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Abstract. An approach to extend sampling-based
path planning algorithms to include visual restrictions is
presented. This approach deals with visual constraints
during the sampling and optimization processes. Four
visual constraints are imposed during sampling: 1)
keep the landmark within the sensor field of view, 2)
avoid landmark occlusions, 3) maintaining landmark
features near the image center, and 4) limit changes
in landmark view orientation. These last two are
imposed during path optimization. The robot task is
to maintain these constraints, in an environment with
obstacles, while the robot changes configurations. The
sampling-based motion planning algorithm imposes and
maintains both physical and visual restrictions. The
process uses a collision checker to detect self- and
obstacle-collisions, or landmark occlusions. To infer
the landmark visibility, the algorithm dynamically builds
a 3D model of camera field of view as seen from the
moving robot. To maintaining the landmark features
close to the image center, a distance parameter from
the field of view boundary to the landmark is used
and optimized. The camera roll angle was included as
another element to be optimized, limiting changes in
orientation. The algorithm has been implemented, and
both results in simulation and experiments using a real
robot manipulator are presented.

Keywords. Path planning, industrial robot, occlusion-
free path, visual path.

1 Introduction

Maintaining fixed landmark visibility has been
used in robotics to improve localization, navi-
gation, object recognition, object manipulation,
3D reconstruction, quality inspection, etc. This

task has been performed using motion plan-
ning, optimization, and visual-servoing techniques.
Roboticists have recently focused on integrating
these techniques [6, 7]. In our approach the
motion planning, with visual constraints, maintains
landmark visibility and provides good landmark
visual acuity.

1.1 Related Work

This approach is related to techniques that search
the robot state space to develop collision-free
and occlusion-free paths for eye-in-hand robots.
In [6] the authors call these techniques path
planning for visual-servoing. They also divide
these techniques into four groups: (1) Image space
path planning, (2) Optimization based planning,
(3) Potential Field-based path planning, and (4)
Global path planning. The approach is related to
motion planning algorithms that impose physical
and visual constraints to build a collision- and
occlusion-free path.

Image space motion planning creates a path
for the camera and then verifies path feasibility in
robot configuration space. In [7], for example, the
authors present an approach that partitioned the
visual-servoing problem into one employing several
sub-targets, to simplify the control task, when the
main target is far from the camera.

The algorithm developed is based on the
Rapidly Exploring Random Tree (RRT) approach.
They first sample the image space and project
visual features in the image. If the image
space restrictions are satisfied then the tree is
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extended. The final camera trajectory is evaluated
for configuration feasibility.

The principal disadvantage of image space
motion planning is that suggested paths are not
always feasible requiring re-planning until feasibility
is obtained. To overcome this, some approaches
have focused on planning in both image space and
robot configuration space [11, 1] simultaneously.
In [11] the authors presented a motion planning
algorithm for visual-servoing based on the RRT
approach. The algorithm built an exploration
tree, to encode robot configurations and visual
features and obtain useful paths preventing
target visual occlusion during the visual-servoing
process. While, simultaneously, satisfying joints
limitations and field of view restrictions. In [1]
the authors present an algorithm to build an
exploration tree searching in both image space and
configuration spaces.

This algorithm plans the robot movements
allowing no robot base positional alterations.
Approaches like those presented in [11] and [1]
are limited to generate feasible robot trajectories
without attempting to find optimal trajectories.
Additionally, these approaches were computa-
tionally expensive as they detect targets in an
image. Their sampling-based planning algorithms
must search a virtual environment, requiring
virtual camera images to perform image space
searches adding significant computational time to
first build and then analyze and process these
images. The approach presented in this work
could be potentially combined with robot navigation
methods like the one presented in [10] to maintain
visibility of an object while the robot navigates in
the environment.

Optimization techniques have been attempted
to obtain optimal trajectories with respect to
cost. In one example, optimization is done by
‘cost minimization’ considering the error between
the length of a certain “feasible” path and the
length of the straight-line path between any
impose restrictions.

The optimization required two steps: first the
translation vector and then the rotation matrix were
optimized [2]. The principal disadvantage of this
type of approach is that it is limited to simple

(sub-four jointed) robot systems and environments
with limited numbers of obstacles [6].

Our approach can be used in complex envi-
ronments and with robots having many degrees
of freedom. The algorithm has been tested
in a six degree of freedom (DOF) manipulator,
equipped with a camera having a limited field of
view. This robot/camera machine was mounted
in an environment populated with obstacles.
Any of these obstacles could produce a robot
collision or could occlude the landmark. The
algorithm computes a collision- and occlusion-free
path between two configurations. The landmark
must remain visible during the execution of the
entire robot path. Furthermore, the algorithm
is able to optimize feasible robot paths by
iteratively re-planning paths during the overall path
planning process.

1.2 Main Contributions

The main contributions of this work are the
following: We extend the RRT* to maintaining land-
mark visibility in an environment with obstacles,
considering both motion and visibility constraints.
We model this problem to either (1) respect some
constraints, or (2) reach optimization, and compare
the results. Visual features are inferred using a
collision detector to determine whether an object is
in the camera field-of-view and is occluded or not.
We develop a technique that infers object visual
features using a collision detector for any robot
configuration. Camera roll angle (γi) was restricted
to angles that limit changes in the landmark view
orientation. Metrics for the RRT* algorithm include
to minimize robot trajectory length, maximize the
distance between the landmark features and the
image boundary, and to minimize camera roll angle
changes. Each of these algorithmic improvements
have been implemented in both simulation and
experiments with a 6 DOF ABB robot.

2 Problem Formulation

The robot is equipped with a camera with a limited
field of view considering width, height and range. It
is assumed that this camera is placed on the robot
end-effector. It is assumed that the workspace
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is populated with obstacles and has a unique
landmark (see Figure 1 (a)).

2.1 Landmark Visibility Problem

The main problem addressed here is to maintain
consistent landmark visibility while computing a
collision- and occlusion-free path between an
initial and final robot configuration (see Figure 1
(b)). Requiring that the landmark remains in the
camera field-of-view as the robot moves, remains
un-occluded by objects, and motion occurs without
physical robot-object or self-collisions, limits the
number of paths that the robot could use as it
moves in the environment.

Let C denote the robot configuration space for
moving in a 3D world and V be a space that
indicates whether the landmark is/isn’t contained
in the camera field-of-view v ∈ V as it moves. For
each robot configuration q ∈ C there is a scalar
that indicates whether the landmark is fully visible
in the camera’s view. Let Cobs be the obstacle
region where the robot will collide with obstacles
or itself, and let Cocl be a subset of C where the
landmark is partially, or not, seen by the camera.
Let Cfree be free configuration space where the
robot is collision-free, and the landmark occlusion
free (C \ (Cobs ∪ Cocl)). To build a planned solution,
the algorithm searching for a path within Cfree
space is required. The planning problem is to find
this feasible path such that:

— A path is a continuous function, τ : [0, 1]→ C.

— A free path is a path in the free space τ →
Cfree.

— A feasible path is a free path that starts at qinit
and ends at qend ∈ Cgoal

Robot configurations on the feasible path are
subject to physical and visual constraints: the
robot is not in self- or obstacle-collision and the
landmark is completely un-occluded in the camera
field-of-view.

qqgoal

Camera direction

Landmark

Obstacle

init

Image boundary
projection

Camera

(a)

q
q

init
goal

q
i

Camera path

Landmark

Camera direction

Image boundary projection

(b)

Fig. 1. (a)Robot and environment, (b)This figure shows
the concept of maintaining visibility of a landmark. The
initial robot configuration qinit is represented with a blue
robot (left) and the camera visibility at that configuration
is represented with a blue frame (the image boundary
projection). This frame is a slice of the camera field of
view and the arrows represents the camera direction.
The final robot configuration qgoal is represented with a
red robot (right). An intermediate robot configuration is
presented in green (middle). The desired camera path
is shown as the black arc and every robot configuration
to achieve this path has the landmark in the camera field
of view
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2.2 Landmark Visibility Constraint

A procedure was developed to assure no landmark
occlusion that interfers landmark visibility. This
procedure uses 3D models and a collision checker
to infer whether the landmark is fully visible at
a given robot configuration. Let O be a set
of 3D models that represent all objects in the
environment (including the robot itself at a given
configuration – qi). In order to determine the
landmark visibility the procedure builds a 3D
frustum model, that represents the limits of the
camera field-of-view, and a Ray-casting model, that
represents rays from the camera center to the
landmark in the environment ol ∈ O.

2.2.1 Detecting Objects inside the Camera
Field of View

Let µi be a 3D model of a frustum that represents
the camera field of view region. The frustum height
is the perpendicular distance between the planes
indicating near focal length and far focal length
of the camera. The other four planar surfaces
represent the camera’s imaging limits. This model
is attached to the robot end effector (see Figure
2). Thus, an object ol fully inside this frustum
meets the visibility constraint if it is not occluded
by another object oh. Let M be the space
that indicates whether the landmark is or is not
contained in the frustum as the robot moves. A
scalar mi ∈ M is used to indicate this at a specific
robot configuration qi. To map a configuration qi to
a scalar mi, a map is defined as M : C → M or in
functional notation mi = M(qi). Here M is based
on the collision checker that detects any “collisions”
between a solid 3D model of µi and the landmark
model ol.

2.2.2 Detecting Landmark Occlusions

Let κl be a 3D model that represents rays from
the camera center to the landmark ol ∈ O (see
Figure 2). If the ray-casting model κl collides
with an object model oh (for any h 6= l) then
the object oh is in between the camera center
and the landmark, ol indicates landmark occlusion,
regardless of whether ol is in the camera’s field
view or not.

Let K be the space that indicates whether the
ray-casting model collided with objects models for
each qi ∈ C. To map a configuration to a scalar
ki that indicates whether the ray-casting model κl
collides with any object model oh (for h 6= l) at that
configuration, a map is defined as K : C → K. K
uses a collision checker to detect occlusions.

This ray-casting model κl is dynamically modi-
fied while the robot moves, since the camera center
pose changes with different robot configurations.
The ray-casting model κl is constructed using the
landmark model ol and the camera center p. The
landmark model ol uses a triangle language (STL
file format) for the 3D model representation, having
j triangles. Each triangle has three line segments:
ab, bc and ca. The ray-casting model κl is build by
adding the camera center p to each line segment
(in a triangle in ol) to build three new triangles:
∆abp, ∆bcp and ∆cap.

2.2.3 Detecting Full Landmark Visibility

To infer landmark visibility at a given configuration
qi the procedure searches in M and K. The
landmark ol is fully visible at a given robot
configuration qi if ol is completely inside the
frustum and ol is not occluded.

Let V be a space that indicates whether the
landmark ol ∈ O is fully visible as the robot moves.
vi is a scalar that indicates landmark visibility, we
define V : C → M×K → V in functional notation
vi = V(M(qi),K(qi)). The map V determines
whether the landmark ol is completely inside the
frustum, and whether an object ol is visible by the
camera. Each vi is a scalar that represents the
landmark visibility. If the landmark ol ∈ O is not
fully visible vi is zero.

In a feasible path τf , each qi ∈ τf has a vi
equaling one, indicating that the landmark is fully
(camera) visible.
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(a) Not visible

(b) Visible

(c) Occluded

Fig. 2. Frustum model: camera frustum attached to the
robot end effector. Ray-casting model: rays from the
camera center to an object. (a) Landmark not visible
by the camera: the Ray-casting model is not within the
frustum model, (b) landmark visible by the camera: the
Ray-casting model is within the frustum model, and (c)
landmark occluded inside the camera field of view: the
Ray-casting model collides with an object model

2.3 Modeling Landmark Visibility

Sampling-Based Path planning in the Joint-Image
Space (as in [5]) could be computationally
expensive, since the workspace-image projection
process would be done many times in the sampling
and other primitives of the planning algorithm.
In contrast we present a planning approach in
the joint space with visual constraints built into
the algorithm. These visual landmark feature
(position/orientation) constraints, in the algorithm,
are inferred using only workspace information
without an image. How these visual constraints are
included is explained below.

2.4 Landmark Visual Features Constraints

There are two main constraints to be respected.
One wants to keep the landmark ‘far’ from
the image boundaries and one wants that the
orientation angle of the image (camera roll angle),
γi) to be close to a specific value. Landmark
distance to the image boundaries dsl is constrained
to be greater than a threshold distance dst and
landmark orientation angle θsl to be within a range
of angles [θsa, θsb ]. Since absolute image space
information is not available, workspace information
is used to limit dsl and θsl .

To limit dsl , the distance dl from the landmark
model ol to the frustum model, a ‘nonsolid’ frustum
(denoted µi) is used. For computing the distance
between a pair of 3D models, a library for proximity
query was used (the Proximity Query Package,
PQP [8]). Let D be a space that indicates the
distance between the landmark model ol ∈ O and
the frustum model µi at a given robot configuration
qi. To map a configuration to a scalar di that
indicates the distance, we define D : C → D. Here
D is based on a function of the proximity query
package and di is the computed distance between
a nonsolid frustum and the landmark model ol.
In Figure 3 (a) distance di is presented as a
line segment (in green). Note that the landmark
is inside the frustum and that the distance is
computed between the closest faces of the two
models. In Figure 3 (b) this distance is projected
in the camera image.

To limit θsl , the rotation angles over the camera
pitch, roll axes and 3D Rigid-body transformations
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[9] are used. We assume that the camera
X-axis is pointing at the landmark in a given
robot configuration qi, changes in the roll angle
γi (rotation about the camera x-axis) causes the
landmark feature image to rotate. The camera roll
angle (γi ) then must be held to limited range of
angles [γa, γb]. Angle γi for a given configuration qi
is calculated using the rotation matrix of the robot
camera model (Equation 1). We define R : C → Γ
to map a configuration to a scalar γi that indicating
roll angle, R is given by Equation 1 and γ is given
by Equation 2 and γi ∈ Γ.

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 , (1)

γ = |atan2(r32, r33)|. (2)

3 Path Planning to Maintain Landmark
Visibility

Sampling-based path planning algorithms can
be extended to consider visual constraints by
including them in the path planning algorithm. Here
these visual constraints are used to extend the
RRT* algorithm [3, 4]. The problem of constraining
the position and orientation of the landmark visual
features in the image space can be modeled as
either a problem of respecting some constraints or
an optimization problem. Below, we present both
formulations and compare the solution results.

In this path planning problem the RRT* algorithm
searches in Cfree and uses information from V
space, D space and Γ space in the algorithm
primitives. In the original RRT* algorithm [3,
4] an exploration tree of robot trajectories is
incrementally built. The algorithm starts from a root
that represents the initial robot state.

At each iteration, a random sample from
the free-state space is chosen and the tree is
expanded by adding a new node to the tree for this
random sample. Besides, a process can change
the structure of the tree to reduce the length of the
trajectories from the root to the leaves by choosing
paths with closer nodes (using this strategy the
authors proved asymptotic convergence to global
optimality [3]).

(a)

(b)

Fig. 3. (a) Distance between landmark model and
the frustum model di, (b) distance between landmark
features and image boudaries dsl

To deal with the planning problem, some prim-
itives were modified to include visual constraints,
they are described below. We consider that the
configuration space is equal to the state space, that
is X = C.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1357–1373
doi: 10.13053/CyS-23-4-2983

Rigoberto Lopez-Padilla, Rafael Murrieta-Cid1362

ISSN 2007-9737



3.1 Primitive Procedures

In the list, unmodified primitives procedures, from
[3, 4], are summarized while modified primitives
include more details.

— CollisionFree(xi) returns true (1) if the robot
is not in collision with the environment (nor in
auto-collision).

— LandmarkVisibility(xi) returns true (1) if the
landmark is fully visible or false (0) otherwise.
The visibility is computed using the map vi =
V(xi) (see Section 2.2).

— SuitableFeatures(xi) returns true (1) if the
landmark visual features fulfill the visual
constraint (see Section 2.4) or false (0)
otherwise. The function is based on the maps
di = D(xi) and γi = R(xi) (see Section 2.2).

— StateValityCheker(xi) returns true if xi
satisfy the physical and visual constraints, i.e.,
the following sentence is true:

CollisionFree(xi) ∧ LandmarkVisible(xi)

∧SuitableFeatures(xi)

For implementation purposes we established
a state validity checker function to be used
with the OMPL [12]. OMPL itself does
not include code for this checking, it was
intentional, since defining validity depends
on the type of problems to be solved
[12]. Here we define a state validity
check considering collision checking between
loaded CAD models, landmark visibility, and
feature suitability.

— Sampling: SampleFreei is a map, from
random variables, to points in the free state
space Xfree. Here a random state xrand
is determined to be in Xfree using the
StateValidityCheker(xrand) function.

if xrand is not in (X)free a new random
configuration is evaluated until xrand is in
Xfree.

— Distance: Given two states: x, y ∈ X , the
Distance function returns distance between
the two states. The distance function is the
L2 norm used for a State Space in OMPL.

— Nearest Neighbor: The function Nearest :
(G,x) → v ∈ V returns the vertex in V that
is “closest” to x in terms of the given distance
function [3, 4].

— Near Vertices: The function Near : (G,x, r)→
V ′ ⊆ V returns the vertices in V that are
contained in a sphere of radius r centered at
x [3, 4].

— Steering: The function Steer : (x, y) → z
returns a point z ∈ X such that z is “closer”
to y than x is [3, 4].

— Line(x1,x2) : [0, s] → X denote the straight-
line path from x1 to x2 [3, 4].

— c(σ) is called the cost function, which assigns
a strictly positive cost to all nontrivial collision-
free paths [3, 4]. Using this approach the cost
function is:

c(Line(xcurrent,xnew)) =

Distance(xcurrent,xnew) + αccc(xnew),

where αc is a scaling factor, cc could be
considered a clearance function imposing
visibility constraints, cc(xnew) = 1

D(qnew) +

R(qnew), the distance inverse from landmark
boundary to the frustum model boundary
plus the γi. Using this cost function we
look for maximizing the distance between the
landmark boundary to the frustum boundary
and minimize the (change in) γi.

— Cost : V → R≥0 is a function that maps
a vertex v ∈ V to the cost of the unique
path from the root of the tree to v. It is
an additive cost function, so that Cost(v) =
Cost(Parent(v)) + c(Line(Parent(v), v)). If
v0 ∈ V is the root vertex of G, then Cost(v0) =
0 [3, 4].
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— Parent : V → V is a function that maps a
vertex v ∈ V to the unique vertex u ∈ V such
that (u, v) ∈ E. If v0 ∈ V is the root vertex of
G, Parent(v0) = v0 [3, 4].

3.2 Algorithm 1: RRT* with a Landmark
Visibility Constraints

We extended the algorithm RRT* from [3],
to include visual constraints by modifying the
SampleFree, ObstacleFree, CollisionFree, Cost
and c primitives. The extended algorithm builds an
exploration tree using the following steps ([3]):

3.2.1 Initialization (line 1, Algorithm 1)

The algorithm begins a search of the State Space
by extending the tree starting at the root. The
root depicts the initial robot state xinit and it is the
first state of the path, e.i., τ(0) = xinit. We have
assumed that the initial and final robot states are in
Xfree.

3.2.2 Sampling (line 3, Algorithm 1)

The sampling process rejects every state x that
is not in Xfree. In our approach we use the
SampleFree function not only to check for collision
free states but to check visual feature requirements
directly associated to the states. The SampleFree
function uses the StateValidityCheck function
that was defined in OMPL by us.

3.2.3 Nearest Vertex (line 4, Algorithm 1)

The Nearest : (G = (V ,E),x) function returns the
vertex in V that is “closest” to x in terms a L2 norm
(Distance) over the angles of two configurations.
The distance function does not take into account
the visibility features properties because the state
space is the configuration space X = C. Since
a configuration qi maps to vi, di and γi the state
space X , here, is a subset of {C × V × D × Γ}.

V ← {xinit}; E ← ∅ ;
for i = 1, . . . ,n do

xrand ← SampleFreei ;
xnearest ← Nearest(G = (V ,E),xrand);
xnew ← Steer(xnearest, xrand);
if
Obstacle Visual Free(xnearest,xnew)
then
Xnear ← Near(G =
(V ,E),xnew, min{γRRT ∗
(log(card(V ))/card(V ))1/d, η});
V ← V ∪ {xnew};
xmin ← xnearest;
cmin ← Cost(xnearest) +

c(Line(xnearest,xnew)) ;

foreach xnear ∈ Xnear do
if
Collision Occlusion Free(xnear,xnew)∧
Cost(xnear) +
c(Line(xnear,xnew)) < cmin
then
xmin ← xnear;
cmin ← Cost(xnear) +

c(Line(xnear,xnew)) ;
end

end

E ← E ∪ {(xmin,xnew)} ;

foreach xnear ∈ Xnear do
if
Collision Occlusion Free(xnear,xnew)∧
Cost(xnew) +
c(Line(xnew,xnear)) <
Cost(xnear) then
xparent ← Parent(xnear);
E ← (E\{(xparent,xnear)})∪
{(xnew,xnear)};

end
end

end
end
return G = (V ,E)

Algorithm 1: RRT* with a landmark visibility
constraints
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3.2.4 Steering (line 5-6, Algorithm 1)

The function Steer returns a new state xnew,
“closer” to xrand, from xnearest. The state xnew
is an attempt to make a movement towards xrand.
The state xnearest and every node vi ∈ V fulfill the
visual constraints, then xnew is also an attempt to
maintain the visual constraints. To achieve this our
Obstacle Visual Free function has extended the
original ObstacleFree function in [3] and checks
for both physical and visual constraints. If the
landmark is fully visible and the landmark features
are acceptable then an attempt to extend the tree
towards xnew is made.

3.2.5 Extending the Tree (line 8-13,
Algorithm 1)

Tests are performed to qualify the new vertex. A
search for vertices near xnew is done to connect
it along a minimum-cost path to G. The ratio r
for the nearby vertices is defined as follows: r =
min{γRRT ∗ (log(card(V ))/card(V ))1/d, η} [3].

The Collision Occlusion Free function is an
extension of the original CollisionFree function
in [3]. This function evaluates the validity
of motions between two specified states. In
our implementation, we perform a discrete
motion validation.

The Collision Occlusion Free function uses
the StateValidityChecker function to check
intermediate states along the path between any
two states. The disadvantage of this discrete
motion validation is that the motion is discretized to
some resolution and states are checked for validity
only at that resolution. If the resolution is too
large, there may be invalid states along the motion
path that escape detection. If the resolution is too
fine, many states must be checked, significantly
reducing planner performance [12].

The state xmin is chosen between nearby
vertices XNear having the minimum-cost path to
xnew and the edge (xmin,xnew) is added to E.

3.2.6 Rewiring the Tree (line 14-17, Algorithm 1)

The algorithm modifies the tree structure looking
for optimal trajectories between the root and the
leaves as it rewires the branches of the tree. This
part of the algorithm is also modified by including
the Collision Occlusion Free function.

Using the c cost function, landmark features
properties can be optimized in terms of the visibility
constraints imposed, that is cc(xnew) = 1

D(qnew) +

R(qnew) which considers the ‘closeness’ of the
visual features to the center of the field of view.
The cc cost can be set to zero if the user wishes
to optimize the path length only, however the
landmark most remain fully visible in any event.

3.2.7 Stopping Conditions

The path search can stop when the algorithm
reaches n iterations or if a timed termination
condition is reached. A feasible path is obtained
if one or more vertices in T reach the goal
region Xgoal. Here, any x ∈ Xgoal fulfills the
visual constraints.

4 Results

We have tested our method using robot simulations
and during experiments with a physical robot.
OpenGL is used for visualization where all the
objects in the environment are imported as 3D
models using a triangle language. The PQP
library is used to perform collision checking (and
proximity query) and the Open Motion Planning
Library (OMPL version 1.3.2) [12] is used to grow
the exploration tree. Three different simulation
experiments were performed to study some
behavior differences in the RRT* algorithm with or
without visual constraints. Physical experiments
used a 6 DOF ABB IRB 120 industrial robot,
which mounted a camera in its end effector, were
also performed.
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4.1 Simulations

The initial and final robot configurations are the
same for the three simulation studies. The
environment includes several colored objects (the
robot arm, miscellaneous workspace objects and
the target landmark). To enhance visualization, dif-
ferent colors are used for each robot configuration,
blue represents the initial robot configuration, red
represents the final robot configuration, and other
colors represent intermediate robot configurations
along the planned trajectory. The landmark can
be any of the objects on the table, but for
these simulations the rabbit (yellow) is the target
landmark.

Once an acceptable path is found, a representa-
tion of the exploration tree and the planned path
were displayed. The number of iterations n is
not constant, and a time termination condition to
the building process was employed. The following
settings were used in the algorithm: a) k = 310
neighbors, b) r = 3.460682 for the near function, c)
the range of allowed roll angle γi is [±1.2] radians,
and d) the minimum allowed distance d is 0.125
decimeters.

The 3D models used in the algorithm are
different from those used in the visualization.
In order to reduce the computational time, the
number of triangles was reduced, without losing
their spacial properties, having the same (or more)
space in the environment. The number of triangles
for all models in O is 1422. Each simulation was
run 10 times using an dual-core PC processor,
equipped with 12 GB of RAM, while running
Linux. Table 1 presents data obtained from the
three simulations.

4.1.1 Simulation 1: RRT* without Visual
Constraints

The robot’s task was to move the camera from the
table’s right to left side while avoiding collisions.
This simulation was performed 10 times with a
60 seconds time limit. All ten simulation replays
reached a solution within the time, see Table
1. Figure 4 shows the results of one simulation
execution using the RRT* algorithm without visual
restrictions. Figure 4 (a) displays a representation
of the exploration tree were every node in the graph

(a) Exploration tree (b) Planned path

(c) Landmark
occluded (state)

(d) Landmark
occluded (image)

(e) Landmark not
completely the camera
field of view (state)

(f) Landmark not
completely the camera
field of view (image)

Fig. 4. Simulation 1 with a RRT* without landmark
visibility constraints

(in white) is the camera position at any state in
the tree. Figure 4 (b) presents the planned path,
each node in the path represents the robot camera
and a segment line (in black) indicated the chosen
camera positional transition between states.
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In this simulation, at times, the landmark is
fully or partially occluded by an obstacle so is
not completely visible by the camera. Figure 4
(c) shows a robot state where the landmark is
occluded while Figure 4 (e) shows a robot state
where the landmark is not completely inside the
cameras field-of-view. This was anticipated since
during this simulation the algorithm searches only
for a path without obstacle collisions regardless of
landmark visual quality.

4.1.2 Simulation 2: RRT* with Visual
Constraints and Only Path Length
Pptimization

In the initial and final robot configurations, the
physical and visual constraints are satisfied. In
this simulation the robot’s task was to avoid
collision with the obstacles and to maintain the
complete landmark camera visibility while the robot
traverses the table’s right side to its left side.
The environment includes a ‘lamp’ that could
easily occlude the landmark from many robot
configurations (see Figure 5). This obstacle limits
the occlusion-free robot motions since it is in
between the landmark and the robot. Figure 5 (a)
presents the exploration tree.

In this experiment there are fewer nodes than
in the previous experiment (See Figure 4 (a) of
the Simulation 1) since fewer configurations will
meet the imposed visual constraints. To maintain
landmark visibility, the algorithm found a feasible
path, but the camera had to be rerouted below the
bottom edges of the lamp to avoid collision and
landmark occlusion (see Figure 5 (b)). As required,
the landmark was always completely visible over
the planned path. Additionally, landmark features
are never too close to the image boundary and
the landmark orientation is within the acceptable
range. Figure 5 (d) shows a camera image, with
the landmark close to the image boundary, as the
robot moved over the path.

Note here, landmark features could be close to
the image boundary since the visual constraints
only guaranteed that a minimal distance from the
boundary of the camera field-of-view frustum is
assured. Figure 5 (f) shows a camera image
indicating the maximum roll angle found over the

(a) Exploration tree (b) Planned path

(c) Minimum d dis-
tance (state)

(d) Minimum d dis-
tance (image)

(e) Maximum roll an-
gle (state)

(f) Maximum roll angle
(image)

Fig. 5. Simulation 2: (a) Exploration tree built using
Algorithm 1, (b) the solution path to keep the landmark
visible (only the camera path is displayed but the solution
is a set of robot states where the landmark is always
visible), (c) - (f) a robot configuration and its camera
image in the solution path.

planned path, which is within a range of valid
angles. For this simulation, 10 replays were
performed with a time limit of 300 seconds. A
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complete trajectory solution was found in 8 of 10
executions. Table 1 includes data obtained from
the 10 simulation experiments.

4.1.3 Simulation 3: RRT* including Visual cost
Optimization, the Landmark is as far as
Possible from the Image Boundary and
the Camera Roll Angle Close to Zero

In this simulation, a landmark visualization
optimization process was added. The optimization
was designed to assure that the landmark features
remained as far as possible from the image
boundary and the landmark γi change was
minimized. Thus, Here robot’s task is avoid
collision with the obstacles, avoid occlusion and
keep the landmark (nearly) centered and ‘upright’
in the camera field-of-view while the robot moves
from table’s right to left side.

While Simulation 1 and 2 are included for
comparison, this third simulation was wholly based
on the newly developed optimal path planning
approach we suggest. Figure 6 (a) presents the
exploration tree. Since Cfree is the same for the
Simulation 2 and 3, the exploration tree can be
seen to be similar to Simulation 2.

Figure 6 (b) presents the planned path.
However, since the optimization process metrics
had changed, the landmark features are closer to
the center of the field-of-view and orientation is
closer to the desired γi (zero) when compared to
Simulation 2. Figure 6 (d) shows a close up image
of the landmark as it would be seen across the
planned path. The landmark is nearly centered (as
required for optimality) in the image.

Figure 6 (f) shows the image at the maximum γi
over the planned path, again, as required by the
optimality constraints, it is nearly zero radians. For
this simulation, 10 executions were performed with
a time limit of 300 seconds. A complete trajectory
solution was found in 10 of 10 executions. Table
1 includes data obtained from the 10 simulation
experiments. We include a video of simulations 2
and 3 in the multimedia materials of this paper.

A video showing simulations 2 and 3 is also in
the following link:
Link to the video:https://figshare.com/s/44616081306de618023d

(a) Exploration tree (b) Planned path

(c) Minimum d dis-
tance (state)

(d) Minimum d dis-
tance (image)

(e) Maximum roll an-
gle (state)

(f) Maximum roll angle
(image)

Fig. 6. Simulation 3: (a) Exploration tree built using
Algorithm 1, (b) the solution path to keep the landmark
visible and away from the image boundaries), (c) - (d)
the initial robot configuration and its camera image in the
solution path

4.1.4 Analysis

In this section, an analysis of the simulation
experiments is presented. We call the simulation
runs an experimental set, thus 10 trajectories,
to connect the initial configuration with the goal
configuration, were developed, note that some
runs may fail to reach the goal, so all run
results can be averaged. In simulation 1, only
controlled by collision avoidance, in simulation
2 both collision avoidance and visual constraints
are maintained, with path length optimization. In
simulation 3, the visual features cost is added to
the optimization process.
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(a) Sim. 1 d distance (b) Sim. 2 d distance

(c) Sim. 3 d distance (d) Sim. 1 roll angle

(e) Sim. 2 roll angle (f) Sim. 3 roll angle

Fig. 7. Histograms of the simulation replays.(a)-(c) d
distance, (d)-(f) roll angle

In our simulation notation, the distance d is the
distance from the landmark to the field-of-view
boundary. We consider an iteration one attempt
to connect a new configuration to the tree. To
obtain planned paths, we let the RRT* algorithm
run for some prescribed time. In the case of
Simulation experiment 1 we let the algorithm run for
1 minute, in the cases in which we satisfied visual
constraints or optimize visual acuity (simulations 2
and 3), we let the algorithm run for 5 minutes, since
many fewer potential configurations could satisfy
the requirements.

We call first solution to the first path obtained
by the algorithm that connects the initial and
final configuration obtained within the time interval.
Note that since the RRT* algorithm asymptotically
optimizes the cost, the fist solution shall typically

have a less good cost compared with the one
obtained at the end of the time interval.

Table 1 (A. Simulation 1, B. Simulation 2,
C. Simulation 3) contain data obtained from the
simulations. Columns a) and b) shows the overall
path length and path cost obtained after the
RRT* was run over the entire time interval (60
seconds or 300 seconds for simulations 1, or
2 and 3, respectively). Column c) shows the
number of vertices in the tree after the respective
construction times, the number of vertices is
smaller in simulations 2 and 3 since there are
significantly fewer states that meet the visual
constraints. Columns d) and e) shows the average
of the d distance and the γi angle computed
over the path configurations. Distances are larger
and γi are smaller in simulation 3 because the
optimization procedure maximizes the d distances
(remembering this is the distance away from
field-of-view boundary) and minimizes γi.

Columns g) to i) shows data for the first solution
found at each simulation replay. Column g) shows
first path cost, as expected it is greater than the
path cost obtained at the end of the prescribed
time reported in column b). Column i) shows the
number of vertices of the tree, it is smaller than
the number in column c). This is because the first
solution is further optimized by the RRT* in the
remaining time. Column h) shows the number of
iterations; the number of iterations to find a first
solution path increases in simulations 2 and 3 due
to the visual constraints. However, the first and final
solutions are found within the 300 seconds.

For each solution path, the d distance and
γi were each used to create histograms for
the simulations (see Figure 7). We compared
the simulations histograms and noticed important
behavior differences between them. Figure 7
(a), the histogram of d distance for simulation 1,
displays many zeros since every time the landmark
is not completely visible the d distance is set to
zero. The distance trend, as expected, closes
on zero appears since no attempt to force full
visibility was enforced. Figure 7 (b), the d distance
histogram of simulation 2 shows a tendency for
keeping d above zero value, meaning that the
landmark is always inside the frustum the same but
higher d distances are observed in Figure 7 (c) for
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simulation 3 since the optimization employed drove
solutions with the landmark near the center of the
frustum slice boundaries.

Figures 7 (d) and (e) shows the histograms for
γi during simulation 1 and 2, notice the similarities.
The histogram of γi, in Figure 7 (f) for simulation
3, clearly shows that γi is forced to be nearly
zero. Thus, including a visibility (penalty) cost in
the optimization procedure leads to a significant
reduction in γi.

4.2 Real Environment

Our approach was tested is a real environment
using an ABB IRB120 robot. The following settings
were used in the algorithm: a) k = 310 neighbors,
b) r = 3.460682 for the near function, c) the range
of allowed roll angle γi is [±0.3] radians, and d) the
minimum allowed distance d is 0.5 decimeters. The
sum of triangles for all models inO was 408. Figure
8 (a) shows the simulated environment. We ran the
planner 10 times and chose a solution path, this
path is shown in Figure 8 (a).

Table 2 contains data obtained from the planner.
In this table, the number of iterations in 300
seconds is greater than in Simulation 3; this is
due to the smaller number of triangles used in this
experiment. Figure 8 (b) shows the environment
simulated in ABB’s RobotStudio software; the
planned path was successfully implemented and
no collision was detected. Figure 8 (c) shows
our laboratory, the computed path was executed
in this lab using the ABB robot. Figures 8
(d)-(f) show eye-in-hand images captured during
robot execution.

The paper multimedia material presents
a video sequence captured by the camera
mounted in the robot end effector, while the robot
executed the planned path. These experiments
demonstrate that our approach can be successfully
implemented to obtain an optimal path using a real
robot, provided that 3D models of the obstacles
are available. A video showing the experiments in
the real robot is also in the following link:
Link to the video:https://figshare.com/s/44616081306de618023d

(a) Planner
environment

(b) RobotStudio simu-
lation

(c) Real environment

(d) Landmark (e) Landmark

(f) Landmark

Fig. 8. Real environment test
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Table 1. *Average for successful simulation replay (data was rounded to fit with the column format). + No solution found
within 300 seconds

Legend: a) path length, b) path cost, c) number of vertices in the graph, d) average of the roll angle, e) average d distance (decimeters),
f) number of iterations, g) initial solution path length, h) initial solution number of iterations, i) initial solution number of vertices in the
graph.

No. Data simulation 1. Tree construction time: 60 seconds
a) b) c) d) e) f) g) h) i)

1 7.5477 7.5477 22219 0.0902 0.3258 31454 15.61 16 8
2 7.1509 7.1509 22764 0.7290 0.5707 32124 15.56 74 42
3 7.3974 7.3974 23186 0.4697 0.2615 32724 13.23 35 24
4 7.3567 7.3567 22278 0.1482 0.5772 31453 14.37 20 14
5 7.2825 7.2825 22023 0.1729 0.2971 30973 19.07 61 44
6 7.5688 7.5688 22735 1.3700 0.4162 32063 13.56 13 10
7 7.6581 7.6581 22477 0.1594 0.5461 31559 9.8 212 127
8 7.4410 7.4410 22704 0.2378 0.2431 31989 16.21 39 22
9 7.3737 7.3737 22617 0.2542 0.4674 32029 23.11 46 26
10 7.4715 7.4715 22616 0.1726 0.2193 31772 18.19 43 22
Avg. * 7.4248 7.4248 22562 0.3804 0.3924 31814 15.87 56 34
No. Data simulation 2. Tree construction time: 300 seconds

a) b) c) d) e) f) g) h) i)
1 10.6524 10.6524 732 0.7674 0.6635 182692 17.24 35581 62
2 11.5656 11.5656 667 1.2543 0.8583 192597 16.39 62806 89
3 10.7644 10.7644 663 0.7720 0.4064 184880 12.7 90750 219
4 10.6349 10.6349 546 1.0164 0.6379 166472 11.09 114531 319
5+ —– —– 585 —– —– 173070 —– —– —–
6+ —– —– 483 —– —– 189391 —– —– —–
7 11.0985 11.0985 664 0.9479 1.2133 195412 12.77 158143 475
8 11.0551 11.0551 691 0.8394 0.9365 221721 13.18 131034 298
9 10.3645 10.3645 654 0.8748 0.4753 207046 10.65 140441 350
10 10.5552 10.5552 646 0.7832 0.5133 198166 14.25 87829 151
Avg. * 10.8363 10.8363 658 0.9069 0.7131 193623 13.5338 102639 245
No. Data simulation 3. Tree construction time: 300 seconds

a) b) c) d) e) f) g) h) i)
1 13.3081 136.6444 177 1.5365 0.2233 464135 175.43 273083 50
2 12.1779 97.7025 207 1.6387 0.0590 382945 176.62 103776 25
3 12.5840 121.5798 118 1.6573 0.1802 377586 190.55 258968 60
4 11.1268 113.9140 193 1.3177 0.1373 386441 179.45 142352 33
5 13.1672 119.3063 208 1.6610 0.1579 808397 216.11 568303 74
6 12.1210 107.3488 213 1.6865 0.1153 421746 226.45 82143 11
7 11.2181 107.9794 219 1.3503 0.0864 577084 171.97 198520 25
8 13.6679 113.0791 227 1.7191 0.0800 454258 190.07 113753 16
9 10.8290 95.9823 185 1.4427 0.0747 447962 102.27 297352 82
10 11.2491 107.5465 219 1.4734 0.1512 426150 176.65 126305 32
Avg. * 12.1449 112.1083 197 1.5483 0.1265 474670 180.56 216456 41
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Table 2. *Average for successful planner replay (data was rounded to fit with the column format)

Legend: Real environment. Data are obtained from the planner replays: a) path length, b) path cost, c) number of vertices in the
graph, d) average of the roll angle, e) average d distance (decimeters), f) number of iterations, g) initial solution path length, h) initial
solution number of iterations, i) initial solution number of vertices in the graph.

No. Data experiment. Tree construction time: 300 seconds
a) b) c) d) e) f) g) h) i)

1 5.4281 43.7794 469 0.0614 1.6668 6430283 71.37 608875 11
2 5.6538 42.3186 479 0.0516 1.8007 5857054 62.78 523254 18
3 5.6362 44.5623 474 0.0534 1.7392 6342627 76.3 185366 6
4 6.4968 43.7135 472 0.0664 2.1811 4964429 107.69 49948 4
5 6.1990 44.9021 526 0.0466 1.8027 6258154 87.74 234877 3
6 5.9428 47.1370 479 0.0617 1.7480 5445362 70.7 515437 5
7 5.8550 44.6246 481 0.0506 1.7358 4908820 73.4 203507 5
8 5.9621 42.9004 567 0.0659 2.0306 7509052 63.35 166999 4
9 5.8253 44.0943 508 0.0652 1.7688 6578829 54.07 245903 5
10 5.3815 43.8238 493 0.0320 1.6382 5927889 67.89 259264 7
Avg. * 5.838 44.1856 495 0.0555 1.8112 6022250 73.53 299343 7

5 Conclusions

We propose and implemented a variant of
the RRT* algorithm to include landmark feature
constraints (see Section 4.1.2). We further
developed a RRT* variant that further constrained
landmark features to be inside the camera field
of view but closer to the image center. This
was accomplished by including a distance metric
optimization routine (see Section 4.1.3).

Finally, we built a roll angle γi optimizer to limit
its range forcing the visual features orientation to
remain as undisturbed as possible during path
execution. The presence of obstacles increases
the computational difficulty for robot moves in clut-
tered environments but we were able to solve the
problem in reasonable time. We successful built
planned trajectories that avoided obstacle- and
self-collisions, optimized landmark observation
(non-occluded and field-of-view centric), finding
desired trajectories in reasonable processing time
(in the order of some minutes using a standard
desktop PC).

We presented solutions for environments repre-
sented with 1422 triangles (used in the algorithm
for all models in O) determined in under 300
seconds. We also present experiments that

proved that our approach can be successfully
implemented in a real robot, provided that the 3D
environment models are known.

Only a few approaches had focused on motion
planning for an eye-in-hand robot using visual
constraints. Most of these approaches used visual
features from an image to infer occlusion or to
impose visual restrictions. In our approach, a
collision checker is used to infer object visibility
using workspace information. This is crucial
for any efficient search algorithm in X . In this
work we proposed to use a collision checker
to infer the objects visibility, a proximity query
package to compute landmark distance from a
field-of-view frustum boundary, and homogeneous
transformations to computes the roll angle γi.

Like most motion planning approaches, the
algorithm depends on the availability of 3D
environmental models and it can be used in real
robot applications when a reliable representation
of the expected environment had been prepared.

During future studies, we propose to develop
an algorithm to maintain visibility of several
visual landmarks for operation of mobile-based
manipulator robots.
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