉 |−1〉+ |φ1 (t)〉 |1〉 . (3)

is a key step in the discussions of the analytical
time-dependent JCM Wigner function. The
limitation of the equation 3 is its validity only
for fields described by a vector state, and it is
desirable to generalize such expression to take
into account a density matrix formalism. Such a
handy factorization has been possible through the
assumption of exact atom-field resonance [6].

In the equation 3, the first term is related to the
ground state and the second one to the excited
state. An analysis without those assumptions
becomes quite a formidable task, which implicitly
makes desirable numerical strategies that could
provide an efficient analysis to more complex
cases. This numerical perspective is the motivation

of our didactic examination of the JCM Wigner
function as a convenient example, which can be
extended to discuss many other problems.

The starting point of our discussion will be the
equation 2. The computational implementation
of the quantum operators, which appear in such
equation, becomes viable by taking advantage
of the modern software available for the matrix
management. The quantum practitioner, which
often finds these complex operator expressions,
will appreciate it to explore these techniques in
many other problems further.

2 The Harmonic Oscillator Wigner
Function

The Harmonic Oscillator (HO) is one of the
most widely used models in many areas of
physics. The quantum version of this model is
the mathematical tool to describe the quantum
field inside a perfect cavity. Therefore, before
inquiring into the JCM cavity field Wigner
function, it is convenient to briefly describe the
quantum harmonic oscillator and to show the
the expressions of its time-dependent Wigner
function. The Hamiltonian of the quantum
harmonic oscillator is:

HHO = h̄ω

(
a†a+

1

2

)
, (4)

where its frequency is given by ω and the rising
and lowering operators are provided by a† and
a respectively, and their properties have a vast
literature.

There are quantum states expressed in terms of
a and a† , as the mathematical tool to describe
the quantum field in cavities. The Fock state
|n〉 is defined through the eigenvalue relation
a†a |n〉 = n |n〉, where n denotes an integer
number. The Fock states are known for having a
well-defined number of quanta and for not having a
classical counterpart. These states are particularly
relevant since they allow a discrete representation
of quantum states and operators, which is a
convenient way for its numerical implementation.
The coherent states, introduced by Glauber [7],
are defined as the eigenstate of the annihilation
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operator a |α〉 = α |α〉, where α is, in general,
a complex number. They have the closest
classical-like behavior, and they describe the laser
beam light accurately.

The HO propagator is just the exponential of the
Hamiltonian exp (−iHt/h̄) :

UHO (t) = exp
(
−iωa†at

)
. (5)

Moreover, the HO state at an arbitrary time t is:

|φ (t)〉 = UHO (t) |φ (0)〉 . (6)

Two typical examples of propagating an initial state
are the Fock state |n〉, which at t acquires only a
phase factor e−inωt |n〉. On the other hand, if the
HO initially is a coherent state, the state becomes∣∣αe−iωt〉. The corresponding analytical expression
of the Wigner function is:

W (α,α∗) = 2(−1)
n
e−4|α|

2

Ln

(
2|α|2

)
, (7)

for a Fock state. In equation (1.7) n denotes
the HO number of quanta, and Ln (x) denotes
the nth-order Laguerre polynomial. Notice that
this Wigner function is time-independent because
in this case the density matrix does not depend
explicitly on time, see Fig. 1. The Wigner function
of a coherent state is given by:

W (α,α∗) = 2e−|α−α0(t)|2 . (8)

The equation 8 describes a clockwise rotating
two-dimensional Gaussian function in the complex
plane defined by α, which is centered at α0 (t).
Both didactic examples 7 and 8, as well the Wigner
function of other remarkable states, are well-known
and are reported in te literature [14].Despite the
simplicity of the analytical expressions 7 and 8, the
computations are lengthy, even under this simple
Hamiltonian.

3 The Jaynes-Cummings Model

The Jaynes-Cummings Model (JCM) [10] is one of
the most notorious physical models to accurately
describe the interactions between the quantized
field in a one-dimensional perfect cavity of
frequency ω and a Two-Level Atom (TLA) with

Figure 1. Numerical evaluation of the Fock state
Wigner function of a harmonic oscillator prepared
with 9 photons. This Wigner function has negative
zones, indicating it is a non-classical state and it is
time-independent because the evolution of the Fock
state is determined only by a phase factor

atomic transition frequency ω0. The strength of
such interactions are provided by the coupling
constant λ. The JCM Hamiltonian is:

H =
1

2
h̄ω0σz + h̄ωa†a+ h̄λ

(
aσ+ + a†σ−

)
. (9)

The above Hamiltonian was obtained under
Rotating Wave Approximation (RWA). Just like we
anticipated, the operator a describes the cavity
mode, and satisfies the usual Bosonic operators
commutation rule

[
a†, a

]
= 1. On the other hand,

the atomic rising σ+ = |1〉 〈−1| and lowering σ− =
|−1〉 〈1| operators govern the transitions between
the atomic excited |1〉 and ground state |−1〉. They
are related to the atomic inversion operator through
the commutation rule σz = [σ+,σ−].

There are several outstanding mathematical
properties of this model. One of them is the
existence of motion constants. They are the total
number of excitation and the interchange constant
[1], which are given by:

N = a†a+
1

2
(σz + 1) , (10a)

C =
1

2
∆σz + λ

(
aσ+ + a†σ−

)
. (10b)

Often the computation of JCM analytical expres-
sions relies on the knowledge of these constants.
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Furthermore, the technique of finding the motion
constants is quite a useful path for solving more
complex quantum-electrodynamical systems. The
propagator of the JCM is given by:

U (t) = exp (−iωNt) exp (−iCt) . (11)

Another JCM feature is the existence of the
so-called dressed states that diagonalize the
Hamiltonian, and are given by:

|ψ0 〉 = |−1, 0〉 , (12a)∣∣ψ+
n

〉
= cn |1,n− 1〉+ sn |−1,n〉 , (12b)∣∣ψ−n 〉 = −sn |1,n− 1〉+ cn |−1,n〉 . (12c)

In the equation 12 we are going to choose the
Bosonic index n satisfying the condition n > 0. The
quantities cn and sn are a shorthand notation for
cn = cos (θn/2) and sn = sin (θn/2) , where θn is
defined through:

cos θn =
∆√

∆2 + 4λ2Nnm
, (13a)

sin θn =
2λ
√
Nnm√

∆2 + 4λ2Nnm
. (13b)

The dressed states are a complete base for
the JCM. Therefore, a JCM unity operator is the
following:

IJCM = |ψ0〉 〈ψ0|+
∑
n

∑
ξ=+,−

∣∣ψξn〉 〈ψξn∣∣ . (14)

The exact JCM eigenfrequencies are [13]:

ω±nm = Nnmω +
1

2

(
∆±

√
∆2 + 4λ2Nnm

)
. (15)

The total excitation was denoted by Nnm , and it
is given by:

Nnm = n+
1

2
(m+ 1) , (16)

where n and m are the eigenvalues of the
unperturbed operators a†a and σz respectively.

4 Numerical Implementation of
Quantum States and Operators

As we have previously pointed out, the time-
dependent cavity field Wigner function computation
is a formidable task, even in the absence of
atomic interactions. However, the definition given
in equation 2, provides quite a convenient manner
to numerically perform such a task. For this
purpose, we have to recall that the quantum
states and operators have computer readable
representations. In this matrix formulation of the
quantum mechanics, a quantum state is described
by a column vector while a quantum operator by
a matrix. In general, both of them have complex
entries.

4.1 Atomic Operators and States

Most of the modern software for matrix manage-
ment allow the implementation of column vectors
and several other helpful matrix operations, like
the matrices Kronecker product or the matrix
exponentiation. The excited |1〉 and the ground
|−1〉 atomic states are represented through the
following column vectors:

|1〉 =

(
1
0

)
, (17)

and

|−1〉 =

(
0
1

)
. (18)

On the other hand, the rising and the lowering
atomic operators have the matrix representation:

σ+ =

(
0 1
0 0

)
, (19)

and

σ− =

(
, 0 0
1 0

)
. (20)

The dimension of the vectors is 1 × 2 , while the
dimension of the operators is 2× 2 due to the two-
dimensional TLA Hilbert space.
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4.2 Field Operators and States

Field states and operators also have to be
implemented on the computer. The Fock |n〉state,
and the operators of annihilation and creation, have
an infinite dimension. Therefore, a knowledgeable
practitioner has to approximate them. Let us
choose a convenient example of truncation at
nmax = 5. We have to establish a criterion to
obtain an upper bound to describe numerically
these operators. Often this upper bound is dictated
in terms of state distribution mean number, see
Fig. 1. A field described by a Fock state with two
photons, n = 2, is approximated by the column
vector:

|2〉 =


0
0
1
0
0

 . (21)

In the same terms, the coherent state can be
easily approximated with the following equation:

|α〉 = e−|α|
2/2

nmax∑
n=0

αn

n!
|n〉 , (22)

where α is a complex number. The annihilation
operator, in the same terms, has the matrix
representation:

a =


0
√

1 0 0 0

0 0
√

2 0 0

0 0 0
√

3 0

0 0 0 0
√

4
0 0 0 0 0

 . (23)

In the same analogous terms, a† = (a)
T due to

we have chosen the real representation for the a
matrix.

Figure 2. Numerical evaluation of the photon counting
probability, i.e., the first 25 diagonal elements of the
density matrix |α0〉 〈α0|. The average number of this
distribution has been chosen to be |α0|2 = 9. The sum
of all these diagonal elements is the total probability and
it is numerically equal to 0.999991346873. This tell us
that with this number of elements, we have an excellent
description of this particular quantum state..

4.3 Interacting Systems

The last two sections describe how to implement
the states and operators of two isolated systems,
the atom and the field. However, just like the JCM
establish, these two systems are interacting. In
that case, the extended Hilbert space H = HTLA ⊗
HFIELD provides the mathematical description of
the JCM dynamics, where HTLA and HFIELD denote
the Hilbert space of each subsystem. To work in
the extended Hilbert space H, we must implement
extensions of the isolated operators as well as
the quantum states [4]. Numerically, both cases
are implemented through the Kronecker product
of two matrices, which for two arbitrary matrices
A = {aij} and B = {bij} is given by [9]:

A⊗B =

 a11B . . . a1nB
...

. . .
...

αm1B . . . amnB

 . (24)

If we restrict ourselves to the JCM, the initial
state will be given by |ψ0〉 = |ψTLA〉 ⊗ |ψFIELD〉 the
dimension of the resulting discrete Hilbert space is
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2 × nmax. The extension of the atomic operators
OTLA are given by:

ÕTLA = OTLA ⊗ IFIELD. (25)

The extension of an arbitrary field operator OFIELD
is given by:

ÕFIELD = ITLA ⊗OFIELD. (26)

In both equations (1.25) and (1.26), IFIELD and ITLA
denote the field and the TLA identity operators
respectively. The operators ÕTLA and ÕFIELD are
matrices that have the same dimensions and obey
the standard matrix operations.

4.4 Numerical Solution

The proper implementation of the extended
operators in the JCM framework allows an easy
matrix construction of Hamiltonian using typical
computer matrix operations. Such computer
implementation is advantageous because it allows
knowing the state of the JCM at an arbitrary time
through several methods. For instance, through
the numerical solution of the first-order system of
differential equations, provided by the Schrödinger
equation:

ih̄
d |φ (t)〉
dt

= H |φ (t)〉 . (27)

The numerical techniques to solve differential
equations systems, as the given in equation 27,
are widely known as are its limits, precision, and
convergence [2, 8]. Solving numerically the system
27 is a very general approach, which however has
its practical limitations that can be overcome in
particular cases like the JCM. A second alternative
approach is given by expressing equation 11 in our
matrix representation:

U (t) = exp (−iωNt) exp (−iCt) , (28)

Where N and C are the discrete versions of the
operators defined in 10. A third alternative, a more
convenient for our purposes, is expanding the wave
function in terms of the numerical dressed states
H |φk〉 = Ek |φk〉 and its eigenstates, which are
numerically available:

|φ (t)〉 = U (t)

2×nmax∑
k=0

|ψk〉 〈ψk |φ (0)〉 (29a)

=

2×nmax∑
k=0

ck exp (−iωkt) |ψk〉 . (29b)

The coefficient ck is easily computed through the
matrix operation ck = 〈ψk |φ (0)〉, as well as the
numerical eigenfrequencies that are given by ωk =
Ek/h̄. The vector state at t, computed by either
of the mentioned methods, leads to the direct
computation of the JCM density matrix ρ (t) =
|φ (t)〉 〈φ (t)|, i.e., to the knowledge of the physical
properties of the JCM, in particular the Wigner
function.

5 Numerical Computation of the JCM
Wigner Function

The matrix formulation of the quantum operators
that we provided is intended to describe interacting
atom-field systems. However, the definition of
Wigner function requires only the density matrix
of the field. In addition to the Kronecker
product, we have to implement an operation that
allows reducing the dimension of the matrix of a
composite system to obtain only the density matrix
of the field. This operation is called partial trace.

Let us discuss the concept of the trace. Consider
an arbitrary base |χi〉 that belongs to a Hilbert
space H, and also an operator O living in a space
denoted by L (H). The trace of O is the sum of the
diagonal elements in the mentioned base:

Tr {O} =

d∑
i=1

〈χi|O |χi〉 , (30)

where d is the dimension of H. The trace is, in
general, a complex quantity and may be taken in
another basis which includes those with continuous
indices. The JCM density matrix ρJCM (t) is
described in the extended Hilbert space H =
HTLA ⊗ HFIELD. In consequence, we must reduce
the dimension of ρJCM by dropping the atomic
elements, this procedure is known as partial trace
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Figure 3. Comparison between the numerical
time-dependent Wigner function of a harmonic oscillator
(On the left) and the resonant JCM (On the right). In
both cases, the initial field is coherent with an average
number of photons equal to nine. Consistently with
the equation (1.8), the coherent state of the oscillator
rotates clockwise keeping its shape. The coherent state
in the JCM splits into two contributions, and in the
middle, there is exhibit quantum interference that can
be interpreted as an atom-field entanglement. Also it
is observed a clockwise rotation, which it is reminiscent
of the non-interacting part of the JCM Hamiltonian. For
this numerical experiment, the TLA was prepared in the
excited state

and its denoted by ρFIELD=TrTLA {ρJCM (t)}. It is
implemented through [12]:

ρFIELD =
∑

i=−1,1
(IFIELD ⊗ 〈i|) ρJCM (IFIELD ⊗ |i〉) .

(31)
On the other hand, if we are interested in the
atomic density matrix -for instance, to inquire in the
Boch vector dynamics-, we can follow an analog
definition to obtain the TLA density matrix:

ρTLA =

nmax∑
j=0

(〈j| ⊗ ITLA) ρJCM (|j〉 ⊗ ITLA) . (32)

With the knowledge of the density matrix, we can
easily implement a routine to compute the Wigner
function:

W (α,α∗) = 2Tr
[
ρFIELDD (α) eiπa

†aD−1 (α)
]

,

(33)
where D (α) is the displacement operator, which is
given by:

D (α) = exp
(
α∗a− αa†

)
. (34)

The numerical implementation of D (α) and eiπa
†a

can be straightforwardly done in most of the
modern software for matrix management. To
become computationally more efficient, we can use
the cyclic property of the trace and take the trace,
by using Fock states, to obtain an expression that
requires fewer matrix exponentiations:

W (α,α∗) = 2

nmax∑
n=0

(−1)
n 〈n|D (−α) ρFIELDD (α) |n〉 .

(35)
The matrix operations involved in the equation 35
makes clear the power of the matrix methods for
the computation of the Wigner function.

6 Final Remarks

The numerical techniques here developed can be
used to extend easily the results presented in
Fig.3. Among these extensions, we can consider
the cavity field prepared with other coherence
properties. This is done by just changing the initial
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state of the field ρFIELD. Also, we can explore more
complex cases, for instance, the time-dependent
Wigner function for the non-resonant JCM, or a
TLA prepared in a superposition of excited and
ground state. Despite we applied the formalism to
the numerical computation of the Wigner function,
we also can use it to inquire into other quantities
of interest such as expectation values of σz, widely
known as the atomic inversion.

In the matrix approach here presented, the most
relevant source of numerical errors is introduced
by the approximated field operators and its
posterior exponentiation. To guarantee a good
approximation, we have to take the dimension
of the approximated field operators nmax large
enough; the criterion followed in this work is to
select nmax that makes the sum of the diagonal
elements very close to 1. Let us recall that in Fig.1
we choose the value 0.999991346873.

There are several matrix management software.
Matlab is an excellent option, but also there are
free options. For instance numy and scipy, which
has the python programming language at its core.
These libraries also have capabilities to manage
sparse matrices, which can reduce considerably
the time of execution of the numerical routines
required for the matrix operations in quantum
problems.
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thank to the Universidad Autónoma de Coahuila
(UAdeC) and to the Instituto Nacional de As-
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