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México
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Abstract. We study and propose, for the first time,
an autonomous classification of the estrous cycle (the
reproductive cycle in rats). This cycle consists of 4
stages: Proestrus, Estrus, Metestrus, and Diestrus. The
short duration of the cycle in rats makes them an ideal
model for research about changes that occur during
the reproductive cycle. Classification is based on the
cytology shown by vaginal smear. For this reason,
we use manual and automatic feature extraction; these
features are classified with support vector machines,
multilayer perceptron networks and convolutional neural
networks. A dataset of 412 images of the estrous
cycle was used. It was divided into two sets. The
first contains all four stages, the second contains two
classes. The first class is formed by the stages Proestrus
and Estrus and the second class is formed by the stages

Metestrus and Diestrus. The two sets were built to solve
the main problems, the research of the reproductive
cycle and the reproduction control of rodents. For
the first set, we obtained 82% of validation accuracy
and 98.38% of validation accuracy for the second set
using convolutional neural networks. The results were
validated through cross-validation and F1 metric.

Keywords. Estrous cycle, GLCM, machine learning,
convolutional neural network, multilayer perceptron,
SVM.

1 Introduction

The estrous cycle is the period between two
ovulations and defines the receptivity of the female
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for its reproduction. The short duration of the
cycle in rats makes them an ideal model for
investigating the changes that occur during the
reproductive cycle [24, 17, 25, 7]. The cycle is
used for reproduction control of rodents, obtaining
high fertility rates, scheduling of production on
specific dates, knowing the time of gestation, and
the development of embryos at specific ages.
The estrous cycle in rats lasts four days and is
characterized by the stages: Proestrus, Estrus,
Metestrus, and Diestrus, which can be determined
according to the cell types observed in the vaginal
smear [3].

The objective of this work is to provide a
tool for automatic detection of estrous cycle
stages through the image processing and neuronal
networks. For this, we use manual and automatic
feature extraction techniques, as well as different
classifiers such as radial kernel Support Vector
Machines (SVMs), Multilayer Perceptron networks
(MLPs), and Convolutional Neural Networks
(CNNs). The dataset, the feature extraction
algorithms, and the neural network models are
available in [10].

The rest of the paper is organized as follows.
Section 2 provides a review of classical methods
used for classifying the estrous cycle and shows
the similarities between Papanicolaou (PAP) cells
and cells of the estrous cycle. In Section 3
we review the feature extraction and the neural
networks used. In Section 4 we show our approach
for classifying the estrous cycle. We present
several experiments and results, as well as a short
discussion to demonstrate the effectiveness of our
proposal. Finally, in Section 5 the conclusions and
directions for future research are discussed.

2 Previous Work

Shannon L. Byers [3] describes a variety of
methodologies used for classifying the estrous
cycle. All of them need specialized people for
being performed (Table 1). In the same paper, a
graphic tool for classifying with the estrous cycle is
presented (Figure 1).

Claudia Caligioni [4] describes the process to
follow for classifying the estrous cycle through
vaginal smear.

Fig. 1. Graphic tool presented by Byers on [3]

Her work shows that it is not necessary to
dye the rats to classify the sample. According
to her work and the work of Marcondes [18] the
percentage of each kind of cell present in the
vaginal smear must be:

— Proestrus: Predominance of nucleated
epithelial cells (Figure 2-a). These cells may
appear in clusters or individually) [4].

— Estrus: Is characterized by cornified squa-
mous epithelial cells, which occur in clusters
(Figure 2-b). There is no visible nucleus;
the cytoplasm is granular, and the shape is
irregular [4].

— Metestrus: Is a mix of cell types with a pre-
dominance of leucocytes and a few nucleated
epithelial and/or cornified squamous epithelial
cells (Figure 2-c) [4].

— Diestrus: This stage consists predominantly
of leukocytes (Figure 2-d) [4].

The state-of-the-art of estrous classification
cycle does not have an automatic way for being
performed at this moment. Nevertheless, the PAP
cells are similar to the estrous cycle cells (Figure
3), and concerning this topic, there is a wide variety
of algorithms.

Mariana E. Plissiti [22] has a 99.39% of accuracy
segmenting the nucleus on PAP cells through the
watershed transform. In the same year, she
[21] worked on a methodology for segmenting
the nucleus and overlapping cells through the
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(a) Proestrus (b) Estrus

(c) Metestrus (d) Diestrus

Fig. 2. Stages of the estrous cycle, images obtained by
Vivarium Claude Bernard

(a) Image from [23] (b) Image from [32]

(c) Image from [33]

Fig. 3. PAP Images

H transform, SVM and C-Means. In 2015 [23]
she presented a method for the segmentation of
cytoplasms that showed an overlapping. She uses
a variety of intensities in the RGB obtained from
super-pixels. Dabashree Kashyap [12] propose a
method to classify PAP cells using geometric and
texture characteristics. He uses GLCM metrics
and 3 SVM where the best result is obtained using
a polynomial kernel. Ling Zhang [32] presents a
method for segmenting cells using graphs.

He takes an image in the CIELAB color space
(channel A) and applies the three-threshold Otsu
algorithm; finally, he uses a graph-cut approach
for enhancing the segmentation. The results
obtained are robust to non-bimodal distributions
in the histograms of the image. Meng Zhao [33]
proposes a method of classifying through image
analysis by blocks slightly larger than the size of
a cell. For the classification, he uses texture and
histogram metrics. He reaches a 98.98% accuracy
and 95% sensitivity. The detection of the estrous
cycle keeps similarities with the classification of
PAP cells.

However, the main difference is that the
classification of the estrous cycle is based on
the quantity of each kind of cell presented in the
samples [4, 18] and the PAP classifying is based
on the morphology of the cells. We took the PAP
work as a starter point. Our proposal eliminates
the bias of designing manual feature extractors,
using automatic feature extraction, and achieving a
completely automatic classification through neural
networks of last generation.

3 Methodology

This section describes the different approaches
used for the classification of the four aforemen-
tioned estrous cycles. As a first approximation,
SVMs and MLPs are trained for the manual feature
extraction method, described in Section 3.2.
Subsequently, two architectures of Convolutional
Neural Networks are trained, the first from
scratch, the LeNet-5 network, and the second, a
pre-trained model with Imagenet dataset [8], the
VGG16 network.
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Table 1. Advantages and disadvantages of the methodologies used for classifying the estrous cycle

Methodology Advantages Disadvantages

Cytology Identifying all stages. The sample needs to be dyed.

Impedance The cycle can be measured using a probe. The methodology only can classify one stage.

Observation No extra equipment is required. The methodology only can classify one stage.

3.1 Pre-Processed Features

The cell image is converted to the CIELAB color
and grey level space. From CIELAB the channels A
and B which represents a variation of the red color
to green and the blue color to yellow are taken. A
median filter with a window of 5,5 to eliminate the
noise it is applied. Otsu´s approach [20] is applied
to segment the regions of interest.

3.2 Manual Feature Extraction

For the extraction of texture features, we used
the GLCM algorithm [5, 9] with steps (δ) [1,5]
and angles (θ) [0◦, 45◦, 90◦, 135◦]. The GLCM
metrics used:

Contrast:

O =

l−1∑

i,j=0

Pi,j (i− j)2 . (1)

Dissimilarity:

D =

l−1∑

i,j=0

Pi,j |i− j|. (2)

Homogeneity:

H =

l−1∑

i,j=0

Pi,j

1 + (i− j)2
. (3)

Energy:

E =

l−1∑

i,j=0

Pi,j , (4)

where Pi,j (the co-occurrence probability between
grey levels i and j) is defined as:

Pi,j =
Gi,j∑l−1

i,j=0Gi,j

, (5)

where Gi,j represents the number of occurrences
of grey levels i and j, given a certain pair (δ, θ).
The matrix G is calculated considered the times
in which occurrences of intensity change given an
angle θ and a step δ. Each element of the matrix
represents the number of occurrences between a
change of intensity to another (Figure 4).

The morphological metrics obtained were the
number of elements, the average compactness
Equation 8 and the total compactness Equation 7
giving a total of 105 characteristics, 35 by each
channel of the CIELAB and 35 by the greyscale.

Compactness factor:

FC =
Area

Perimeter2
. (6)

Total compactness:

CT =

Nl∑

i=1

FCi. (7)

Average compactness:

CP =

∑Nl
i=1 FCi

Nl
, (8)

where Nl is the number of connected elements in
the binary image.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1249–1259
doi: 10.13053/CyS-23-4-3095

Gerardo Hernández, Leonardo Delgado, R. Ochoa Montiel, Erik Zamora, Humberto Sossa, Aldrin Barreto, et al.1252

ISSN 2007-9737



0 0 1 1 1

0 0 1 1 0

0 2 2 2 2

2 2 3 3 1

2 1 3 2 0

135◦ 90◦ 45◦

0◦

0 0 1 2 3

0 #(0, 0) #(0, 1) #(0, 2) #(0, 3)

1 #(1, 0) #(1, 1) #(1, 2) #(1, 3)

2 #(2, 0) #(2, 1) #(2, 2) #(2, 3)

3 #(3, 0) #(3, 1) #(3, 2) #(3, 3)

Gray Level

G
ra
y
L
e
v
e
l

2 2 1 0

1 3 0 1

1 1 4 1

0 1 1 1







G0◦ =

2 1 0 0

0 2 0 1

1 3 3 0

0 0 2 1







G45◦ =

3 2 0 0

0 2 2 1

3 2 2 1

0 0 2 1







G90◦ =

1 1 0 1

1 1 2 0

3 2 0 1

0 0 3 0







G135◦ =

Fig. 4. a) The 5x5 image with four grey-levels,
b)The general form of any GLCM for images with
grey-levels values 0-3, c)-f) Calculation of GLCM for
(δ, θ)=(1,0),(1,45),(1,90),(1,135)

3.3 Classification

Nowadays, there is a great diversity of classifiers.
These are divided into two large branches,
supervised and unsupervised. Within the
unsupervised classifiers we can find algorithms like
k-Means, Self-organizing maps, Hidden Markov
models.

Supervised algorithms have better acceptance
in the scientific community because they are more
effective methods to achieve higher classification
performance. Within this other branch, we can find
the Multi-Layer Perceptron (MLP), Support Vector
Machine (SVM), Deep Neural Networks (DNN) and
the Convolutional Neural Network (CNN).

The nature of these classifiers is varied, while
the SVMs excel in their ability to classify patterns
(data), they have a low performance when trying
to classify images. The MLPs and DNNs networks
can classify both patterns and images of a single
channel; however, these models tend to be large
and difficult to train.

Finally, we have the CNNs, which in recent
years, have proved to be the ideal tool for image
classification with automatic feature extraction.

Input Layer Hidden Layers Output Layer

1

2

 

 2  

1

 

Fig. 5. DNN classic architecture.

3.3.1 Deep Neural Networks

Deep Neural Networks (DNNs) are composed of
a computation unit called Perceptron, defined by
Equation 9. The objective is to separate two
classes through a hyperplane.

y =

n∑

i=1

xiwi + b, (9)

O = F (y), (10)

where xi represents the ith element of the input x
vector. w are the trainable synaptic weights, b is
the bias and F represents a non-linear activation
function [30, 27, 26]. In our case, the ReLU =
max(0, y) function [19].

A DNN network usually consists of more
than three intermediate layers, each layer of a
variable Perceptron number, as shown in Figure
5. These networks are trained by stochastic
gradient descent.

3.3.2 Support Vector Machine (SVM)

A SVM is a discriminative classifier, whose
objective is to look for a separation hyperplane
between two classes, defined by Equation 11.
This maximizes the separation distance between
two classes. For this, the SVM uses non-linear
transformation functions or kernels. The two most
common kernel functions are: the linear (Kl),
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Equation 12, and the radial basis (Kg), Equation
13, like Gaussians [6, 2].

D (x) =

p∑

k=1

αkK (xk,x) + b, (11)

where αk are the parameters to be adjusted, xk is
the training pattern. The K function is a predefined
kernel and x is the support pattern.

Kl = (x • w) , (12)

Kg = e

−||x−µj ||
2

σ2
j , (13)

where x is the training pattern, µ is the center of the
Gaussian, σ the variance, and • is the dot product.

3.3.3 Convolutional Neural Networks (CNNs)

CNNs are a relatively new branch of machine
learning, introduced by LeCun in the 1990s [15,
16, 14]. This architecture type has turned out to
be the default option for analysis, classification and
treatment of image problems [29, 28, 31, 13, 11].

The success of these architectures is due to
the implementation of feature extractors, trained
in an automatic way. These feature extractors
are convolutional filters which, by means of a
stochastic gradient descent training, "learn" the
characteristic features of each class. The layers
of convolutional filter are called feature extraction
layers. These layers also use a sampling-based
discretization element, called Max-pooling, which
helps to reduce the dimensionality of the elements
to be classified, as well as to preserve the most
predominant features.

The second element that constitutes these
networks is the classification layer; usually, this
layer is implemented by a Multi-Layer Perceptron
(MLP) of two or three layers.

The trainable parameters that constitute this
type of networks are the synaptic weights
corresponding to the MLP classification layer, and
the weights corresponding to the convolutional
filters in the feature extraction layer. All
these parameters are trained end-to-end, through
optimization algorithms such as back-propagation.
The general architecture of this type of network is
shown in Figure 6.

Img

Input image

Automatic Feature Extraction Classification

Fig. 6. Classical architecture of a CNN

4 Experiments and Results

In this section, we describe the results when
evaluating the different classifiers on two sets, the
first composed of four stages of the estrous cycle
(Figure 7) and the second by two classes. The
first class is composed of the stages Proestrus
and Estrus (Figures 7-a and 7-b) and the second
class is formed by the stages Metestrus and
Diestrus (Figures 7-c and 7-d). The second training
set is shaped with the stages that define the
receptivity of the female rat for its reproduction
[3]. For implementation and classification details
consult [10].

4.1 Dataset

The dataset consists of 32 images, 8 of each stage,
of the estrous cycle. The images were taken with
a Logitech C170 camera with a magnification of
the microscope of 400x formed by an ocular 10X
and an objective 40X, which helped provide a good
image quality [18]. The images were divided into
16 sub-images. Each sub-image was tagged by
the staff of the BUAPs vivarium Claude Bernard.
The sub-images that did not present an adequate
number of cells were discarded, resulting in a total
of 89 images of the Diestrus stage, 125 of the
Metestrus stage, 112 of the Estrus stage and 86
of the Proestrus stage with dimensions of 100x90
pixels (Figure 7).

4.2 Classification Methodology

The classification process is divided into two
stages. In the first, we use the 105 manual
features, result of texture and shape analysis
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(a) Proestrus (b) Estrus

(c) Metestrus (d) Diestrus

Fig. 7. a) The 5x5 image with four grey-levels,
b)The general form of any GLCM for images with
grey-levels values 0-3, c)-f) Calculation of GLCM for
(δ, θ)=(1,0),(1,45),(1,90),(1,135)

described in Section 3.2. To classify these
features, we used DNN and SVM networks with
radial base kernel, which are ideal for classifying
this type of information.

In the second classification stage, the CNN
LeNet-5 (from scratch) and pre-trained VGG16 are
trained, for which the images of the cells in RGB
format with a resized dimension of 150x150 are
used, normalized in value, dividing the pixel value
by 255.

Since we are using three different types of
classifiers DNN, SVM, CNN, and to be able to
have a valid comparison point between the different
architectures, the original dataset was treated in
the following way for all tests. From the total of
412 images, three mutually exclusive sets were
generated. The first set, the training, 280 images
were taken at random, 70 images for the validation
set, and 62 images for the test. These last three
datasets were used for the training of the DNN and
SVM networks.

Due to the lack of images (412 in total and 280
for training), we chose to artificially expand the
training set generating a total of 5600 images, 19

artificial images for each original image, applying
the following transformations: rotation range [0,
180], horizontal and vertical flip. At the end, the
training set for the CNNs is 5600 images. In
summary, only the training set for the CNNs was
expanded, the validation and test sets are the
same for all the trials.

4.2.1 SVM Classification

For the classification of the manual features, a
random search grid was generated for µ and σ
parameters of the radial base kernel [1]. The grid
has a uniform distribution in a logarithmic scale
range of [-10, 10] and a density of 10,000 samples.
The classification result of this architecture is
shown and compared in Section 4.3.

4.2.2 DNN Classification

In the same way that a search grid of random
hyper-parameters was generated for the SVM. For
the DNN a similar hyper-parameter search grid
was generated. This grid includes the number
of intermediate layers in a range of [1, 6], the
perceptrons number per layer in a range of [1, 250],
and the learning rate in a range of [0.1, 0.00001].
The random search grid was generated with a
uniform distribution of its values. The density of
the grid is 10,000 elements or architectures. The
classification result of this architecture is discussed
in Section 4.3.

4.2.3 LeNet-5 CNN Classification

Opting for a different point of view to the
two previous classification methods, we decided
to use a more robust architecture in terms
of image classification; a Convolutional Neural
Network, which contemplates both, classification
and automatic feature extraction. This architecture
(LeNet-5) is composed of a first block of
6 convolutional filters of 5x5, followed by a
max-pooling of (2, 2) with a step of 2. The second
block consists of 16 convolutional filters of 5x5,
followed by a max-pooling of (2,2) with a step of 2.
The third block consists of 120 convolutional filters
5x5. All the activations are ReLU functions.
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The classification layer consists of a MLP of
two layers, the first layer of 84 neurons and
the output layer of 4 neurons for four classes
classification problem, and one output perceptron
neuron for a two classes classification. The results
of this architecture are shown and discussed in
Section 4.3.

4.2.4 VGG16 Classification

In this stage and due to the results of the previous
classifiers, we decided to use a pre-trained VGG16
network [29] with the Imagenet dataset [8]. This
under two premises: the first is to take advantage
of the previous knowledge of the pre-trained
convolutional filters and, the second, using
transfer learning techniques and artificial data
augmentation we can combat the high percentage
of overfitting presented by previous classifiers.

Two tests were carried out with the VGG16
architecture, the first using all the pretrained
feature extraction blocks (convolutional and max-
pooling filter layers) and training only the classifier
at the end of said network. The second test
was to eliminate the last feature extraction block
consisting of three convolutional filters and one
maxpooling.

This in order to rule out the abstraction of
high-level features of the last convolutional layers,
and take advantage of the low-level features of
the first convolutional layers, since these features
are more suitable for classifying basic elements
such as cells. The MLP classifier added to this
architecture consists of two layers of 100 and four
neurons for four estrous cycles classification, and
of 100 and one neuron for two estrous cycles
classification.

4.3 Results

In this section, we present the results of classifying
two datasets (for two and four estrous cycles),
with the four architectures of neural networks as
described above.

Table 2. Table showing the Macro and Micro F1 score
for the classification of 4 estrous cycles, using 5 different
classification algorithms

Network Micro-F1 Macro-F1

MLP 0.6906 0.7059

SVM 0.7096 0.7134

LeNet-5 0.8548 0.8545

VGG-16 0.8709 0.8729

VGG-16 Modified 0.9193 0.9223

Table 3. Table showing the Macro and Micro F1 score
for the classification of 2 sets of estrous cycles, using 5
different classification algorithms

Network Micro-F1 Macro-F1

MLP 0.8322 0.8291

SVM 0.9290 0.9281

LeNet-5 0.9193 0.9176

VGG-16 0.9516 0.9505

VGG-16 Modified 0.9838 0.9837

4.3.1 Classification of 4 (Estral Cycle) Classes

This problem turns out to be the most interesting
and difficult to classify, where each class is
represented by a certain estrous cycle, Proestrus,
Estrus, Metestrus, and Diestrus. The results
of each classifier are presented in Table 2.
The percentages of classification for MLP, SVM,
LeNet-5, VGG-16 and VGG-16 Modified are
shown. In summary, we can conclude that for
this specific problem, the convolutional neural
networks have a greater ability to automatic
feature abstraction, and these features are more
representative than the manually selected features
(see Section 3.2).

4.3.2 Two-Class Classification

In this section, we present the classification results
for the estrous cycles, Proestrus and Estrus stages
as the first class and the second class was formed
by the stages Metestrus and Diestrus.
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0.02                    0.04                     0.06                   0.08                   0.10                   0.12

|| test - val || Accuracy (4 Estrous cycles)

Fig. 8. Graph showing the degree of overfitting of each
neural network for four estrous cycles

|| test - val || Accuracy (2 Estorus cycles)
0.02                      0.03                       0.04                       0.05                        0.06

Fig. 9. Graph showing the degree of overfitting of each
neural network for 2 class estrous cycles

In Table 3 the Micro and Macro F1 score is
shown for each neural network model. Although
the classification percentages for this training set
are higher than those shown in Table 2, the model
with the best classification percentage again is the
modified VGG-16 model.

4.4 Generalization Analysis

In this section, the models with better generaliza-
tion are analyzed. This is due to the fact that in
the training stage and because of the training data
shortages, all the aforementioned models have
overfitting to a certain degree. Also, although the
Micro and Macro F1 scores are reliable metrics for
measuring the performance of a network, these

metrics are skewed, since they were calculated
with a reduced set of only 62 images. From the
above, we present a discussion on the best model
to use for the classification of the estrous cycles
and this is not the model that obtained the highest
percentage in terms of classification.

From Figure 8, we can conclude that the
architecture that presents the lower overfitting is
the LeNet-5 network (shown in red). This is
because it has the smallest difference between
the percentages of validation and test with
a classification percentage greater than 80%.
Also, the use of the Modified VGG-16 network
(VGG-16-M), turns out to be a good option, with
a difference of 0.022% between the test and
validation percentage, and a good 82% in test.

Notice that these percentages vary with respect
to the percentages shown in Table 2. The latter
shows the highest training rates, but they have up
to 15% of overfitting, and the percentages shown
in Figure 8 are the classification percentages of the
architectures with the lowest degree of overfitting.

Regarding the classification of the second
dataset (2 classes), from Figure 9 we can see
that as far as over-training is concerned, any of
the architectures used is a good option. This is
because of the difference between the maximum
and minimum percentage of overfitting is only
0.04 percent. This leads us to focus on the
neural network with the highest percentage of
classification, which in this case is the Modified
VGG-16 network, which has a classification of
98.38%, and it turns out to be the best option for
the dataset of 2 classes.

5 Conclusion and Future Work

The contribution of this work is the automatic
classification of the estrous cycle through the
automatic feature extraction. A methodology for
the autonomous classification of the estrous cycle
was presented in their four stages: Proestrus,
Estrus, Metestrus, and Diestrus, as well as
the classification of stages with high hormonal
levels (Estrus and Proestrus) which are used for
population control. In the first case, 82% of
accuracy was reached while in the second case it
was 98.38%.
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The results obtained are considered sufficient to
solve the problem of population control. However,
the classifiers have problems separating the stages
Metaestrous and Diestrous, so it is necessary to
improve the features for these stages by increasing
the number of images. In this direction, we prove
that the automatic feature extraction of the CNNs
is more robust than the proposed manual feature
extraction in terms of generalization of neural
networks, which translates into greater reliability
in terms of classification. As future work, we
intend to expand the dataset, in order to provide
a reliable classification of the estrous cycle using
convolutional neural networks as well as design an
expert system based on the graphic tool proposed
by Byers [3].
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