
Word Sense Disambiguation Features for Taxonomy Extraction

Daniil Alexeyevsky

National Research University Higher School of Economics,
Moscow, Russia

dalexeyevsky@hse.ru

Abstract. Many NLP tasks, such as fact extraction,
coreference resolution etc, rely on existing lexical
taxonomies or ontologies. One of the possible
approaches to create a lexical taxonomy is to extract
taxonomic relations from a monolingual dictionary or
encyclopedia: a semi-formalized resource designed
to contain many relations of this kind. Word-sense
disambiguation (WSD) is a mandatory tool for such
approaches. The quality of the extracted taxonomy
greatly depends on WSD results. Most WSD
approaches can be posed as machine learning tasks.
For this sake feature representation ranges from
collocation vectors as in Lesk algorithm or neural
network features in Word2Vec to highly specialized word
sense representation models such as AdaGram. In this
work we apply several WSD algorithms to dictionary
definitions. Our main focus is the influence of different
approaches to extract WSD features from dictionary
definitions on WSD accuracy.

Keywords. Word sense disambiguation, taxonomy
extraction, vector semantics.

1 Introduction

Word sense disambiguation is usually defined as a
task of detecting an exact sense in which a word is
used from a set of possible word senses in a given
context. In this paper the context is a dictionary
definition of a noun sense, the ambiguous word
within the definition is a hypernym of the defined
noun sense and a set of possible senses is a set of
dictionary definitions of the hypernym.

This kind of word sense disambiguation task ari-
ses in the process of lexical taxonomy construction.
Here by lexical taxonomy we understand a directed
graph where nodes represent word senses and
edges represent hyponymy-hypernymy relations.
Taxonomy forms core of many semantic resources:
lexical databases, thesauri, ontologies. Such

resources are widely used: they are vital as
collections of word sense representations as well
as part of many NLP tasks such as building a
database of semantic similarity or as a tool for term
generalization.

There are several kinds of approaches to create
or update a taxonomy. A taxonomy can be
manually created by lexicographers [16], converted
from existing structured resource [20], extracted
from a corpus [11] or derived from a corpus-trained
vector semantic model [8]. Corpus extraction
efficiency and methods vary greatly depending on
corpus type with notable works done on corpora of
dictionary glosses [21], formal text corpora [11] and
large general corpora [19]. Each of the approaches
is a trade-off between required labor and quality of
the resulting taxonomy.

As a resource for taxonomy extraction a
monolingual dictionary is a small corpus in a
restricted language where most sentences contain
a hypernym. Furthermore, the hypernym in most
of these sentences occupies the same syntactic
position. It is possible to create high-quality
taxonomies by extracting hypernymy relations
from such corpora [10]. The WSD problem
described in this paper arose in the process of
extracting a taxonomy for Russian language from
a monolingual dictionary.

It is unclear whether WSD methods employed
for the general corpora are suitable for this kind of
WSD tasks. Thus in this paper we describe the
results of applying several existing WSD method
to the task of hypernym disambiguation in a
monolingual dictionary definition. We test a range
of possible configurations for each of the methods.
The aim of the paper is to describe the parameters
of the WSD methods that are the most important
for solving the given WSD problem.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

ISSN 2007-9737



The rest of the paper is organized in the
following way: it presents a brief overview of
the existing approaches to the problem of WSD
(section 2), then a description of the data sources,
data preparation and annotation (section 3), a
description of the WSD pipeline that compares
different feature extraction and machine learning
configurations (section 4), a description and an
analysis of the most important WSD parameters
and their performance (section 5), a discussion
of the results (section 6) and finally a concluding
summary of the presented work (section 7).

2 Background

Various approaches have been proposed to WSD
task. All these approaches are based on the
idea that it is context that defines the word sense,
although the definition of what the context is varies.

One of the first WSD algorithms was proposed
by Lesk [15]. Lesk introduced a metric of similarity
between two contexts: the number of words
present in both contexts. The algorithm performed
well, but suffered from data sparseness: often
the important context words are related but are
not the same. The simplest solution to overcome
this limitation is to use a semantic relatedness
database. Thus Banerjee et al. [2] demonstrated
a significant improvement over Lesk’s algorithm by
using WordNet synsets to add more overlapping
context words. Sidorov et al. [23] increase the
number of matches between two context using
an extended synonym dictionary and a dedicated
derivational morphology system. This approach is
reported to give high WSD precision on a corpus
of Spanish explanatory dictionary.

Many attempts were made to incorporate ma-
chine learning in a WSD task, e.g. latent Dirichlet
allocation [4], maximum entropy classifier [24],
genetic algorithms [9] and others.

Approaches to WSD based on neural networks
with autoencoder or similar topology date back
as far as 1990 [25], however early approaches
were impractical due to unacceptably high com-
putational demands and slow and noisy learning
algorithms. In 2013 Mikolov et al. [18] trained a
large autoencoder — Word2Vec — and demon-
strated similarity between arithmetic operations

on autoencoder-derived word embeddings and
some semantic relations. They also demonstrated
superiority of Skip-gram model over continuous
bag of words.

Word embedding model does not provide a
single way to convert a word context to a feature
vector. Iacobacci et al. [13] compared different
approaches to extract word embedding features
from corpus for WSD task. They tested several
representations of a word sense: as concatenation
or different weighted averages of word context
vectors.

Many attempts were made to build a model
of embedding word senses to a vector space,
instead of words or lemmas. Iacobacci et al. [12]
trained a Skip-gram model on a semantically
disambiguated corpus, and Espinosa-Anke et
al. [6] demonstrated usefulness of resulting set
of vectors as a semantical relatedness database
in a WSD task. Chen et al. [5] demonstrated
that by iteratively performing WSD on a corpus
using Skip-gram model and training the model on
a resultant corpus it is possible to improve WSD
performance over naive Skip-gram models. The
suggested approach is very demanding in both
time and memory required.

One of the first practical implementations of
direct induction of word sense embeddings was
put forward by Bartunov et al. [3]. The group
created AdaGram, a nonparametric extension to
Skip-gram model that performs bayesian induction
of quantity of word senses and optimization of word
sense embedding representations and word sense
probabilities in the given set of contexts.

Recently recurrent neural networks entered the
scene of NLP. Yuan et al. [26] put forward an
approach to WSD based on LSTM neural network
which presents a coarse model of how human
beings read sentences sequentially. The network
is trained to predict a masked word after reading
a sentence. The word sense embedding vector to
be used in WSD task is obtained from the internal
representation of the word in the network.

In order to limit the scope of the work we
restricted ourselves to just three models: Lesk
model as a baseline, Skip-gram in Word2Vec
implementation as a state of the art WSD model

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Daniil Alexeyevsky872

ISSN 2007-9737



and AdaGram as a state of the art word sense
induction model.

3 Materials

This work uses several sources of linguistic data
available for disambiguation process: monolingual
dictionary, ambiguous hyponym-hypernym pairs,
vector semantic models. Part of ambiguous data
was annotated to create a test dataset. These data
collections are described below.

3.1 The Dictionary

Core source of lexical information is mono-
lingual Big Explanatory Dictionary of Russian
language (BTS) [14]. The dictionary contains
72,933 lexical entries and gives definition to
121,809 word senses, definitions are also given
to approximately 24,000 phraseologisms. Of all
information in the dictionary we only retain a set
of noun word senses: 33,683 nouns with 58,621
senses overall. Word sense is represented as a
lemma, word sense number, definition gloss, and
extended gloss. The term “extended gloss” (or
“gloss ext” in images) denotes definition with word
usage notes and corpus examples.

3.2 Hyponym-Hypernym Pairs

Input to the WSD task is a list of pairs:
hyponym-sense and hypernym-word. Hyponym
is represented as a word sense, hypernym is
represented as a word and a list of its senses.
The tuples were extracted automatically from
corpus of BTS word senses which is described
in our previous work. Hypernymy is defined
loosely in the dataset: the best hypernym-word
was automatically selected from words present
in definition gloss if any were available, but the
algorithm did not check if there exist other words
in the dictionary that are better hypernyms. The
dataset is not organized as synsets. There
are senses that a human expert considers
synonymous, but in this work we ignore this fact
and treat each word sense as distinct from all
senses of other words. We also assume that all
senses of any one word are different.

The dataset contains 53,482
hyponym-hypernym pairs. Hypernym is
represented as a word, which may have 0, 1
or multiple senses defined in the dictionary.
Hypernyms are more homonymous than random
words: in the dictionary corpus for hypernyms an
average number of senses is 3.0, for all nouns the
average is 1.78 senses. If a hypernym has 0 or 1
senses, the task of disambiguation is trivial, such
tasks are out of the scope of this paper. There
are 39,422 hyponym-hypernym pairs such that a
hypernym has at least two senses. In some cases
one hyponym sense participates in pairs with
several different hypernym words. Of such pairs
only one is supposed to define true hypernymy
relation. In the dataset there are 6,677 such
hyponym-senses.

3.3 Data Annotation

In order to compare different WSD setups we need
a reliable dataset (golden standard). To create
such a reliable dataset disambiguation tasks were
presented to two human annotators with linguistic
background. To aid an annotator a dedicated
annotation tool was created. The tool presents
disambiguation tasks to annotators in a manner
similar to the way the tasks are presented to WSD
programs.

An annotator is presented with a hyponym word
and gloss and a list of pairs of hypernym words
and glosses. Hypernym might be expressed as
different lemmas if such is given in the dataset or if
the hypernym word has different possible lemmas.
The annotator’s task is to select the gloss that most
precisely expresses the hypernymy relation. For
each hypernym candidate the annotator assigns a
score of 5 to the exact hypernym, 4 to an indirect
hypernym or a sense that is difficult to distinguish
from the direct hypernym, 3 to a far indirect
hypernym, 0 to the other senses. The annotator
also has several options to reject the WSD task
altogether: if due to POS-tagger error hyponym is
not noun, if there is no suitable hypernym word, if
there is no gloss suitable for hypernym sense.

The annotation tool is designed to annotate as
long hypernym chains as is possible starting from
a given pool of hyponyms.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Word Sense Disambiguation Features for Taxonomy Extraction 873

ISSN 2007-9737



For this purpose after any answer the tool selects
one of hypernyms with the score of 5 and presents
it to the annotator, if any such answer exists and
was not annotated by the same person previously.
If no such hypernym is found, the next question
presented to the annotator is selected from the
pool.

In the case where annotators doubt whether a
given sense is a hypernym sense or a synonym
sense, they are permitted to assign a good
hypernym score to the sense. This may lead to
a cycle in the chain of hypernyms. If such cycle
occurs, then every sense in the cycle is either
hypernym or synonym to every other sense in the
cycle. This is only possible if all senses in the cycle
are synonymous. So by allowing the annotators
to be less strict in distinguishing hypernyms and
synonyms we get a simple way to detect some
synsets.

Disambiguation task is formulated as a multiple-
choice question. This makes it difficult to
assign correct answers based on majority votes
of annotators. Instead, we retain answers of
both annotators and marks assigned to specific
hypernym senses. Thus we are able to create
a strict and a lenient dataset by selecting either
minimal or maximal score and retaining only
hyponyms for which at least one hypernym has
positive score. Raw dataset contains 1,537
hyponym-hypernym pairs annotated by at least
one person, of those 646 were annotated by
two persons. Some of the tasks are rejected
by annotators: of 646 tasks annotated by two
persons only 342 were not rejected by at least
one annotator. The small intersection of annotated
pairs is in part due to the annotation procedure
described above: if annotators initially choose
different hypernyms, then they annotate different
hypernym chains.

WSD is a difficult task yielding low, but
positive annotator agreement. We employed two
metrics for inter-annotator agreement. For lenient
agreement percentage we counted the fraction of
WSD tasks for which there exists at least one
sense that both annotators marked as acceptable
(score greater than 0). Strict agreement is the
fraction of WSD tasks for which the highest-scoring
senses are the same.

For the given annotation task lenient agreement
is 52%, strict agreement is 19%. For a more
descriptive agreement metric we calculated Fliess
κ metric [7]. To do this we translated annotator
reply for each answer to 0/1 score. For lenient
metric 1 corresponds to any positive score, yielding
κ = 0.34±0.06. For strict metric 1 corresponds only
to answer 5 for both annotators, yielding the same
value κ = 0.34± 0.06.

3.4 Embedding Models

In this paper, we compare the performance of two
embedding models: a word embedding Word2Vec
Skip-gram model and a word sense embedding
AdaGram model. Both models are trained on
a 2 billion token corpus combined from RuWac,
lib.ru and Russian Wikipedia [17]. The corpus is
tokenized and lemmatized with mystem3 [22], lo-
wercased and cleared of punctuation. Parameters
for Word2Vec are: 300-dimensional embeddings
based on 5 word context, the dictionary includes
words of frequency 10 and above. AdaGram
model stores vector embeddings for every word
sense resulting in several-fold larger memory
requirements.

To compensate for large memory footprint we
restricted included word frequency. Parameters
for AdaGram are: 300-dimensional embeddings
based on 5 word context, dictionary includes
words of frequency 100 and above. To estimate
whether such restriction is hindering the model
performance we annotated a corpus of 100 random
words that have training corpus frequency between
10 and 100. Of 100 words 32 were identified as
actual words, of those 3 were vernacular, 12 –
numerals or dates, 17 – rare proper names, other
words include 7 errors of lemmatization, 5 words
from different language or obsolete words, 36
words were incomprehensible to the annotator.

After accounting for frequency we expect the
model to omit no more than 0.000,8 of context
words on dictionary corpus and consequently to
exhibit virtually it’s best performance.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Daniil Alexeyevsky874

ISSN 2007-9737



4 WSD Experiment Setup

The overall structure of WSD pipeline is the
following: (i) parse and group the data to form
WSD batch tasks, (ii) for each batch represent
each word sense in the batch as a feature vector,
(iii) apply machine learning to predict hypernym
sense for each hyponym sense in the batch, (iv)
choose one hypernym lemma if several alternative
hypernym lemmas are given. For steps (ii) and (iii)
different implementations were tested. Some of the
step implementations have configurable variables.
The goal of the experiment is to perform a grid
search over all reasonable configuration variable
combinations.

Human annotators displayed better performance
when given a batch of WSD tasks with the same
hypernym. Our intuition is that human annotators
notice similarities in hyponyms and this gives them
ability to apply the same answer to the whole group
of similar hyponyms. In this work we attempt to
simulate this behavior in automatic disambiguators.
To achieve this the step (i) of WSD is to collect a
batch of all senses of some lemma (hypernym) and
all senses that are hyponyms to the given lemma.
The WSD task is then formulated in the following
way: every hyponym and hypernym sense in the
batch is transformed to vector representation and
every hypernym sense is annotated with “correct
answer”: it’s sense number.

The goal of WSD is to annotate hyponyms
with sense numbers. This is very similar
to supervised machine learning with only one
training point per class. It is important to
note that the task is not actually supervised:
the formulation provides no ability to somehow
inject known correct hyponym-hypernym pairs to
allow the disambiguators to adjust their answers.
Within this procedure semi-supervised algorithms
attempt to cluster hyponyms before annotating
each cluster with hypernym sense — a behavior
similar to assumed human annotator behavior. As
described below, here we test both supervised
and semi-supervised machine learning methods
to achieve the best possible performance when
comparing selected features.

The goal of step (ii) (feature extraction) is to
assign a feature vector to each word sense using

it’s definition gloss. This process varies depending
on the embedding model selected: either Lesk,
Word2Vec or AdaGram:

— Lesk model assigns an embedding vector
to a word use context. Head word sense
embedding represents number of occurrences
of each word in the sense definition gloss. For
the model we vary which parts of the definition
are used: any of head word, gloss, extended
gloss.

— Word2Vec model assigns a vector to a
dictionary word. Given such model we
search for a word sense definition vector
in form of a weighted sum of selected
words from the definition. We vary which
parts of the definition are selected (any
of headword, gloss, extended gloss) and
weighting schemes: equal weights, TF·IDF
weights and equal weights in a ±5 window
around hypernym mentions.

— AdaGram model defines pre-trained word
sense embeddings and derives word sense
probabilities from word context. To obtain a
head word sense embedding we put it in the
context of its definition. In this case we define
two variables: what part of the definition to
use as a context (gloss or extended gloss)
and how to account for the predicted word
sense probability distribution (to use most
probable embedding, to use weighted sum
of embeddings according to sense probability,
or to use sense probabilities vector as a
nonsense embedding vector).

A batch of vector representations of word senses
is then sent to a classifier with a task to annotate
each hyponym with hypernym sense number,
step (iii).

We test three classifiers: the nearest vector
prediction, and two semi-supervised classifiers:
label spreading and label propagation [27]. For
each learning method a logarithmic grid search of
reasonable variable values was performed. Be-
sides method-specific variables described above,
the only variable on step (iii) is kernel, with values:

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Word Sense Disambiguation Features for Taxonomy Extraction 875

ISSN 2007-9737



Table 1. Importance of language models and feature
sources for WSD accuracy

part gloss gloss ext
max mean std max mean std

model
AdaGram 42% 33% 5% 40% 31% 5%
Lesk 32% 25% 7% 45% 29% 9%
Word2Vec 50% 37% 4% 59% 41% 8%

euclidean, cosine and RBF. For RBF kernel a range
of values for γ was evaluated.

For each variable described in this section we
followed the rule: if the best-performing value is
extreme in it’s range then the range of values
tested is extended. Adding a few values to several
value ranges results in considerable increase of
the overall grid search time. To avoid this in many
cases the grid search step was increased instead
of increasing the number of tested values in the
range.

5 Results

In this section we define the scoring approach, then
present the best performing algorithm, and then
describe influence of selected features on the WSD
accuracy.

For scoring we employed the lenient dataset
described in section 3.3: score for a reply option
is a maximum of scores given by annotators to this
option.

Annotators’ scores are translated to the interval
[0, 1] to give 1 to the best answer and exponentially
lower scores to imperfect correct answers: s =
2h−1
32 where h is a human annotator reply in

the range [0, 5], s is the accuracy score used
in calculations below. Algorithm accuracy is the
average score assigned to its answers.

The best performing algorithm achieved an
average accuracy score of 0.6. The best accuracy
is achieved by label propagation predictor with RBF
kernel using skip-gram word embeddings weighted
according to the word TF·IDF value, word sense
context obtained from the weighted sum of the
gloss with the extended gloss and more weight
given to the gloss.

Table 2. Importance of different dictionary entry parts for
WSD accuracy

max mean std
part
gloss 46% 37% 4%
gloss and head 50% 38% 5%
gloss ext 59% 40% 8%
gloss ext and head 59% 42% 8%
weighted gloss and gloss ext 62% 42% 9%

Table 1 shows the best scores of different
disambiguator configurations that employ a given
combination of the selected language model and
parts of definition that were used for feature
extraction. Many tested distributive semantic
model configurations outperform the classic Lesk
features. We may infer that distributive models
are suitable for the task given: WSD of
hyponym-hypernym relations based on a corpus
of dictionary definitions. Within the scope of this
work only the classic version of Lesk features was
tested as the baseline. Based on the published
data [1] we expect the distributive semantic models
to outperform the better of modifications of Lesk
features too.

Surprisingly, the AdaGram model that won
one of RuSSE tracks was outperformed by both
Word2Vec and baseline Lesk models, so these
results require further investigation. It might
indicate that the model requires some fine-tuning
for use in dictionary-based WSD. Otherwise,
this might mean that different approaches to
incorporate word sense embeddings into machine
learning features are needed.

Dictionary includes different types of information
that can serve as a context for the disambiguation
task: head word, gloss, usage notes, corpus
examples. Of that information we further use a
head word, a gloss and an extended gloss (which
is gloss with usage notes and corpus examples).
Table 2 shows the accuracy of disambiguators
depending on what kind of information they were
presented. Notably, accuracy is improved by using
as much context as possible. This stands in
contrast with a general corpus-based WSD where
some context restriction is required to obtain the
best performance [13].

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Daniil Alexeyevsky876

ISSN 2007-9737



Fig. 1. Distribution of accuracy exhibited by different
disambiguator setups grouped by features used for
disambiguation

One can assume that the main reason for good
accuracy of extended glosses is that they include
corpus examples, which give better contexts for the
hypernym.

We argue that not only corpus examples contain
valuable information, but the gloss itself is also
important. To verify this we extracted a weighted
average of gloss embeddings and extended gloss
embeddings. For this test we only use Word2Vec
as the best performing model. Weighting is done
as vw(G,Ge) = w · v(G) + (1 − w) · v(Ge) where
w is the weight, G is a gloss, Ge is an extended
gloss, v(G) is the embedding of a gloss, and vw
is the weighted average. Figure 2 demonstrates
how WSD accuracy depends upon weight value.
Here the best accuracy is achieved at weight of
approximately 0.5.

Figure 1 shows the accuracy of different feature
selection approaches as violin plots. Here Y axis
always displays the score of the corresponding
approach and the width of a violin shows the

Fig. 2. Best accuracy of WSD algorithm depending on
weighting gloss and extended gloss. Features used for
classifications obtained as vw(G,Ge) = w · v(G) + (1 −
w) · v(Ge) where w is the weight plotted, G, Ge are gloss
and extended gloss, v, vw are embedding functions

number of algorithms employing the approach
that performed up to the given score. The
widest part of a violin is the expected accuracy
of a random WSD algorithm that just uses the
given approach and random values for all other
configurations: the lower this value is the more
fine-tuning the algorithm demands. If there is a
widening at the top of a violin, then the selected
approach is one of the most important properties
of the disambiguator and there are some irrelevant
variables in the algorithm configuration. If the top
of the violin is narrow, then the best performance is
either a chance event or relies upon very delicate
configuration tuning.

6 Discussion

Figure 3 demonstrates examples of hypernym
chains obtained with one of the best performing
algorithms. Without thorough scrutiny we may note
that the fraction of incorrect hypernym chains is
intolerably large. Here by incorrect hypernym chain
we understand a hypernym chain that contains at
least one error. Such hypernym chains are not
suitable for fully automatic taxonomy generation.
Errors are not grouped in one part of the lexicon
and are spread all over the dataset. Figure 4 shows
examples of senses identified as co-hyponyms.

Here we see that many large sets of co-
hyponyms are correctly grouped together, even

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Word Sense Disambiguation Features for Taxonomy Extraction 877

ISSN 2007-9737



izobrazhenije1 ←
is a

znak2

←
is a

oboznachenije2 ←
is a

nazvanije1 ←
is a

tarelka3 ←
is a

bljudo1 ←
is a

krem1

image←
is a

sign←
is a

notation

←
is a

name ←
is a

plate ←
is a

dish
←
is a

creme

polozhenije3 ←
is a

osnova1

←
is a

suschnost’1 ←
is a

veschestvo1 ←
is a

splav1

duraluminij1

statement ←
is a

basics ←
is a

essence ←
is a

matter ←
is a

alloy←
is a

duraluminum

litso2 ←
is a

chelovjek1 ←
is a

spetsialist1 ←
is a

vrach1 ←
is a

dantist1

individual ←
is a

person ←
is a

specialist ←
is a

doctor ←
is a

dentist

Fig. 3. Examples of hyponymy chains. Left column
contains transliterated Russian examples, right column
provides English translations. With WSD accuracy near
0.6 and errors spread uniformly around the corpus
95% of the resulting hyponymy chains longer than 6
hyponyms have at least one error

though sometimes they are attributed to a wrong
hypernym sense. This calls for a metric that gives a
number of edit operations necessary to obtain the
correct taxonomy graph. The metric might favor
different WSD approaches than those reported
in this paper. One can expect that such metric
will further prefer methods based on clustering or
semi-supervised learning to other methods.

Of the 808 WSD tasks that have at least one
answer accepted by annotators, 768 were correctly
solved by at least one disambiguator configuration.
This allows us to speculate that even without
any improvement of the selected features it is
possible to greatly increase accuracy by using
ensemble methods. This way the accuracy values
within range between the achieved 0.61 and the
theoretical limit 0.97 might be reached.

7 Conclusions

The task of a hypernym WSD in a monolingual
dictionary is an important task that is considerably
different from a general corpora WSD. As
in general corpora, some distributive semantic
models show good accuracy in this context.
Surprisingly, AdaGram, one of the best performing
models for general corpora, did not perform better

ST’EP’EN’
(sravnitel’naja velichina,
kharakterizujuschaja chto-l.,
mera chego-l.)

DEGREE (comparative
value, that characterizes
smth., value of smth.)

ARTIKUL’ATSIJA (st’ep’en’
otch’otlivosti proiznoshenija)

ARTICULATION (degree of
distinctiveness of speech)

BALLNOST’ (st’ep’en’ inten-
sivnosti vetra, zeml’etr’ase-
nija, kharakterizujemaja v
ballakh)

POINT VALUE (degree of in-
tensity of wind, earthquake,
specified in points)

BESHENSTVO (krajn’aja
st’ep’en’ razdrazhenija,
gn’eva)

RAGE (extreme degree of
annoyance, anger )

ST’EP’EN’ (uch’onoje zva-
nije)

DEGREE (scientific degree)

BAKALAVR (p’ervaja uch’o-
naja st’ep’en’, prisvaivaje-
maja vypusknikam univer-
sit’etov i drugikh vysshikh
uchebnykh zavedenij, posl’e
sdachi dopolnit’el’nykh ek-
zamenov)

BACHELOR (first scientific
degree that is assigned to
graduate students and other
higher educational instituti-
ons, after passing additional
examinations)

DOKTOR (vysshaya uch’o-
naja st’ep’en’)

DOCTOR OF SCIENCES
(highest scientific degree)

DOKTOR (litso, kotoromu
prisuzhdena eta st’ep’en’)

DOCTOR OF SCIENCES
(individual that is awarded
with such degree)

ST’EP’EN’ (urov’en’, stu-
p’en’, na kotoroj nakhodits’a,
kotoroj dostigaet kto-, chto-
l.)

DEGREE (level, stage,
which smb. or smth.
achieves)

APOGEJ (vysshaja st’ep’en’
projavlenija chego-l., vershi-
na, rastsvet)

APOGEE (highest degree of
manifestation of something,
peak, bloom)

V’ERSHINA (vysshaja st’e-
p’en’, stup’en’ chego-l.)

PEAK (highest degree, level
of smth.)

GENIJ (vysshaja st’epen’
tvorcheskoj odar’onnosti, ta-
lantlivosti)

GENIUS (highest degree of
creative gift, talent)

DAR (vysokaja st’ep’en’ o-
dar’onnosti)

GIFT (high degree of talent)

Fig. 4. Examples of co-hyponym groups for different
senses of lemma ST’EP’EN’ (DEGREE). In each table the
top row is a hypernym sense, the rest are examples of
hyponym senses selected by the WSD for the hypernym
sense. Left column contains transliterated Russian
examples, right column provides English translations.
The examples illustrate that co-hyponyms are typically
grouped together correctly

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Daniil Alexeyevsky878

ISSN 2007-9737



than the baseline Lesk algorithm. Reasons for
such poor accuracy of AdaGram model require
further investigation.

Monolingual dictionary definitions provide strong
boundaries to word contexts. We show that in
this case WSD benefits from using the whole
available context, as opposed to a general corpus
where narrowing the context is necessary to
achieve the best performance. We also show that
while corpus examples in monolingual dictionary
are an excellent source of context information,
definition glosses contain more valuable features.
A more detailed comparison of WSD accuracy on
general corpus, dictionary corpus examples and
definition glosses might explain some differences
in disambiguator’s behavior.

Acknowledgements

The author would like to kindly thank Svetlana
Yu. Toldova, Anastasia S. Vyrenkova, Anastasia
V. Temchenko for the invaluable critique, help
with nitpicking the paper and the kind agreement
to invest the time needed to annotate the data,
respectively.

References

1. Alexeyevsky, D. & Temchenko, A. V. (2016). WSD
in monolingual dictionaries for Russian WordNet.
Fellbaum, C., Forăscu, C., Mititelu, V., &
Vossen, P., editors, Proceedings of the Eighth
Global WordNet Conference, Bucharest, Romania,
pp. 10–15.

2. Banerjee, S. & Pedersen, T. (2003). Extended
gloss overlaps as a measure of semantic related-
ness. Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, volume 3,
Acapulco, Mexico, pp. 805–810.

3. Bartunov, S., Kondrashkin, D., Osokin, A.,
& Vetrov, D. (2015). Breaking sticks and am-
biguities with adaptive skip-gram. arXiv preprint
arXiv:1502.07257, pp. 47–54.

4. Cai, J. F., Lee, W. S., & Teh, Y. W. (2007). NUS-ML:
Improving word sense disambiguation using topic
features. Proceedings of the 4th International
Workshop on Semantic Evaluations, Association for
Computational Linguistics, pp. 249–252.

5. Chen, X., Liu, Z., & Sun, M. (2014). A
Unified Model for Word Sense Representation
and Disambiguation. Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing, Citeseer, Doha, Qatar,
pp. 1025–1035.

6. Espinosa-Anke, L., Saggion, H., & Ronzano, F.
(2016). TALN at SemEval-2016 Task 14: Semantic
Taxonomy Enrichment Via Sense-Based Embed-
dings. Proceedings of SemEval, pp. 1332–1336.

7. Fleiss, J. L. (1971). Measuring nominal scale
agreement among many raters. Psychological
bulletin, Vol. 76, No. 5, pp. 378.

8. Fu, R., Guo, J., Qin, B., Che, W., Wang, H., & Liu,
T. (2014). Learning Semantic Hierarchies via Word
Embeddings. volume 1, pp. 1199–1209.

9. Gelbukh, A., Sidorov, G., & Han, S.-Y. (2005).
On some optimization heuristics for Lesk-like WSD
algorithms. Lecture Notes in Computer Science, Vol.
3513, Springer, pp. 402–405.

10. Gonçalo Oliveira, H. & Gomes, P. (2014). ECO
and Onto.PT: a flexible approach for creating
a Portuguese wordnet automatically. Language
Resources and Evaluation, Vol. 48, No. 2,
pp. 373–393.

11. Hearst, M. A. (1998). Automated discovery of
WordNet relations. WordNet: an electronic lexical
database, pp. 131–153.

12. Iacobacci, I., Pilehvar, M. T., & Navigli, R.
(2015). SensEmbed: Learning Sense Embeddings
for Word and Relational Similarity. Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing,
volume 1: Long Papers, Association for Computati-
onal Linguistics, Beijing, China, pp. 95–105.

13. Iacobacci, I., Pilehvar, M. T., & Navigli, R. (2016).
Embeddings for word sense disambiguation: An
evaluation study. Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics, volume 1, pp. 897–907.

14. Kuznetsov, S. A. (2008). The newest big explana-
tory dictionary of Russian language. RIPOL-Norint
St.Petersburg, Russia.

15. Lesk, M. (1986). Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. Proceedings of
the 5th annual international conference on Systems
documentation, ACM, pp. 24–26.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Word Sense Disambiguation Features for Taxonomy Extraction 879

ISSN 2007-9737



16. Lindén, K. & Niemi, J. (2014). Is it possible to
create a very large wordnet in 100 days? An
evaluation. Language resources and evaluation,
Vol. 48, No. 2, pp. 191–201.

17. Lopukhina, A. & Lopukhin, K. (2016). Regular
polysemy: from sense vectors to sense patterns.
COLING 2016, pp. 19.

18. Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

19. Navigli, R. & Velardi, P. (2010). Learning
word-class lattices for definition and hypernym
extraction. Proceedings of the 48th Annual Meeting
of the Association for Computational Linguis-
tics, Association for Computational Linguistics,
pp. 1318–1327.

20. Pedersen, B. S., Nimb, S., Asmussen, J.,
Sørensen, N. H., Trap-Jensen, L., & Lorentzen,
H. (2009). DanNet: the challenge of compiling
a wordnet for Danish by reusing a monolingual
dictionary. Language Resources and Evaluation,
Vol. 43, No. 3, pp. 269–299.

21. Rigau, G., Rodrı́guez, H., & Agirre, E. (1998).
Building Accurate Semantic Taxonomies from
Monolingual MRDs. Proceedings of the 17th
International Conference on Computational Linguis-
tics - Volume 2, COLING ’98, Association for
Computational Linguistics, Stroudsburg, PA, USA,
pp. 1103–1109.

22. Segalovich, I. (2003). A Fast Morphological
Algorithm with Unknown Word Guessing Induced

by a Dictionary for a Web Search Engine.
Proceedings of the International Conference on
Machine Learning; Models, Technologies and
Applications, CSREA Press, Las Vegas, Nevada,
USA., pp. 273–280.

23. Sidorov, G. & Gelbukh, A. (2001). Word sense
disambiguation in a Spanish explanatory dictionary.
Proc. TALN, pp. 398–402.

24. Tratz, S., Sanfilippo, A., Gregory, M., Chappell,
A., Posse, C., & Whitney, P. (2007). PNNL: a su-
pervised maximum entropy approach to word sense
disambiguation. Proceedings of the 4th International
Workshop on Semantic Evaluations, Association for
Computational Linguistics, pp. 264–267.

25. Veronis, J. & Ide, N. M. (1990). Word sense disam-
biguation with very large neural networks extracted
from machine readable dictionaries. Proceedings of
the 13th conference on Computational linguistics,
volume 2, Association for Computational Linguistics,
pp. 389–394.

26. Yuan, D., Richardson, J., Doherty, R., Evans,
C., & Altendorf, E. (2016). Semi-supervised Word
Sense Disambiguation with Neural Models. arXiv
preprint arXiv:1603.07012.

27. Zhu, X. & Ghahramani, Z. (2002). Learning
from Labeled and Unlabeled Data with Label
Propagation. Technical report.

Article received on 14/04/2018; accepted on 18/06/2018.
Corresponding author is Daniil Alexeyevsky.

Computación y Sistemas, Vol. 22, No. 3, 2018, pp. 871–880
doi: 10.13053/CyS-22-3-2967

Daniil Alexeyevsky880

ISSN 2007-9737


