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Abstract. In this paper we propose an ensemble method 

based on IFROWANN (Imbalanced Fuzzy-Rough 
Ordered Weighted Average Nearest Neighbor) algorithm 
to classify problems with imbalanced data. The 
ensemble generates many classifiers with different 
weight strategy and indiscernibility fuzzy relations. 
Classification is carried out selecting one of three 
strategies: I- to classify the new instance with the 
algorithm with best AUC in training. II- to average the 
memberships of the instance to the fuzzy-rough lower 
and upper approximation of each class given by the 
classifiers with best AUC. III- to average the 
memberships of the instance to the fuzzy-rough lower 
and upper approximation of each class of the all 
classifiers. Our method is validated by an extensive 
experimental study, showing statistically better results 
than 14 other state-of-the-art methods. 

Keywords. Ensemble, imbalanced classification, fuzzy-

rough sets. 

1 Introduction 

In recent years, class imbalance problems have 
emerged as one of the challenges in data mining 
community [28]. This kind of data appear in many 
real-world classification problems like fault 
diagnosis [29], anomaly detection [24], medical 
diagnosis [19], circuit breaker maintenance 
diagnosis [21], among others. In binary 
classification, this problem occurs when the 
number of instances of one class is much lower 
than the instances of the other class. The 
overrepresented class is called the majority or 
negative class, and the other class the minority or 
positive class. Traditional classifiers generally tend 

to classify almost all instances as negative (i.e., the 
majority class) [22]. 

Many techniques for dealing with class 
imbalance have emerged: those that modify the 
data distribution by preprocessing techniques 
(data level solutions) [2, 6, 18, 23], those at the 
level of the learning algorithm which adapt a base 
classifier to deal with class imbalance (algorithm 
level solutions) [4, 16, 22], those that apply 
different costs to misclassification of positive and 
negative samples (cost-sensitive solutions) [8, 18, 
25, 27], and ensemble based solutions that 
combine the previous solutions by means of an 
ensemble [10]. 

In this paper, we present an ensemble solution 
to classify imbalanced using the Imbalanced 
Fuzzy-Rough Ordered Weighted Average Nearest 
Neighbor (IFROWANN) algorithm [22]. This 
classifier combine fuzzy rough set theory and 
ordered weighted average aggregation to taking 
into account the imbalance of the classes. Each 
strategy of weight and fuzzy-rough indiscernibility 
relation produce different classification results. It is 
difficult to know the best configuration to obtain the 
best classification result in different datasets. 

The ensemble generates the same classifier 
(IFROWANN), but with different weight strategy 
and different fuzzy relation. Final classification is 
given by one of these strategies. To evaluate the 
quality of our model, we have carried out an 
extensive experimental analysis on a collection of 
66 imbalanced datasets with different imbalance 
ratios (IR) (between 1.82 and 129.44), originating 
from the SCI2S site (sci2s.ugr.es). In the 
experiments, we have compared our algorithm with 
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the base IFROWANN proposal to show that it is 
similar to it without to test the weight and fuzzy 
relation strategies. Also, we have compared the 
ensemble with a set of 16 state-of-the-art methods 
designed for imbalanced classification, obtaining 
that it is better positioned than 14 and without 
significant differences with the rest. To assess the 
classification performance, we have use the Area 
Under the Curve (AUC) metric [22], and the 
significance of the results has been supported by 
the Friedman tests and post hoc Holm procedure. 

The remainder of this paper is organized as 
follows. In Section 2, we introduce the imbalanced 
classification problem, including an overview of the 
state-of-the-art methods for solving it. In Section 3, 
we recall the standard IFROWANN algorithm. In 
Section 4, we introduce the WIFROWANN 
algorithm and present the proposed strategies to 
instance classification. In Section 5, we discuss the 
setup of the experimental study. In Section 6, we 
present and discuss the results. In Section 7, we 
draw some conclusions and future work about 
the study. 

2 Classifications in Imbalanced 
Datasets 

In this section, we first introduce the problem of 
imbalanced datasets in classification. Then, 
several techniques to address the class imbalance 
problem are presented. In binary classification, it is 
considered a set of data samples 𝑈, characterized 

by their values for the set 𝐴 = {𝑎1, . . . , 𝑎𝑚} of 

attributes. Moreover,𝑈 = 𝑃 ∪ 𝑁 where 𝑃 
represents the positive class, and 𝑁 represents the 

negative class. We denote 𝑝 = 𝑃 ∨, 𝑛 = 𝑁 ∨, and 

𝑡 = 𝑈 ∨ 𝑝 + 𝑛. The imbalance rate is then defined 

as 𝑛 𝑝⁄  . The imbalanced classification problem 
can be tackled using four main types of solutions: 

1) Sampling (solutions at the data level) [18]: 
This kind of solution consists of balancing the class 
distribution by means of a preprocessing strategy. 
Techniques at data level are undersampling, 
oversampling and hybrid methods. Some 
examples of this technique are Synthetic Minority 
Oversampling Technique (SMOTE) algorithm [6], 
SMOTE-ENN [2] and SMOTE-RSB* [23]. 

2) Design of specific algorithms (solutions at the 
algorithmic level) [4, 16]: Traditional classifier is 
adapted to deal directly with the imbalance 
between the classes. This is the case of 
Imbalanced Fuzzy Rough Ordered Weighted 
Average Nearest Neighbor (IFROWANN) [22]. 

3) Cost-sensitive solutions [8, 18]: These kind 
of methods incorporate solutions at data level, at 
algorithmic level, or at both levels together. They 
try to minimize higher cost errors where the cost of 
misclassifying a positive instance should be higher 
than the cost of misclassifying a negative one. The 
main examples are Cost-sensitive C4.5 decision 
tree (CS-C4.5) [25] and Cost-sensitive support 
vector machine (CS-SVM) [27]. 

4) Ensemble solutions [11]: Usually combine an 
ensemble learning algorithm and one of the 
techniques above, specifically, data level and cost-
sensitive. For example the EUSBOOST algorithm 
[10], which uses evolutionary undersampling. 

Next, we will discuss the evaluation of machine-
learning algorithms in imbalanced domains. 

3 Imbalanced Fuzzy-Rough Ordered 
Weighted Average Nearest Neighbor 
(IFROWANN) 

In this section, we introduce the IFROWANN 
classification algorithm proposed in [22]. This 
algorithm is a variation of the Fuzzy-Rough 
Nearest Neighbor (FRNN) algorithm [17]. In order 
to predict the class of a new instance 𝑥, the 
IFROWANN algorithm calculate the memberships 
degrees of 𝑥 to the fuzzy-rough lower and upper 
approximation of each class and assigns the 
instance to the class with higher degree.  

More precisely, let 𝑈 be the universe, I an 

implicator, T  a t-norm defined by I(𝑎, 𝑏) =
𝑚𝑎𝑥(1 − 𝑎, 𝑏) and T(𝑎, 𝑏) = 𝑚𝑖𝑛(𝑎, 𝑏),for 𝑎, 𝑏 in 
[0,1], and 𝑅 a fuzzy relation that represents 

approximate indiscernibility between instances, 𝑊𝑃
𝑙 

and 𝑊𝑁
𝑙  OWA weight vectors.  

An implicator I  is a [0,1]2 → [0,1] mapping that 
is decreasing in its first argument and increasing in 
its second argument, and that satisfies I  
(0,0) =  I(0,1) = I(1,1) = 1, and I(1,0) = 0. The 
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membership degrees to the positive class 𝜇𝑃(𝑥) 

and negative class 𝜇𝑁(𝑥) are defined by: 

𝜇𝑃(𝑥) =
𝑃𝑊𝑃

𝑙 (𝑥) + 1 − 𝑁𝑊𝑁
𝑙 (𝑥)

2
 , (1) 

𝜇𝑁(𝑥) =
𝑁𝑊𝑃

𝑙 (𝑥) + 1 − 𝑃𝑊𝑃
𝑙 (𝑥)

2
 , (2) 

where 𝑃
𝑊𝑃

𝑙 (𝑥) is the lower approximation to the 

positive class 𝑃 under the fuzzy relation 𝑅  with the 

OWA weight vector 𝑊𝑃
𝑙, and 𝑁

𝑊𝑁
𝑙 (𝑥) is the lower 

approximation to the negative class 𝑁 under 𝑅 and 

the OWA weight vector 𝑊𝑁
𝑙  for negative class. 𝑥 is 

classified to the positive class if 𝜇𝑃(𝑥) ≥ 𝜇𝑁(𝑥); 
otherwise, it is classified to the negative class. The 
lower approximation for the negative and positive 
class are calculated by the equation 3 and 4: 

𝑃𝑊𝑃
𝑙 (𝑥) = 𝑂𝑊𝐴

𝑦∈𝑈𝑡𝑟
𝑊𝑃

𝑙 ⟨I (𝑅(𝑥, 𝑦), 𝑃(𝑦))⟩ , (3) 

𝑁𝑊𝑁
𝑙 (𝑥) = 𝑂𝑊𝐴

𝑦∈𝑈𝑡𝑟
𝑊𝑁

𝑙 ⟨I  (𝑅(𝑥, 𝑦), 𝑁(𝑦))⟩ , (4) 

where OWA is the operator to take into account the 
imbalance. Given a sequence 𝐴 of 𝑡 real values 
𝐴 = ⟨𝑎1, … , 𝑎𝑡⟩, and a weight vector 𝑊 =
⟨𝑤1, … , 𝑤𝑡⟩ such that 𝑤𝑖 ∈ [0,1]  and ∑ 𝑤𝑖

𝑡
𝑖=1 = 1 the 

OWA aggregation of 𝐴 by 𝑊 is given by: 

𝑂𝑊𝐴𝑤(𝐴) = ∑ 𝑤𝑖𝑏𝑖
𝑡
𝑖=1  where 𝑏𝑖 = 𝑎𝑗 if 𝑎𝑗 is the ith 

largest value in 𝐴. 

IFROWANN algorithm has two fundamental 
factors: indiscernibility fuzzy function and weight 
vector. There is no weight and fuzzy relation 
strategies to obtain the best results for any 𝐼𝑅. In 
order to obtain the best result of classification we 
must to try with several combinations of weight 
vectors and fuzzy relations. For this reason, this 
paper proposes an ensemble with the IFROWANN 
algorithm, which combine different weight 
strategies and fuzzy relations. 

4 Extending the IFROWANN Algorithm  

The Wrapper Imbalanced Fuzzy-Rough Ordered 
Weighted Average Nearest Neighbor 
(WIFROWANN) is an ensemble that uses the 
IFROWANN algorithm in base, with different 
configurations of OWA weight vector and fuzzy 

relations. The description of the algorithm is 
divided in two main parts. First, we discuss the 
configurations to run the classifier, and second in 
Section 4.1, the different strategies to output the 
ensemble classification of the new instance. 

To predict the class of a new instance 𝑥, the 

ensemble creates a set of classifiers 𝐶 =
{𝐶1, … , 𝐶𝐿}, each one with a weight strategy and an 
indiscernibility fuzzy relation strategy too. Given a 
vector with different weight strategies 𝑊 =
[𝑊1, … , 𝑊𝑛] and a vector with different 
configurations of indiscernibility fuzzy-rough 
relations 𝑅 = [𝑅1, … , 𝑅𝑚]; the ensemble build 𝑊 ×
𝑅 classifiers. Each classifier 𝐶𝑖computes the 
membership degree to the positive and negative 
class and the final result is given by the strategy of 
fusion or selection chose by us. Next section we 
explain these strategies. Weights strategy define 
which weight vector the classifier  𝐶𝑖 will use to 
calculate the belong degree to the lower 
approximation to the positive and negative class in 
equations 3 and 4 respectively. The different 
weight vectors proposed in [22] are: 

𝑊𝑃
𝑙1 = ⟨0, … ,0,

2

𝑛(𝑛 + 1)
,

4

𝑛(𝑛 + 1)
, … ,

2(𝑛 − 1)

𝑛(𝑛 + 1)
,

2

𝑛 + 1
 ⟩ , (5) 

𝑊𝑃
𝑙2

= ⟨0, … ,0.
1

(2𝑛 − 1)
,

2

(2𝑛 − 1)
, … ,

2𝑛−2

(2𝑛 − 1)
,

2𝑛−1

(2𝑛 − 1)
⟩ , 

(6) 

𝑊𝑁
𝑙2

= ⟨0, … ,0,
1

(2𝑝 − 1)
,

2

(2𝑝 − 1)
, … ,

2𝑝−2

(2𝑝 − 1)
,

2𝑝−1

(2𝑝 − 1)
⟩ 𝑊𝑁

𝑙1

= ⟨0, … ,0,
2

𝑝(𝑝 + 1)
,

4

𝑝(𝑝 + 1)
, … ,

2(𝑝 − 1)

𝑝(𝑝 + 1)
,

2

𝑝 + 1
⟩ , 

(7) 

𝑊𝑃

𝑙1,γ = ⟨0, … ,0,
2

𝑟(𝑟+1)
,

4

𝑟(𝑟+1)
, … ,

2(𝑟−1)

𝑟(𝑟+1)
,

2

𝑟+1
⟩. (8) 

where 𝑝 = |𝑃| and  𝑛 = |𝑁|, are the number of 

instances of the Positive 𝑃 and Negative 

𝑁 classes. 

A variation of the 𝑊𝑃
𝑙1 vector is: Given 0 ≤

𝛾 ≤  1: 
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Table 1. Description of the datasets used in the experimental evaluation 

Dataset IR Inst Attr Dataset IR Inst Attr 

glass1 1,82 214 9 glass-0-4vs5 9,22 92 9 

ecoli0vs1 1,86 220 9 ecoli-0-3-4-6vs5 9,25 205 7 

wisconsin 1,86 683 7 ecoli-0-3-4-7vs5-6 9,28 257 7 

pima 1,90 768 8 yeast-0-5-6-7-9vs4 9,35 528 8 

iris0 2,00 150 4 ecoli-0-6-7vs5 10 220 6 

glass0 2,06 214 9 vowel0 10,1 988 13 

yeast1 2,46 1484 8 glass-0-1-6vs2 10,29 192 9 

vehicle1 2,52 846 18 glass2 10,39 214 9 

vehicle2 2,52 846 18 ecoli-0147vs2356 10,59 336 7 

vehicle3 2,52 846 18 led7digit02456789vs1 10,97 443 7 

haberman 2,68 306 3 glass-0-6vs5 11 108 9 

glass-0123vs456 3,19 214 9 ecoli-0-1vs5 11 240 6 

vehicle0 3,23 846 18 glass-0-1-4-6vs2 11,06 205 9 

ecoli1 3,36 336 7 ecoli-0-1-4-7vs5-6 12,28 332 7 

new-thyroid2 4,92 215 5 cleveland-0vs4 12,62 173 13 

newthyroid1 5,14 215 5 ecoli-0-1-4-6vs5 13 280 6 

ecoli2 5,46 336 7 ecoli4 13,84 336 7 

segment0 6,01 2308 19 yeast-1vs7 13,87 459 7 

glass6 6,38 214 9 shuttle-0-vs-4 13,87 1829 9 

yeast3 8,11 1484 8 glass4 15,47 214 9 

ecoli3 8,19 336 7 page-blocks-1-3vs4 15,85 472 10 

page-blocks0 8,77 5472 10 abalone9-18 16,68 731 8 

ecoli-0-3-4vs5 9 200 7 glass-0-1-6vs5 19,44 184 9 

yeast-2vs4 9,08 515 7 shuttle-2-vs-4 20,5 129 9 

ecoli-0-6-7vs3-5 9,09 222 7 yeast-1-4-5-8vs7 22,1 693 8 

ecoli-0-2-3-4vs5 9,1 202 7 glass5 22,81 214 9 

glass-0-1-5vs2 9,12 172 9 yeast-2vs8 23,1 482 8 

yeast-0-3-5-9vs7-8 9,12 506 8 yeast4 28,41 1484 8 

yeast-02579vs368 9,14 1004 8 yeast-1-2-8-9vs7 30,56 947 8 

yeast-0256vs3789 9,14 1004 8 yeast5 32,78 1484 8 

ecoli-0-4-6vs5 9,15 203 6 ecoli-0-1-3-7vs2-6 39,15 281 7 

ecoli-0-1vs2-3-5 9,17 244 7 yeast6 39,15 1484 8 

ecoli-0-2-6-7vs3-5 9,18 224 7 abalone19 129,44 4174 8 
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𝑊𝑃

𝑙1,γ = ⟨0, … ,0,
2

𝑟(𝑟 + 1)
,

4

𝑟(𝑟 + 1)
, … ,

2(𝑟 − 1)

𝑟(𝑟 + 1)
,

2

𝑟 + 1
⟩ , (9) 

where 𝑟 = [𝑝 + 𝛾(𝑛 − 𝑝)]. 

In particular, the first 𝑝 positions in 𝑊𝑃
𝑙 can be 

put to 0, taking into account that this correspond to 

the highest values of I (𝑅(𝑥, 𝑦), 𝑃(𝑦)) = 𝑚𝑎𝑥(1 −

𝑅(𝑥, 𝑦), 0) = 1 − 𝑅(𝑥, 𝑦), and thus to the p positive 
samples in the training data. The remaining 𝑛 

positions in the weight vector 𝑊𝑃
𝑙 correspond to the 

instances in 𝑁. In a completely analogous way, the 

weight vectors 𝑊𝑁
𝑙 , can we put 0 to the first 𝑛 

positions too. 
We consider the following three alternatives for 

defining the fuzzy relation 𝑅 Average t-norm, 
Łukasiewicz t-norm and Minimum t-norm 
𝑅𝐴𝑣 , 𝑅𝑇𝐿𝑜𝑅𝑀𝑖𝑛: 

𝑅𝑀𝑖𝑛(𝑥, 𝑦) = 𝑚𝑖 𝑛(𝑅𝑎1(𝑥, 𝑦), … , 𝑅𝑎𝑚(𝑥, 𝑦)) , (10) 

𝑅𝑎1(𝑥, 𝑦), . . . , 𝑅𝑎𝑚(𝑥, 𝑦)

𝑅𝑇𝐿(𝑥, 𝑦) = 𝑇𝐿
 , (11) 

𝑅𝐴𝑉(𝑥, 𝑦) =
𝑅𝑎1(𝑥, 𝑦)+. . . +𝑅𝑎𝑚(𝑥, 𝑦)

𝑚
 , (12) 

where Łukasiewicz t-norm is defined by, for 
𝑢1, 𝑢2, . . . , 𝑢𝑚 in [0,1]: 

𝑇𝐿(𝑢1, 𝑢2, … , 𝑚𝑚) = 𝑚𝑎 𝑥(𝑢1 + 𝑢2 + ⋯ + 𝑢𝑚 − 𝑚, 0), (13) 

and 𝑅𝑎is the similarity function between 𝑥 and 𝑦 

instances with the attribute 𝑎. 
For a quantitative attribute and nominal 

attribute, we use the equations respectively: 

𝑅𝑎(𝑥, 𝑦) = 1 −
|𝑎(𝑥) − 𝑎(𝑦)|

𝑟𝑎𝑛𝑔𝑒(𝑎)
 , (14) 

𝑅𝑎(𝑎, 𝑦) = {
1𝑖𝑓𝑎(𝑥) = 𝑎(𝑦)

0𝑒𝑛𝑜𝑡𝑟𝑜𝑐𝑎𝑠𝑜
 , (15) 

We explain below in detail the strategies 
followed to build the ensemble.  

4.1 Strategies to Fusion Results  

Strategy I: Select the Classifier with Best AUC 
in Training 

This strategy selects the classifier with best AUC 
in training and the classification is made by the 
selected classifier. In other words, each classifier 
𝐶𝑖 classifies the training set 𝑈𝑡𝑟 and calculates the 

Table 2. Mean AUC for WIFROWANN vs best 

IFROWANN variants for different 𝐼𝑅 levels 

Method 𝐼𝑅 < 9 𝐼𝑅 ≥ 9 

W_All 0,9045 0,9038 

W_Weights 0,9121 0,9115 

W_W6W4W5 0,9202 0,9213 

W_SF 0,9114 0,9126 

W_F2 0,9255 0,9253 

TL_W4 0,9141 0,9073 

TL_W6 0,9086 0,9232 

AV_W4 0,9204 0,9174 

AV_W6 0,9110 0,9343 

MIN_W4 0,9076 0,8833 

MIN_W6 0,8902 0,8986 

FRNN_MIN 0,8948 0,8716 

FRNN_AV 0,9061 0,9089 

FRNN_TL 0,9030 0,9020 

Table 3. Average Friedman Ranking and adjusted p-

values using Holm’s procedure for 𝐼𝑅 < 9 datasets 

Algorithm 
Average Friedman 
Ranking 

Adjusted p-
value 

W-All 9.2955 0.000001 

MIN-W4 8.5455 0.000012 

FRNN-AV 8.4318 0.000018 

TL-W6 7.6136 0.000273 

W-Weights 7.3409 0.000618 

AV-W6 7 0.001614 

W-SF 6.9773 0.001717 

TL-W4 6.1364 0.013565 

AV-W4 4.3864 0.279642 

W-W6W4W5 4.25 0.330547 

W-F2 3.0227 - 
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AUC for this training set. The ensemble selects the 
classifier 𝐷 with the best AUC.  

𝐷 = 𝑎𝑟𝑔𝑚á𝑥
𝐶𝑘∈𝐶

[𝐴𝑈𝐶
𝐶𝑘

𝑊𝑖,𝑅𝑗] ,  (16) 

where 𝑊𝑖 is the weigth strategy followed by the 

classifier 𝐶𝑘 and  𝑅𝑗 is the fuzzy relation strategy 

take it into account by the classifier 𝐶𝑘. The new 

instance 𝑥 takes the class given by the classifier 𝐷. 

Strategy IIa: Select the classifiers of maximum 
AUC and average the membership degrees to 
the positive and negative class 

In this strategy the ensemble selects a set of 
algorithms with maximum AUC value. 

The selected set computes the membership 
degree to the positive and negative class of the 
instance𝑥, then the calculated membership 

degrees are averaged. Finally 𝑥 is classified as 
positive if the membership degree to the positive 
class is greater than the negative class 𝜇𝑃

′(𝑥) ≥
𝜇𝑁

′(𝑥), and negative in the other case. 

Strategy IIb: Fusion the membership degrees 
to the positive and negative class 

First, each classifier 𝐶𝑖 calculates the membership 
degree to the positive 𝜇𝑃𝑖

(𝑥)and negative 

𝜇𝑁𝑖
(𝑥)class, and the outputs of the ensemble are 

the average degrees to the positive and negative 
class of all classifiers. Finally 𝑥 is classified as 

positive if 𝜇𝑃
′(𝑥) ≥ 𝜇𝑁

′(𝑥), and it is classified as 
negative, otherwise. 

5 Experimental Setups 

In this section, we describe the experimental 
framework used to validate our proposal, including 
the benchmark datasets, the state-of-the-art 
methods, and the statistical tests used in order to 
carry out the performance comparison. 

5.1 Datasets 

We consider 66 datasets with different 𝐼𝑅 (between 
1.82 and 129.44) to evaluate our proposal. The 

dataset was obtained from SCI2S site. They are 

available online as part of the KEEL data set 
repository [1]. The characteristics of these datasets 
can be found in Table 1, showing the imbalanced 
rate 𝐼𝑅, the number of instances (Inst), and the 
number of attributes (Attr) for each of them.  

In our experimental study, we have also 
considered two subsets of the collection based on 
their 𝐼𝑅: 

1. 𝐼𝑅 < 9(low imbalance): This group contains 22 
datasets, all with IR lower than 9.  

2. IR≥9 (high imbalance): This group contains 44 
datasets, all with IR at least 9. 

Furthermore, each dataset is partitioned in 
order to perform a fivefold cross validation. 

5.2 Algorithms Analyzed in the Experimental 
Study 

For the experimental study we consider the 
principal state-of-the-art methods: The 
IFROWANN algorithm with its competitive variants: 
AV-W6, AV-W4, TL-W6 and FRNN algorithm [22], 
preprocessing techniques, cost-sensitive and 
ensemble methods combined with a base 
classifier. We chose tree-based method C4.5 [20], 
support vector machines SVM [27], and lazy 
learner 1NN (k=1) [5]. Preprocessing techniques 
are: SMOTE, SMOTE+RSB*, SMOTE+ENN, 
Borderline-SMOTE, SafeLevel-SMOTE and 
DBSMOTE. Cost sensitive algorithms are: CS, 
MetaCost, CostSensitiveClassifier and 
CSWeighted. Ensemble methods are: AdaB-M1, 
AdaC2, RUSB, SBAG, Easy and EUSBOOT. 

Table 4. Average Friedman Ranking and adjusted p-values 
using Holm’s procedure for IR≥9 datasets 

Algorithm 
Average 

Friedman 
Ranking 

Adjusted p-
value 

W-SF 7.2955 0.000039 

W-Weights 7.2614 0.000046 

TL-W4 6.7045 0.000555 

AV-W4 6.375 0.002047 

W-W6W4W5 5.4432 0.041491 

TL-W6 4.8182 0.180954 

W-F2 3.8864 0.769486 

AV-W6 3.625 - 
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Table 5. Mean AUC for state-of-the-art methods 

 Methods <9 >=9 

Preprocessing  

techniques 

C4.5 

SMOTE+ENN 0,8640 0,8164 

SMOTE+ RSB* 0,87 0,8232 

Borderline-SMOTE 0,8564 0,7998 

SafeLevel-SMOTE 0,8643 0,8106 

ADASYN 0,8604 0,8035 

SPIDER2 0,8499 0,7778 

DBSMOTE 0,8357 0,7638 

SMO (SVM) 

SMOTE 0,8574 0,8418 

SMOTE+ENN 0,8560 0,8412 

SMOTE+ RSB* 0,91 0,8815 

Borderline-SMOTE 0,8556 0,8317 

SafeLevel-SMOTE 0,8565 0,8358 

ADASYN 0,8545 0,8212 

SPIDER2 0,8269 0,6923 

DBSMOTE 0,8252 0,7192 

1NN (KNN con k=1) 

SMOTE 0,8478 0,8272 

SMOTE+ENN 0,8645 0,8342 

SMOTE+ RSB* 0,92 0,9046 

Borderline-SMOTE 0,8518 0,8007 

SafeLevel-SMOTE 0,8365 0,7861 

ADASYN 0,8526 0,8270 

Cost sensitive  

algorithms 

 

C4.5 

CS 0,8578 0,8137 

MetaCost 0,8617 0,8246 

CostSensitiveClassifier 0,8487 0,7931 

SMO 

CSWeighted 0,8597 0,8397 

MetaCost 0,7289 0,6559 

CostSensitiveClassifier 0,8565 0,8304 

1NN 

CSWeighted 0,8559 0,8416 

MetaCost 0,8455 0,8147 

CostSensitiveClassifier 0,8367 0,7943 

Ensemble  

methods 

C4.5 

AdaB-M1 0,8463 0,7877 

AdaC2 0,8649 0,7958 

RUSB 0,8747 0,8405 

SBAG 0,8771 0,8431 

Easy 0,8711 0,8243 

SMO 

AdaB-M1 0,8059 0,7392 

AdaC2 0,6487 0,6163 

RUSB 0,8270 0,7141 

SBAG 0,8556 0,8406 

Easy 0,8501 0,8304 

1NN 

AdaB-M1 0,8375 0,7948 

AdaC2 0,8370 0,7935 

RUSB 0,8562 0,8416 

SBAG 0,8599 0,8427 

Easy 0,8589 0,8365 

EUSBOOT 0,93 0,9071 
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In order to compare the different algorithms 
appropriately, we will conduct a statistical analysis 
using nonparametric tests as suggested in [12, 14]. 
We first use Friedman’s aligned-ranks test [9] and 
then Holm’s post hoc test [15]. The post hoc 
procedure allows us to decide whether a 
hypothesis of comparison can be rejected at a 
specified level of significance 𝛼. In this paper, we 
set 𝛼 = 0.05. The KEEL tool was used to perform 
the tests. 

5.3 Parameters 

The parameters for the ensemble and IFROWANN 
algorithm are the fuzzy relations Average t-norm, 
Łukasiewicz t-norm and Minimum t-norm (see 
equations 10, 11 and 12); similarity functions for 
quantitative and nominal attributes (see equations 
14 and 15) and 6 variants of weight vectors 
combinations recommended in [22], which are 
described below: 

1. 𝑊1 = ⟨𝑊𝑃
𝑙1 , 𝑊𝑁

𝑙1⟩, 

2. 𝑊2 = ⟨𝑊𝑃
𝑙1 , 𝑊𝑁

𝑙2⟩, 

3. 𝑊3 = ⟨𝑊𝑃
𝑙2 , 𝑊𝑁

𝑙1⟩, 

4. 𝑊4 = ⟨𝑊𝑃
𝑙2 , 𝑊𝑁

𝑙2⟩, 

5.𝑊5 = ⟨𝑊𝑃

𝑙1,𝛾 , 𝑊𝑁
𝑙1⟩ 𝑤𝑖𝑡ℎ𝛾 = 0,1 ,  

6. 𝑊6 = ⟨𝑊𝑃

𝑙1,𝛾 , 𝑊𝑁
𝑙2⟩ 𝑤𝑖𝑡ℎ𝛾 = 0,1 . 

In the Strategy I we prove three variants. (1) W-

All: ensemble uses[𝑁𝑜𝑛𝑒, 𝑊1, 𝑊2, 𝑊3, 𝑊4, 𝑊5, 𝑊6] 
weight strategy and [𝐴𝑉, 𝑇𝐿, 𝑀𝐼𝑁] fuzzy relations; 
(2) W-weights: all classifiers have weight vectors, 
and (3) W-W6W4W5: builds classifiers 

with[𝑊6, 𝑊4, 𝑊5] weight strategies and [𝐴𝑉, 𝑇𝐿] 
fuzzy relations.  

In the Strategy IIa we form one variant W-SF: 
ensemble uses [𝑁𝑜𝑛𝑒, 𝑊1, 𝑊2, 𝑊3, 𝑊4, 𝑊5, 𝑊6] 
weights strategies and the three fuzzy relations 
and in the Strategy IIb the variant W-F2, ensemble 

uses [𝑊6, 𝑊4, 𝑊5] weight strategies and [𝐴𝑉, 𝑇𝐿] 
fuzzy relations. 

Table 6. Preprocessing techniques vs WIFROWANN. 

Average Friedman Rankings and adjusted p-values using 
Holm’s posthoc procedure for IR<9 datasets 

Algorithm 
Average 
Friedman 
Ranking 

Adjusted p-value 

RSB-C4.5 15.3864 0.000001 

SMO(SMOTE) 15.1818 0.000001 

W-All 7.1591 0.079631 

RSB-kNN 6.5455 0.130075 

RSB-SVM 6.2045 0.167274 

W-Weights 5.5682 0.257154 

W-SF 5.4091 0.284091 

W-W6W4W5 3.7273 0.677354 

W-F2 2.6591 - 

Table 7. Preprocessing technique vs WIFROWANN. 

Average Friedman Rankings and adjusted p-values using 
Holm’s posthoc procedure for IR≥9 datasets 

Algorithm 
Average 
Friedman 
Ranking 

Adjusted p-value 

RSB-SVM 9.5682 0.000121 

RSB-kNN 6.3636 0.037686 

W-All 5.875 0.070439 

W-Weights 4.9659 0.190773 

W-SF 4.4318 0.310542 

W-W6W4W5 3.2727 0.707224 

W-F2 2.5909 - 

Table 8. Cost-sensitive algorithms vs WIFROWANN. 

Average Friedman Rankings and adjusted p-values using 
Holm’s posthoc procedure for IR<9 datasets 

Algorithm 
Average Friedman 
Ranking 

Adjusted 
p-value 

SMOCSWeighted 7.7045 0.000001 

W-All 4.7273 0.016393 

W-SF 3.8409 0.099929 

W-Weights 3.7727 0.112483 

W-W6W4W5 2.5682 0.574592 

W-F2 1.9091 - 
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6 Experimental Results 

In this section, we present the results of our 
experimental analysis. 

In Section 6.1, we compare our proposal with 
IFROWANN baseline methods and its best 
configurations. Next, in Section 6.2, we compare 
the algorithms with the state-of-the-art methods for 
imbalanced classification. 

6.1 Comparative Analysis of WIFROWANN 
with IFROWANN  

Table 2 shows the mean AUC obtained for each 
variant of the ensemble and the best IFROWANN 
configurations with each block of datasets. It can 
be noticed that for the high imbalance datasets (IR 
≥ 9), AV-W6 obtains the highest average AUC. 
However, for low imbalance datasets (𝐼𝑅 < 9), the 
ensemble with W-F2 reaches the highest value. 

Next, we carry out a statistical analysis of our 
results for each block of datasets. 

1. Statistical Analysis for Low Imbalance 
Ratio Datasets: Table 3 shows the Friedman 

test and Holm’s procedure for 𝐼𝑅 < 9 datasets. 

For low imbalance the best ranking is obtained 
by W-F2 and Holm’s procedure rejects those 
hypotheses that have 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.025. Holm 
posthoc test allows to conclude that W-F2 is no 
significantly better than AV-W4; but is 
significantly better than the rest of the variants 
of both algorithms. It remarkable to notice that 
W-F2 and W-W6W4W5 variants of the 
WIFROWANN are best positioned in the 
ranking than IFROWANN, and W-F2 has 
significant difference with AV-W6. 

2. Statistical Analysis for High Imbalance 
Ratio Datasets: In this case, Holm’s 
procedure rejects those hypotheses that have 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.016667. As we can observe 
(see Table 4), the best ranking is obtained by 
IFROWANN with AV-W6. The adjusted p-
values indicates that the method AV-W6 
significantly no outperforms the TL-W6 
IFROWANN configuration and the variants of 
WIFROWANN methods W-F2 and W-
W6W4W5. 

6.2 Comparative Analysis with the State-of-
the-art Methods 

This section compares the ensemble variants with 
the state-of-the-art methods. The mean AUC 
results for the state-of-the-art methods are shown 
in Table 5. For every technique and every IR levels, 
the highest AUC value is marked in bold. 

The mean AUC results for the ensemble 
variants are shown in Table 2 (the first five rows).  

From these results, we can observe that the best 
AUC values in all blocks are obtained by SMOTE 
+ RSB*, EUSBOOT and WIFROWANN with all its 
variants, and W-F2 obtains the highest AUC 
values, except for low 𝐼𝑅 datasets for which 
EUSBOOT gets the highest score. We carry out a 
statistical analysis of our results for each 
techniques and each block of datasets. In these 
cases, per block we show only the methods which 
obtain a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0. The rest of the state-of-the-

art methods has a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0. 

1. Statistical analysis for preprocessing 
techniques: Tables 6 and 7show the 

Friedman test and Holm’s procedure for 𝐼𝑅 <
9 and 𝐼𝑅 ≥ 9. In both cases, the best ranking 

is obtained by W-F2. For 𝐼𝑅 < 9 Holm’s 

Table 9. Cost-sensitive algorithms vs WIFROWANN. 

Average Friedman Rankings for IR≥9 datasets 

Algorithm 
Average Friedman 

Ranking 

SMO(MetaCost) 12.2273 

1NN(CostSensitiveClassier) 10.4545 

1NN(MetaCost) 9.2841 

C4.5CS 9.1477 

SMO(CostSensitiveClassier) 8.6364 

C4.5(MetaCost) 8.4886 

SMOCSWeighted 8.1591 

1NNCSWeighted 7.9091 

W-All 4.4545 

W-Weights 3.8295 

W-SF 3.6364 

W-W6W4W5 2.6818 

W-F2 2.0909 
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procedure rejects those hypotheses that have 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.008333. W-F2 has significant 
difference with all preprocessing techniques, 
except for RSB-kNN and RSB-SVM. For IR≥9 
Holm’s procedure rejects those hypotheses 
that have 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.01. W-F2 has 
significant difference with all preprocessing 
techniques too, except for RSB-kNN. 

2. Statistical analysis for Cost-Sensitive 
algorithms: Tables 8 and 9 show the results 
of Friedman test and the Holm’s procedure for 
IR<9. For low imbalance, the associated p-
value is 0.0125, which leads us to conclude 
that there are statistically significant 
differences among the cost-sensitive 

compared methods compared with W-F2. For 
IR≥9 Tables show only Friedman test because 
of the p-values of cost-sensitive algorithms 
was 0. 

3. Statistical analysis for ensemble 
techniques: Table 10 and 11 show Friedman 
test and Holm’s procedure for low and high 
imbalance datasets. The lowest Friedman rank 
is obtained by W-F2; however, there is no 
significant differences with EUSBOOST. W-F2 
statistically outperforms the rest of the 
ensemble methods. We can conclude the 
same analysis for high imbalance. 

6 Conclusions 

In this paper, we have presented the 
WIFROWANN method, a new ensemble level 
solution for two-class imbalanced classification 
problems that is based on the IFROWANN 
algorithm. In particular, the W-All, W-Weights, W-
SF, W-W6W4W5 and W-F2 variants of 
WIFROWANN method, considering six weighting 
strategies and no weighting strategy, combined 
with three different indiscernibility fuzzy relations. 
Our experimental results and statistical analysis 
have shown that: 

W-F2 obtains better AUC mean respect to 
IFROWANN and the best position in the Friedman 
ranking for low imbalance datasets. Holm’s 
procedure shows that this variant present 
significant difference with AV-W6 for low 
imbalance and no significant difference with the 
same IFROWANN configuration for high 
imbalance. 

WIFROWANN outperforms 14 state-of-the-art 
representative algorithms that cover preprocessing 
level, cost-sensitive, and ensemble solutions 
specifically designed for imbalanced learning and 
similar behavior with IFROWANN, SMOTE+RSB 
and EUSBOOT methods. 

For future work, we will consider extend 
WIFROWANN method for multiclass and multi-
labels classification problems. 

Table 10. Ensembles vs WIFROWANN. Average 

Friedman Rankings and adjusted p-values using Holm’s 
posthoc procedure for IR<9 datasets 

Algorithm 
Average Friedman 
Ranking 

Adjusted p-
value 

C4.5(RUSB) 11.5 0.000001 

SMO(SBAG) 11.2955 0.000002 

C4.5(SBAG) 10.5227 0.000012 

W-All 5.8864 0.058076 

W-Weights 4.9545 0.162399 

W-SF 4.5455 0.238646 

EUSBOOST 4.2727 0.301791 

W-W6W4W5 3.0455 0.706474 

W-F2 2.3409 - 

Table 11. Average Friedman Rankings and adjusted p-

values using Holm’s posthoc procedure for 
IR≥9 datasets 

Algorithm 
Average Friedman 
Ranking 

Adjusted p-
value 

W-All 5.4302 0.037028 

W-Weights 4.6628 0.130545 

EUSBOOST 4.5465 0.154139 

W-SF 4.2326 0.23387 

W-W6W4W5 3.0581 0.754418 

W-F2 2.6395 - 
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