
Partitioned Binary Search Trees: a Generalization of Red Black Trees

Seyfeddine Zouana, Djamel Eddine Zegour

Ecole nationale Supèrieure d’Informatique, ESI,
Laboratoire de la Communication dans les Systèmes Informatiques,

Algeria

{s zouana, d zegour}@esi.dz

Abstract. We propose a generalized form for Red
Black Trees. The structure, called Partitioned Binary
Search Trees, tolerates finite successions of Red nodes
provoking a degree of imbalance while reducing the
number of maintenance operations and speeding up the
updates. The tree is interesting not only because of its
simple operations but also because it insures the same
level of performance of Red Black Trees O(logn) and
allows an even higher adaptability and efficiency rate in
different fields where rebalancing is costly.

Keywords. Red black trees, B-trees, generalization,
relaxation.

1 Introduction

The need to simplify the development of appli-
cations and programs has led to the abstraction
of types and the introduction of data structures.
These data structures made it easy to implement
complex programs in a very light fashion, cutting
on the development time exponentially. However,
this manner of implementation introduced a new
parameter decreasing the performance. In fact,
structures impose a second address access
decreasing the performance to a detrimental level
if not carefully implemented.

The excessive need of data use provoked a
great need to sort and manage such sets. Fast
access and convenient update became not just
important but also substantial. From the various
works aiming for storing data, Binary Search Trees
(BST) are the least complicated and easy to
use. Due to their implicit key ordering and linked
node structure, they give an efficient sorting and
simple update operations. However, their main

importance shows in their high level performance
when Balanced.

AVL Trees [1] and B-Trees [8] are among the
earliest algorithms designed to give high speed
search BSTs. Insuring almost perfect balance, they
served as an opted frame to implement dictionaries
and sort data. Both structures give performances
of O(log(n)) especially with binary form. In fact,
Symmetric Binary B-Trees [7] and Red Black Trees
[16] give about the same level of performance as
AVL Trees.

Those binary forms are the result of transfor-
mation of the 2-3-4 Trees representation (B-Trees
of order less than 4). The nodes on Red Black
Trees, as their name indicates, are colored Red
and Black. Red Black Trees are mainly defined
and preserving their balance by two important
properties: first, each path from Root to leaf has
the same number of Black nodes; second, each
Red node must have Black children. These two
properties maintain the consistency and balance of
the trees giving high level performances. However,
these properties limit Red Black Trees to a reduced
family of trees. Red Black Trees can represent
higher orders of B-Trees.

But, this representation lacks of consistency
as it changes the structure considerably (the
order becomes implicitly 4) and costs so many
restructuring operations. This is due to the fact
that it is namely a transition to 2-3-4 Trees.
To reduce the restructuring cost and enable the
representation of higher order B-Trees, we need a
generalized form of Red Black Trees. We propose
a new binary form of B-Trees, called Partitioned
Binary Search Trees.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

ISSN 2007-9737



The structure provokes some imbalance due
to the tolerance of successions of Red nodes.
The detailed idea behind this structure and its
formal definition are in section 3. We discuss the
maintenance operation cases in section 4. The
insert/delete operations are summarized in section
5 and section 6. We show in section 7 that Red
Black Trees are a mere particular case of PBST.
We give some properties of the trees such as
the worst case height of the tree in section 8.
Finally, we explained some experimental results in
section 9.

2 Related Works

Perhaps the first most important Balancing
algorithms for Binary Search Trees (BST) are the
AVL Trees [1] and the B-Trees [8]. These two
structures give high performances insured by their
logarithmic height. In fact, their heights are almost
equal to an optimal tree height, this fact is verified
by several works namely [14, 35] for AVL and
[25] for different variations of B-Trees. These
two structures have seen different optimizations for
their use and implementation.

AVL Trees, for example, have been adapted
not only to data sorting and management fields
in several frameworks such as in [29], but even
extending to sensor networking [10]. B-Trees,
on the other hand, don’t get their importance
just by the given level of sorting and possible
variations [6], their binary forms into Symmetric
Binary B-Trees [7] and Red Black Trees (RB Trees)
[16] are famous for an almost perfect balance with
about the fastest updates. However, AVL Trees
and RB Trees require a set of constraints and a
huge number of maintenance operations making
their use hindered.

As a result, there have been other researches
aiming to relax those constraints by either delaying
rebalancing when updating [18, 32, 17] or by
reducing the number of restructuring through
giving generalized forms [15, 21]. While there is
other alternative algorithms with performances on
the same level [24, 23, 27, 33, 30, 26, 13, 9], AVL
Trees and RB Trees have the largest popularity for
their dictionary management and low complexity.
When comparing AVL Trees and RB Trees [3, 34],

AVL Trees are the nearest structure to optimal
trees performances. However, what we notice
is that RB Trees have better updates operations
through the significant difference in the number
of restructuring. This encouraged researchers
to give new augmented forms to specialize the
RB structure for different fields from insuring
concurrent [20] and parallel access [28] to other
usage by modifying the node structures [19] such
as device placement [4]. Furthermore, another
tendency was to resolve the inconveniences of RB
Trees by giving faster and efficient implementations
[12, 22], property verifying algorithms based on
graph rewriting [5] and variants such as AA Trees
[2], left leaning RB Trees [31] and defining a unique
representation for both AVL and RB Trees [11].
Though, there is no form that allows the use in the
distinct fields with decent performances throughout
the grid.

3 Partitioned Binary Search Trees

Red Black Trees are the result of reflection on
how to represent B-Trees in a simple Binary form
where insertion and delete operations are done
implicitly without the need for B-node organization.
They give a really interesting algorithm for 2-3-4
Trees but they don’t give a proper representation of
higher order B-Trees, As a B-node is represented
by a group of Red nodes rooted by a Black
node. To Represent higher order B-node, this last
property must be maintained in a generalized form.

Red Black Trees are defined by two major
properties: first, each path from Root to leaf has
the same number of Black nodes; second, each
Red node must have Black children; to define
a generalized form, we can’t alter the number
of Black nodes property as it defines the major
balance criterion. However, by tolerating a finite
succession of Red nodes between Black nodes,
the balance criterion is relaxed but not lost. As a
consequence, the tree has a partitioned form into
groups or classes of nodes; each class is a subtree
defined by a set of Red nodes rooted by a black
node. For example, by tolerating up to two Red
nodes between Black nodes, we can define groups
of nodes that represent B-nodes of order up to
8 without losing the level of balance represented

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Seyfeddine Zouana, Djamel Eddine Zegour1376

ISSN 2007-9737



Fig. 1. PBST of parameter 3 example

in the original B-tree. The tolerance of finite
succession of Red nodes allows the representation
of higher order B-Trees as it is analogue to a
set of values by a B-node or by a group of Red
nodes rooted by a Black node by following the
same ideology with the Red Black Trees. By
summing these different properties, we can give a
generalized form for Red Black Trees that we call
Partitioned Binary Search Trees parametrized by n,
PBST-n for short, (where n is the tolerated length
of Red nodes succession plus one)(Fig 1). These
trees are formally defined by:

— Each node is either a Simple or a Class node.

— Each direct path from Root to a leaf contains
the same number of Class nodes.

— Each Class has a height of 0 to n− 1.

Furthermore in a PBST-n, a Simple node is the
same as a Red node and a Class node is the same
as a Black node in a RB Tree. This nomination
helps to lift ambiguity and incomprehension of the
main algorithm. This type of trees allows the
representation of any order B-Trees.

Following the analogy between RB Trees and
2-3-4 Trees, there is the same analogy between
B-nodes of order m and Classes of PBST-n where
m = 2n − 1. Therefore, we must preserve all
properties of the trees. We define some basic
operations simulating the rotations and color flips in
RB Trees to insure the persistence of the B-Trees
organization analogy.

4 Maintenance Algorithms

The organization of B-nodes is simulated in RB
Trees by a set of Rotations and Color Flips where
Rotations mimic the slide of values in a B-node and
Color Flips the division and fusion of B-nodes. In
PBST-n we simulate B-nodes of order in [2, 2n− 1].
Furthermore, if we balance the tree on every node,
this would give a perfectly balanced structure which
would be just another algorithm form of RB Trees.
Thus, to maintain such ideology and preserve the
whole set of properties of the structure, the result
of reflection gave an algorithm based rotation that
insure a lower degree of balance and generalized
form of RB Trees. This algorithm is based on three
basic functions.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Partitioned Binary Search Trees: A Generalization of Red Black Trees 1377

ISSN 2007-9737



4.1 Restructuring

Restructuring is a set of rotations centered on the
Class node that aims to slide the values of the
Class when its height reaches the parameter n.
It aims to distribute the values between the right
and the left subtree of the class. Restructuring
consists of one or two rotations depending on the
situation of the class. These situations are defined
by the height of one subtree is less than n− 2 and
are illustrated in Fig 2 (other cases are found by
symmetry):

— We use one rotation if the height of node C is
greater than the height of node D. By applying
a right rotation on node A, the height of the
class is bound to be less than n.

— We use a double rotation when the height of
node C is less than the height of node D. By
applying a left rotation on node B followed by
a right rotation on node A (a double rotation on
node A), the height of the class becomes less
than n.

4.2 Partitioning

Partitioning splits the class into two subtrees. It
mimics the division of a B-node. By changing the
type of three nodes, the class is divided to two
classes (Fig 3). Partitioning is invoked when both
subtrees of the class are of height greater than or
equal to n − 2 where Restructuring can’t eliminate
the obstruction of the third property.

4.3 Departitioning

Departitioning merges two classes into one class
by changing the type of three nodes (Fig 4). It
targets classes that have height less than n − 2 to
merge with adjacent sister classes (By mimicking
the fusion of two adjacent non-full B-nodes, such
classes have less than half the values of a B-node).

5 Insertion in PBST

Insertion in PBST is as simple as any BST
insertion followed by some rebalancing to insure
the structure properties. Based on the imitation
of B-nodes by classes, it is very easy to give an
algorithm for insertion. We proceed like in any BST
by finding the key’s position on the tree, of course,
this position must be a leaf on a leaf class. If the
classes height exceeds the parameter n (the class
overflows), we must rebalance the tree. As a result,
we can summarize the insertion in two steps.

Step 1: It’s a BST insertion in short. We search
for the key’s position which is a nil pointer, making
it a leaf of Simple type on a leaf class. If the height
of this last class becomes greater or equal to the
parameter n (the class overflows), we undertake
Step 2.

Step 2: We aim to eliminate the imbalance
caused by the exceeded height. According to the
overflowed class, we distinguish two cases.

Case 1: In the overflowed class, the Class
node has a son with height less than n − 2. A
Restructuring (Fig 2) is performed. If the height of
the class remains equal to n, we partition it.

Case 2: In the overflowed Class, the Class node
sons have height equal or greater than n − 2. A
Partitioning (Fig 3) is performed.

This Partitioning results in giving the mother
class a new key and increasing its height. This can
lead to a series of Restructuring and/or Partitioning
with the mother classes going up the tree creating
a cascade phenomenon. As a consequence, we
repeat Step 2 until no Partitioning is needed.

6 Delete in PBST

Delete in Red Black Trees appears so complicated
and difficult because of all the different cases and
maintenance operations. However, if we look at
its B-Trees equivalent operations, it becomes so
easy to understand. In the case of a generalized
algorithm of RB Trees, the delete algorithm is easy
to implement because of the ability to merge two
classes simulating the merging operation of two
B-nodes. Delete in PBST begins like in any BST,
which is by searching for the key and eventually its
substitute leaf and eliminating the leaf.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Seyfeddine Zouana, Djamel Eddine Zegour1378

ISSN 2007-9737



Fig. 2. Restructuring cases of overflow classes

Fig. 3. Partitioning of a class

The elimination of the key could decrease the
height of the class to less than n − 2 (the class
underflows) which is analogue to having a leaf
B-node with less than half the number of keys a
B-node can hold.

This situation is considered as an imbalance on
the tree and must be rectified. By merging the
adjacent classes and redistributing the keys, we
can eliminate such imbalance.

Thus, the delete algorithm is very simple and can
be summarized in two Steps.

Step 1: we search for the key’s position on
the tree. If it is an internal node, we continue
our search to find the immediately next value and
permute the values. Then, we eliminate the node

Fig. 4. Departitioning of a class

containing the key value. If the class from which we
deleted the key underflows, we undertake Step 2.

Step 2: when a class underflows, we have to
departition to keep the same load on the different
parts of the tree. We distinguish three cases.

Case 1: the underflow class has a direct sister
class with height smaller than n− 1 (Fig 5).

A departitioning is to be performed. We continue
with the mother class and check if the class
underflows.

Case 2: the underflow class has a direct sister
with height equal to n − 1. (figure 6) A mere
departitionnig results in a class with height equal
to n. Therefore, we must restructure. We consider
the sister classes and the parent as a class rooted

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Partitioned Binary Search Trees: A Generalization of Red Black Trees 1379

ISSN 2007-9737



Fig. 5. The direct sister class has a height smaller than
n-1

at the parent (this can be done by simple changes
of the types of the nodes). If the parent was
simple, the new class is restructured. If the
new class height is smaller than n, the delete
process continues with the mother class as a node
was removed. Otherwise, the obtained class is
partitioned. If the parent was a class node, the new
class is restructured and partitioned.

Case 3: the underflow class hasn’t a direct sister
class (see figure 7).

The property of partial balance guarantees the
existence of a sister class. We have got to
transform the tree to make it a direct sister. If the
underflow class is to the right (resp. to the left) of
the parent, the sister class is the first class found
from the parent by going to the left (resp. to the
Right), then to the most right class node (rep. to the
most left). Transforming is equivalent to a simple
rotation since only two pointers are modified. We
modify the type of the parent and of the simple
direct sister node.

7 PBST-2 as a Red Black Tree

PBST-n simulates the behavior of B-Trees in a
binary tree form. Originally, Red Black Trees were
created in order to define a binary representation
of B-Trees of order 4. Thus, PBST-n should
cover and are equivalent to Red Black Trees given
the right parameter. This exclamation is easy to
demonstrate as PBST-n are just a generalization of

RB Trees. In fact, there is an equivalence between
RB Trees and PBST-2. To simulate B-Trees of
order 4, PBST classes must hold at most 3 keys
limiting their heights to two nodes, one class and
one simple. The same is observed on RB Trees,
one Black and one Red. Furthermore, it is easy to
show that the definition of PBST-2 is just another
interpretation of Red Black Trees definition by
using Class nodes as Black nodes and Simple
nodes as Red nodes.

Proof: The definition of PBST-n when n=2
becomes just another formula to RB Trees. This
can be demonstrated easily even if it is not obvious
at first. PBST-2 is defined by:

(1) Each node is either a Simple or a Class node.

(2) Each direct path from Root to a leaf contains
the same number of Class nodes.

(3) Each Class has a height of 0 or 1.

while RB Trees are defined by:

(a) Each node is either Black or Red.

(b) Each direct path from Root to leaf contains the
same number of Black nodes.

(c) Each Red node must have Black children.

By taking into account that Black nodes are Class
nodes and Red nodes are Simple nodes, the pairs
of properties (1,a) and (2,b) are the same in the two
definitions. The only property that isn’t showing is
the third property. Note that a class of height 0 or 1
is a class with a Class node and one level of Simple
nodes at most.

Those Simple nodes have either Class nodes or
the nil pointers as children. By taking the Black
node hypothesis, those simple nodes have only
Black nodes as children. Note also by taking Red
nodes must have Black children, we find that in a
RB Tree the Classes created by Black nodes have
at most a height of 1. Thus, the two definitions
are totally equivalent making the RB Tree as a
particular case of PBST-n when n = 2 and verifying
that PBST-n is a generalization form of RB Trees.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Seyfeddine Zouana, Djamel Eddine Zegour1380

ISSN 2007-9737



Fig. 6. The direct sister class has a height equal to n-1

8 Analysis on Height

One major question with BST’s is the performance
threshold of the structure. As the performance is
highly related to the balance of the trees, it is very
important to define the degree of balance of the
structure. As a binary based structure, the balance
of BST’s can be defined by the distribution and
height of the structure. Actually, with a perfectly
balanced tree, the height and distribution are just
a logarithmic fraction to the number of elements of
the set.

The height of the tree gives proportional
information to the search time and consequently
the update time. With lesser height, it requires
fewer probes and as a result better performance.

8.1 Order of the Tree

Various BST’s are compared to the B-Trees
which are perfectly balanced trees on the node
distribution level and the use of such BST’s to
represent B-Trees is one of the methods to define
the optimization benefit from such structures. As
B-Trees have a fixed relation to the number

of restructuring operations, they give a decent
scheme for comparison.

The generalization of Red Black Trees through
PBST is based on the tolerance of finite
successions of Red nodes analogically extending
the binary representation of 2-3-4 Trees by Red
Black Trees to higher order B-Trees where each
B-node is represented by a Class (Black) node and
its direct Simple (Red) descendants.

In fact, for various values of n , we can represent
B-Trees of higher order by representing B-node of
2n − 1 by Black rooted subtrees of height n − 1.
For example: PBST-2, trees can represent B-Trees
with node up to 22 − 1 = 3 values; PBST-3, trees
can represent B-Trees with nodes up to 23 − 1 = 7
values, ...; and so on through the same analogy.

This representation suggests that the average
height of PBST-n is n times the average height
of the B-Tree it represent in the worst case which
is a very good height considering the binary
representation. As n is the logarithmic value to the
width of the B-node, it is interesting to have such
flexibility on the nodes with easy update operations
compared to B-Trees.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Partitioned Binary Search Trees: A Generalization of Red Black Trees 1381

ISSN 2007-9737



Fig. 7. Transforming the tree to bring the sister class to
be a direct sister

8.2 Worst Height Case

It is difficult to define the balance of the tree
however there is a practical way to know the degree
of balance/imbalance of the structure through the
establishment of precise intervals to the height of
the tree. One way is to know the best and the worst
possible height a structure can have for a set of
elements (keys).

These two values give an interval to the height of
the structure and create a margin to the distribution
of its items. It is widely known that a perfectly
balanced tree has a logarithmic height to the
number of its items. Thus, we just need to have an
overview on the worst height the structure can take.

Theorem. In a PBST-n, the worst case height
is of n log (N + n)− n log n where N is the number
of keys on the tree.

Fig. 8. Worst case tree for PBST-3

Proof: Let the height of the PBST-n be the
maximal number of nodes in any path from the root
to a leaf. Then an PBST-n Tmin(h) of height h with
the minimum number of nodes is of the form Fig. 8.
Notice that h = n.j where j is the number of Class
nodes in each path from Root-to-Leaf. The tree is
bound by two major conditions for every small tree
rooted by a Class node. A small tree of maximum
height and minimum number of nodes is a vine of
n nodes (Class node included). And each node of
the longest path of the root small tree is linked to
the root of a complete balanced subtree of height
h
n − 1 while the last one is also linked to a subtree
Tmin(h − n). Let N(T ) be the number of nodes in
the tree T . Then:

N(Tmin(h)) = n.N(Tbal(
h

(n)
−1))+n+N(Tmin(h−n)), (1)

since
N(Tbal(l)) = 2l − 1, (2)

we obtain

N(Tmin(h)) = n.(2
h
n
−1 − 1) + n+N(Tmin(h− n)), (3)

N(Tmin(h)) = n.2
h
n
−1 +N(Tmin(h− n)), (4)

N(Tmin(h)) = n.2
h
n
−1 +n.2

h
n
−2 +n.2

h
n
−3 + ...+n.20, (5)

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Seyfeddine Zouana, Djamel Eddine Zegour1382

ISSN 2007-9737



N(Tmin(h)) = n.

h
n
−1∑

i=0

2i = n.(2
h
n − 1). (6)

So the number of nodes of the tree N(T ) is bound by:

n.(2
h
n − 1) ≤ N(Tmin(h)) ≤ N(T ) ≤ N(Tbal(h)) = 2h − 1,

(7)
which implies the in-equations:

h ≤ n log (N + n)− n logn,

log (N + 1) ≤ h. (8)

The height of the PBST-n is at most
n log (N + n) − n log n which is a little worse
than RB Trees height 2 log (N + 2)− 2.�

This could lead to a large difference in search
time with large ordered sets. But considering
the advantages of a binary representation, it is
very interesting to have a low balanced structure.
Furthermore, we gain some update time through
the low rate restructuring.

8.3 Number of Restructuring

The tolerance of finite successions of Red nodes
between Black nodes to define a generalization for
Red Black Trees provokes some loss in balance.
This, as shown in section 8.2, decreases the
performance with the search time.

However, it is quite interesting for the update
time as it accelerates the update time quite
significantly. The number of Black nodes is
decreased and consequently the number of
maintenance operations that occur due to the
cascade phenomena in insertion and delete.

Corollary. In a PBST-n, an update operation
need at most log (N + n) − log n maintenance
operations.

Proof: In the worst case scenario, the height of
the tree is given as h = n log (N + n)− n log n,h =
n.j where j is the number of Class nodes that may
need balance maintenance due to the cascade
phenomenon. Thus, the number of maintenance
operations can, at most, reach j = log (N + n) −
log n.�

When comparing the number of Class nodes
log (N + n) − log n to the number of Black
nodes in Red Black Trees log (N + 2) − 1, it is
clear that the number is decreased significantly
and consequently the number of maintenance

concerned nodes. This decrease in maintenance
operations makes for faster updates as each
operation is rather costly compared to the loss in
search time.

Moreover in the overall view of performance, we
find the generalized form competing with the Red
Black Tree and considering various applications
of such structure and environment, there is some
situations where the generalized form is better.

9 Test Results

Performance of structures is one of the main
debatable issues. To know the behavior of the
structure doesn’t suffice to tell the real threshold
of its performance. This is, of course, due to
the various distributions of keys it may be in
contact with.

Thus, several researchers tend to define the
performance through giving an estimate to the best
and worst scenarios. In light of such ideology, we
defined two scenarios where we believe this gives
a general and relatively accurate interval of the
different aspects of the generalized trees. The two
scenarios are defined as follow:

— Scenario 1: we insert files of randomly
generated/ordered keys of sizes N =
{100, 200, 300, ..., 900, 1000, 2000, 3000, ..., 9000,
10000, 20000, 30000, ..., 90000, 100000, 150000,
200000, 250000, ..., 950000, 1000000}. Then we
delete them.

— Scenario 2: we insert the same files as
scenario 1. Then we use those files to check
if each key is in the set, we delete it, else we
re-insert it.

We took sets of 100 instances of experiments
with each number N up to 90000 for parameter
n = {2, 3, ..., 7} to define the structure behavior
in distribution and 10 instances of experiments
with 100000 ≤ N ≤ 1000000 to define the
performance for bigger numbers. The results are
quite interesting and define average values for
search and update operations. It is expected that
by losing in balance, we lose in performance.

However, the collected results show rather
different observations. In fact when the keys

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Partitioned Binary Search Trees: A Generalization of Red Black Trees 1383

ISSN 2007-9737



are randomly generated, the difference in time
performance is quite minimal. It is standard to
define BST’s performance through average and
worst case height of the tree. But due to the
former observation, we concluded that giving such
estimate is necessary but not sufficient to define
the whole story behind the performance and we
tried to give/define the distribution of keys in each
parameter tree.

In typical definitions of performance threshold,
search time is the most important parameter as it
constitutes the major part of the operations. With
an almost null fail search fraction, the heights of
the trees give a relatively accurate definition to this
performance as it narrows the interval of expected
results.

Furthermore, we observe that the search time
(Fig. 9) is proportional to the height of the tree
(Fig. 10). Both the search time and the height
of the trees follow an exponential curve. In the
case of randomly generated keys, the search time
is almost the same between different parameters,
the difference lies in the period of the change
of the height that has a high relation to the
parameter itself.

On the other hand, when the keys are ordered
(as in the worst case), the height of the trees is
increased by quite the amount provoking a loss
in balance due to the change of the parameter,
but the search time is almost the same. This
result implies that the loss in balance doesn’t affect
the overall cost on the search time and that the
average total search time gives a scheme to the
expected average search cost. This cost is slightly
the same for the various parameters.

Although, this remark might be inconceivable
at first but it is explained by the height of the
tree where it changes by 1 or 2 units at most
between parameters insuring that the difference in
search time is almost negligible and offering as a
consequence the same level of performance for
consultation.

As mentioned before, the search time and height
performances are not sufficient to justify the use of
different parameters. In fact, a highly imbalanced
distribution can lead to lagging update operations
with large restructuring phases. By design, PBST-n
are less balanced the higher n parameter, allowing

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

1000

2000

3000

4000

5000

6000

7000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

1000

2000

3000

4000

5000

6000

7000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

1000

2000

3000

4000

5000

6000

7000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

1000

2000

3000

4000

5000

6000

7000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 9. Total Search Time

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Seyfeddine Zouana, Djamel Eddine Zegour1384

ISSN 2007-9737



0 20000 40000 60000 80000 100000
 Number of Keys 

0

5

10

15

20

25

30

35

40

 H
e
ig

h
t 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5

10

15

20

25

30

35

40

 H
e
ig

h
t 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5

10

15

20

25

30

35

40

 H
e
ig

h
t 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5

10

15

20

25

30

35

40

 H
e
ig

h
t 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 10. Tree height

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5000

10000

15000

20000

25000

 R
o
o
t 

R
a
n
k 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5000

10000

15000

20000

25000

 R
o
o
t 

R
a
n
k 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 20000 40000 60000 80000 100000
 Number of Keys 

0

10000

20000

30000

40000

50000

 R
o
o
t 

R
a
n
k 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

10000

20000

30000

40000

50000

 R
o
o
t 

R
a
n
k 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 11. Root Rank R in Inorder Traversal

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Partitioned Binary Search Trees: A Generalization of Red Black Trees 1385

ISSN 2007-9737



0 10000 20000 30000 40000 50000 60000 70000 80000 90000
 Number of Keys 

0.0

0.2

0.4

0.6

0.8

1.0
 R

/N
 

PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
 Number of Keys 

0.0

0.2

0.4

0.6

0.8

1.0

 R
/N

 

PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
 Number of Keys 

0.0

0.2

0.4

0.6

0.8

1.0

 R
/N

 

PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
 Number of Keys 

0.0

0.2

0.4

0.6

0.8

1.0

 R
/N

 

PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 12. Number of left Subtree over the total number of
keys (R/N)

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5000

10000

15000

20000

25000

30000

35000

 T
o
ta

l 
N

u
m

b
e
r 

o
f 

S
im

p
le

 N
o
d
e
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5000

10000

15000

20000

25000

30000

35000

 T
o
ta

l 
N

u
m

b
e
r 

o
f 

S
im

p
le

 N
o
d
e
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 20000 40000 60000 80000 100000
 Number of Keys 

0

20000

40000

60000

80000

100000

 T
o
ta

l 
N

u
m

b
e
r 

o
f 

S
im

p
le

 N
o
d
e
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

20000

40000

60000

80000

100000

 T
o
ta

l 
N

u
m

b
e
r 

o
f 

S
im

p
le

 N
o
d
e
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 13. Total number of Simple nodes on the tree

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Seyfeddine Zouana, Djamel Eddine Zegour1386

ISSN 2007-9737



0 20000 40000 60000 80000 100000
 Number of Keys 

0

5

10

15

20

25

 M
a
x
im

u
m

 H
e
ig

h
t 

o
f 

S
im

p
le

 N
o
d
e
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5

10

15

20

25

 M
a
x
im

u
m

 H
e
ig

h
t 

o
f 

S
im

p
le

 N
o
d
e
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5

10

15

20

25

30

35

40

45

 M
a
x
im

u
m

 H
e
ig

h
t 

o
f 

S
im

p
le

 N
o
d
e
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5

10

15

20

25

30

35

40

45

 M
a
x
im

u
m

 H
e
ig

h
t 

o
f 

S
im

p
le

 N
o
d
e
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 14. Maximum height of Simple nodes on the tree

the possibility of having leaning trees to the right or
left with unequal number of keys in the subtrees.
The distribution of the tree can be described in
about accurate manners through giving the root
rank in Inorder traversal (Fig. 11), thus dividing
the load on each subtree, or by giving the number
of Simple (Red) nodes (Fig. 13) and the longest
sequence of those type of nodes (Fig. 14). In
the case of randomly generated keys, the root
rank (Fig. 11) changes gradually in the same way
within the different parameter trees. We see the
same periodic evolution phenomenon in the case
of ordered keys.

However, the fraction of the rank on the number
of keys (Fig. 12) stays about the same through the
different parameters with a considered amount of
degradation in the case of ordered keys. In the
general case by avoiding extreme distributions, the
load of the tree is quite balanced between the left
and right minimizing the effect of loss due to the
increase in parameter.

On the other hand, we observe a gradual
increase in the number of Simple (Red) nodes
(Fig. 13) and the length of its maximum sequence
(Fig. 14). Of course, this is explained by the
properties of PBST-n, as n goes higher the length
of its classes goes higher. This provoke a degree
of imbalance but as a consequence the update
operations require less maintenance operations
and with random keys the loss due to imbalance is
expected to drop showing little difference between
the different parameters.

The acquired results show the same conclusion
in both the insert (Fig. 16) and the delete
(Fig. 18) operations. The update time (Fig.
15, 17) is improved by quite the amount on
the operation scale giving a slight edge for the
higher parameters. The gain in the number of
restructuring and maintenance operations (Fig. 16,
18) is the rather significant observation.

In fact, the overall gain is really high to consider
using higher parameters in environments where
restructuring is more costly. The behavior of
the trees is aligned to the development of their
heights and the number of Class (Black) nodes.
It is explained by the effects of the two phases
of the update operations, the search is slightly
affected by the imbalance but the restructuring is

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Partitioned Binary Search Trees: A Generalization of Red Black Trees 1387

ISSN 2007-9737



0 200000 400000 600000 800000 1000000
 Number of Keys 

0

5000

10000

15000

20000

25000

30000

35000

40000

 T
im

e
 (

m
s)

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

5000

10000

15000

20000

25000

30000

35000

40000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

10000

20000

30000

40000

50000

60000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

10000

20000

30000

40000

50000

60000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 15. Tree construction time

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5000

10000

15000

20000

25000

30000

 N
u
m

b
e
r 

o
f 

R
e
co

n
st

ru
ct

u
ri

n
g
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

5000

10000

15000

20000

25000

30000

 N
u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 20000 40000 60000 80000 100000
 Number of Keys 

0

50000

100000

150000

200000

 N
u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

50000

100000

150000

200000

 N
u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 16. Tree construction total number of restructuring

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Seyfeddine Zouana, Djamel Eddine Zegour1388

ISSN 2007-9737



0 200000 400000 600000 800000 1000000
 Number of Keys 

0

10000

20000

30000

40000

50000

60000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

10000

20000

30000

40000

50000

60000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

10000

20000

30000

40000

50000

60000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 200000 400000 600000 800000 1000000
 Number of Keys 

0

10000

20000

30000

40000

50000

60000

 T
im

e
 (

m
s)

 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 17. Second phase time

0 20000 40000 60000 80000 100000
 Number of Keys 

0

10000

20000

30000

40000

50000

60000

 N
u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(a) Random keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

50000

100000

150000

200000

 N
u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(b) Random keys Scenario 2

0 20000 40000 60000 80000 100000
 Number of Keys 

0

20000

40000

60000

80000

100000

120000

140000

160000

 N
u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(c) Ordered keys Scenario 1

0 20000 40000 60000 80000 100000
 Number of Keys 

0

20000

40000

60000

80000

100000

120000

140000

160000

 N
u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g
s 

min/Max PBST-2/5
min/Max PBST-3/6
min/Max PBST-4/7
PBST-2
PBST-3
PBST-4
PBST-5
PBST-6
PBST-7

(d) Ordered keys Scenario 2

Fig. 18. Second phase total number of restructuring

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Partitioned Binary Search Trees: A Generalization of Red Black Trees 1389

ISSN 2007-9737



decreased drastically. We recognize a trade-off
between the balance and the cost of maintenance
suggesting the possibility of adapting the structure
to different environments through the choice of
parameter value.

10 Conclusion

We presented a new structure, called Partitioned
Binary Search Trees (PBST), which aims to
generalize the Red Black Trees by tolerating
finite succession of Red nodes and presents a
partitioned tree form by the use of class (Black)
nodes. These trees offer a relaxed form for Red
Black trees with high speed and low cost update
operations. The relaxation is a result for the
tolerated imbalance and cutting in the number of
restructuring.

Although the height of the tree is slightly
increased, the search time is of the same level. In
fact, when the inserted keys sequence is not totally
ordered, this effect is almost negligible. The height
increase is explained by the increased number of
Simple (Red) nodes giving a worst case scenario
of n log (N + n)− n log n.

Moreover, the structure is interesting for its
simple and easy to comprehend insert/delete oper-
ations. PBST-n, in its core, simulate higher ordered
B-Trees. In fact, when n = 2 PBST-2 is equivalent
to Red Black Trees. The experiments results show
that in a random generated key environment the
structure gives the same performance level of RB
Trees with less needed restructuring suggesting
a higher adaptability with environments of costly
maintenance such as schedulers. Furthermore,
the structure gives a quite balanced distribution if
omitting the worst case scenario.

PBST-n allow the change of the parameter
value that could be used to tweak the structure
in order to save in update or regain balance
by increasing/decreasing the value. It would
be interesting if there was a way to have an
auto-change of this value in relation to the trees
balance and distribution.

References

1. Adelson-Velskii, G. & Landis, E. M. (1962).
An Algorithm for the Organization of Information.
Doklady Akademii Nauk USSR, Vol. 146, No. 2,
pp. 263–266.

2. Andersson, A. (1993). Balanced search trees made
simple. Proc. 3rd Workshop on Algorithms and Data
Structures.

3. Baer, J.-L. & Schwab, B. (1977). A comparison of
tree-balancing algorithms. Commun. ACM, Vol. 20,
No. 5, pp. 322–330.

4. Balasa, F., Maruvada, S. C., & Krishnamoorthy,
K. (2003). Using red-black interval trees in
device-level analog placement with symmetry
constraints. Proceedings of the 2003 Asia and South
Pacific Design Automation Conference, ASP-DAC
’03, ACM, New York, NY, USA, pp. 777–782.

5. Baldan, P., Corradini, A., Esparza, J., Heindel,
T., König, B., & Kozioura, V. (2005). Verifying
red-black trees. Proc. of COSMICAH ’05. Proceed-
ings available as report RR-05-04 (Queen Mary,
University of London).

6. Bayer, R. (1971). Binary b-trees for virtual memory.
Proceedings of the 1971 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access
and Control, SIGFIDET ’71, ACM, New York, NY,
USA, pp. 219–235.

7. Bayer, R. (1972). Symmetric binary b-trees:
Data structure and maintenance algorithms. Acta
Informatica, Vol. 1, No. 4, pp. 290–306.

8. Bayer, R. & McCreight, E. (1970). Organization and
maintenance of large ordered indices. Proceedings
of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and
Control, SIGFIDET ’70, ACM, New York, NY, USA,
pp. 107–141.

9. Bose, P., Douı̈eb, K., & Langerman, S. (2008).
Dynamic optimality for skip lists and b-trees.
Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’08,
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, pp. 1106–1114.

10. Boumerzoug, H., Amar Bensaber, B., & Biskri,
I. (2011). A key management method based on an
AVL tree and ECC cryptography for wireless sensor
networks. Proceedings of the 7th ACM Symposium
on QoS and Security for Wireless and Mobile
Networks, Q2SWinet ’11, ACM, New York, NY, USA,
pp. 57–62.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Seyfeddine Zouana, Djamel Eddine Zegour1390

ISSN 2007-9737



11. Bounif, L. & Zegour, D. E. (2019). Toward a
unique representation for AVL and red-black trees.
Computación y Sistemas, Vol. 23, No. 2.

12. Carbon, A., Lhuillier, Y., & Charles, H.-P. (2013).
Code specialization for red-black tree management
algorithms. Proceedings of the 3rd International
Workshop on Adaptive Self-Tuning Computing
Systems, ADAPT ’13, ACM, New York, NY, USA,
pp. 6:1–6:3.

13. Dean, B. C. & Jones, Z. H. (2007). Exploring
the duality between skip lists and binary search
trees. ACM Southeast Regional Conference, ACM,
pp. 395–399.

14. Foster, C. C. (1965). Information retrieval: informa-
tion storage and retrieval using AVL trees. ACM ’65:
Proceedings of the 1965 20th national conference,
ACM, New York, NY, USA, pp. 192–205.

15. Foster, C. C. (1973). A generalization of AVL trees.
Commun. ACM, Vol. 16, No. 8, pp. 513–517.

16. Guibas, L. J. & Sedgewick, R. (1978). A dichro-
matic framework for balanced trees. Foundations
of Computer Science, 19th Annual Symposium on,
pp. 8–21.

17. Haeupler, B., Sen, S., & Tarjan, R. E. (2015).
Rank-balanced trees. ACM Trans. Algorithms,
Vol. 11, No. 4, pp. 30:1–30:26.

18. Hanke, S., Ottmann, T., & Soisalon-Soininen,
E. (1997). Relaxed balanced red-black trees.
Bongiovanni, G. C., Bovet, D. P., & Battista, G. D.,
editors, CIAC, volume 1203 of Lecture Notes in
Computer Science, Springer, pp. 193–204.

19. Holenderski, M., Bril, R. J., & Lukkien, J. J.
(2014). Red-black trees with relative node keys.
Information Processing Letters, Vol. 114, No. 11,
pp. 591–596.

20. Howard, P. W. & Walpole, J. (2014). Relativistic
red-black trees. Concurrency and Computation:
Practice and Experience, Vol. 26, No. 16,
pp. 2684–2712.

21. Karlton, P. L., Fuller, S. H., Scroggs, R. E.,
& Kaehler, E. B. (1976). Performance of height-
balanced trees. Commun. ACM, Vol. 19, No. 1,
pp. 23–28.

22. Kurilova, D. & Rayside, D. (2013). On the simplicity
of synthesizing linked data structure operations.
SIGPLAN Not., Vol. 49, No. 3, pp. 155–158.

23. Nievergelt, J. (1974). Binary Search Trees and File
Organization. ACM Comput. Surv., Vol. 6, No. 3,
pp. 195–207.

24. Nievergelt, J. & Reingold, E. M. (1972). Binary
search trees of bounded balance. Proceedings of
the Fourth Annual ACM Symposium on Theory of
Computing, STOC ’72, ACM, New York, NY, USA,
pp. 137–142.

25. Nievergelt, J. & Wong, C. K. (1973). Upper bounds
for the total path length of binary trees. J. ACM,
Vol. 20, No. 1, pp. 1–6.

26. Okasaki, C. (2005). Alternatives to two classic data
structures. Dann, W., Naps, T. L., Tymann, P. T., &
Baldwin, D., editors, SIGCSE, ACM, pp. 162–165.

27. Ottmann, T., Six, H. W., & Wood, D. (1978).
Right brother trees. Commun. ACM, Vol. 21, No. 9,
pp. 769–776.

28. Park, H. & Park, K. (2001). Parallel algorithms
for red–black trees. Theoretical Computer Science,
Vol. 262, No. 1, pp. 415–435.

29. Ralston, R. (2009). ACL2-certified AVL trees.
Proceedings of the Eighth International Workshop
on the ACL2 Theorem Prover and Its Applications,
ACL2 ’09, ACM, New York, NY, USA, pp. 71–74.

30. Rolfe, T. J. (2002). One-time binary search tree
balancing: the day/stout/warren (DSW) algorithm.
SIGCSE Bulletin, Vol. 34, No. 4, pp. 85–88.

31. Sedgewick, R. (2008). Left-Leaning red black trees.

32. Sen, S. & Tarjan, R. E. (2010). Deletion without
rebalancing in balanced binary trees. Proceedings
of the Twenty-first Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’10, Society for
Industrial and Applied Mathematics, Philadelphia,
PA, USA, pp. 1490–1499.

33. Stout, Q. F. & Warren, B. L. (1986). Tree
rebalancing in optimal time and space. Commun.
ACM, Vol. 29, No. 9, pp. 902–908.

34. Strbac-Savić, S. & Tomašević, M. (2012).
Comparative performance evaluation of the AVL and
red-black trees. Proceedings of the Fifth Balkan
Conference in Informatics, BCI ’12, ACM, New York,
NY, USA, pp. 14–19.

35. Tan, K. C. (1972). On Foster’s information storage
and retrieval using AVL trees. Commun. ACM,
Vol. 15, No. 9, pp. 843.

Article received on 04/01/2019; accepted on 13/06/2019.
Corresponding author is Seyfeddine Zouana.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1375–1391
doi: 10.13053/CyS-23-4-3108

Partitioned Binary Search Trees: A Generalization of Red Black Trees 1391

ISSN 2007-9737


