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Abstract. The Graph Partitioning Problem (GPP)
is a well-known NP-hard combinatorial problem that
involves the finding of a partition of vertexes that
minimizes the number of cut edges while fulfilling
a set of constraints. This paper presents a
newly designed optimizer for the GPP: the Memetic
Algorithm with Hungarian Matching Based Crossover
and Diversity Preservation (MAHMBCDP). MAHMBCDP is
a population-based scheme that incorporates an explicit
mechanism to control the diversity with the aim of making
a proper use of resources when dealing with long-term
executions. Among the novelties of our proposal, the
design of a crossover operator that is based on the
Hungarian Algorithm to calculate a maximum matching
is particularly important. Experimental validation with
a set of well-known instances of the graph partitioning
archive shows the proper performance of our proposal.
In fact, new best-known solutions could be attained in
ten test cases.
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algorithm, diversity preservation, maximum matching.

1 Introduction

The Graph Partitioning Problem (GPP), is a well-
known NP-hard [10], combinatorial optimization
problem that has been addressed with a large
number of different techniques [4]. One of the
reasons why the GPP is probably so popular is
because it arises in several practical cases [6]. For
instance, it has been used for the mesh partitioning

in simulators that apply the finite element and/or
the finite volume paradigms, in the implementation
of parallel software, and in the design of circuit
layouts, among others.

Solving the GPP means finding a partition of
the vertexes of a given graph that fulfill a balance
constraint among the sizes of the different subsets
and at the same time minimizes the number of
cut edges, i.e. the number of edges that run
between vertexes of different subsets. Note that, in
the related literature, the terms subset, parts and
classes are used to refer to each one of the groups
of vertexes established by the partition. Thus,
any of these concepts are used indifferently in this
paper.

In many of the applications of the GPP
quite large graphs arise [14]. Given the
complexity class of the GPP, exact solvers,
such as some based on quadratic programming
formulations [11], are nowadays not applicable to
practical graphs. As a result, several heuristics
and metaheuristics have been proposed with
the aim of obtaining high-quality approximate
solutions for such large cases. Initially, several
constructive and improvement heuristics were
devised [15]. While they are fast, the quality of the
obtained partitions is not so large. Subsequently,
trajectory-based metaheuristics were adapted to
deal with the GPP [3], reaching much higher
quality solutions at the cost of an increase in the
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required computational budget. Finally, nowadays
hybrid population-based metaheuristics lead the
attainment of high-quality solutions. In fact,
most of the best-known solutions that have been
attained for the instances that are maintained
in the graph partitioning archive [13], have
been obtained with population-based approaches.
Particularly, memetic algorithms that combine an
Evolutionary Algorithm (EA) with local search or
with trajectory-based metaheuristics seem to be
the most promising approaches [8].

There are several problems that are closely
related to the GPP. One of them is the Frequency
Assignment Problem (FAP). In the FAP, a set of
partitions must also be identified. However, the
objective is related to minimizing the number of
edges that appear between vertexes that belong
to the same class, instead of vertexes that belong
to different classes [1]. In any case, some
of the ideas that are used in the optimization
of the FAP can be applied to the GPP. In a
recent research [25] a novel memetic algorithm
could provide an important advance in the solving
of the FAP. In fact, several new best-known
solutions could be attained for some well-known
benchmarks. The most important novelty of the
solver was the application of a mechanism to
explicitly control the diversity of the population.
Particularly, the main aim is to lose the diversity
in a controlled way that depends on the stopping
criterion set by the user. In this way, shorter
stopping criteria induce a faster convergence.

The hypothesis behind the development of this
research is that the kinds of mechanisms that
provide benefits in the FAP might also help in
the development of optimizers for the GPP. We
based our hypothesis on two aspects. First,
on the similarities that exist between the current
optimizers for the FAP and GPP. Second, in the fact
that state-of-the-art population-based approaches
reach convergence of the population in relatively
few generations. For instance, in [8], only
200 generations are evolved because after such
number of generations all the individuals of the
population are located in a similar region and
no further improvements are obtained with larger
executions. Since the appearance of premature
convergence in typical EAs seems to be a key

for the success of the schemes that control the
diversity in an explicit way, applying variants of this
proposal seems truly promising. Note that another
particular feature of the method developed in [25],
is that it applies a computationally expensive local
search with a large neighborhood and ad-hoc
crossover operators. As a result, the memetic
algorithm developed in this paper also considers
a hill climber with a large neighborhood [22] and a
newly designed crossover operator adapted to the
GPP.

Experimental validation has been performed with
a set of test cases of the well-known graph
partitioning archive. Particularly, 15 graphs with up
to 16, 840 nodes have been taken into account. The
partitions obtained with these graphs for different
number of subsets show the proper performance
of our proposal. In fact, new best-known solutions
could be obtained in ten test cases. The most
important advances appear in not too large graphs
and with few subsets. The increase in the number
of edges, vertexes and/or subsets implies a drastic
decrease in the number of generations that can
be evolved, meaning that the advantages of
controlling the diversity in an explicit way diminish.

The rest of the paper is organized as follows.
The mathematical formulation of the GPP is
presented in Section 2. Related work is discussed
in Section 3. Our novel proposals are detailed
in Section 4. Section 5, is devoted to our
experimental validation. Finally, our conclusions
and future work are presented in Section 6.

2 Graph Partitioning Problem:
Mathematical Definition

This section provides a formal definition of the
GPP [2]:

— Let G = (V ,E,w), be an undirected graph
where V is the set of nodes, E the set of edges
and w : E → R>0, a weight function.

— In the following n = ‖V ‖ and m = ‖E‖.

— Let k be a fixed positive integer that represents
the number of classes in the desired partition
and ε > 0 a real number that is related to the
balance constraint.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 347–361
doi: 10.13053/CyS-22-2-2951

Emmanuel Romero Ruiz, Carlos Segura348

ISSN 2007-9737



— The feasible search space for the problem is
the set of partitions ∆ = {S = {S1,S2, ...,Sk}
such that S is a partition into k sets of V
and ‖Si‖ ≤ Lmax := (1 + ε)dn/ke for all
i ∈ {1, 2, .., k} }.

— Finally the function to minimize in the GPP
is:f(S) =

∑
i<j

w(Eij) where Eij = {(u, v) ∈ E :

u ∈ Si, v ∈ Sj} and w(C) =
∑
e∈C

w(e).

The experimental validation of this paper takes
into account the instances present in the Chris
Walshaw’s Graph Partitioning Archive [13]. In
these instances, all the weights are equal to 1,
so the objective is to minimize the number of
conflicting edges. Moreover, the archive reports
results for distinct values of ε. However, this paper
focuses in the case where ε = 0. Some minor
modifications are required to deal with different ε
values. However, performing these adaptations is
out of the scope of this work.

3 Related Work

This section is devoted to reviewing some of the
works that are closely related to our approaches.
First, among the large set of EAs that have been
used to tackle the GPP, some of the ones that have
obtained the most promising results, as well as the
ones that share several features with our proposal
are discussed. In addition, since our proposal
is based on controlling the diversity explicitly, the
most popular techniques that have been devised
with the aim of alleviating the effects of premature
convergence are summarized. Some of these
techniques are used to validate our proposal.

3.1 EAs for the GPP

A large amount of population-based metaheuristics
has been designed to deal with the GPP [4].
Among them, EAs are probably the most popular
approaches. Since the initial proposals [5], it was
clear that incorporating a procedure to intensify in
the regions located by the EA was quite important.
In most of the initial algorithms, the heuristic
proposed by Kernighan and Li was taken into
account [15].

This heuristic is an inexpensive process that
attains competitive partitions. More complex
ways of intensifying have been defined with the
increase of the computational power. In some
cases, EAs are integrated with trajectory-based
strategies [8], whereas in other ones, hill-climbers
with larger neighborhoods are applied [22]. These
kinds of approaches imply the use of additional
computational resources, but they have allowed
improving further the best-known solutions in
several large graphs. Thus, in our proposal, the
relatively complex neighborhood defined in [22], is
taken into account.

The design of proper crossover operators has
also implied large research efforts. In the initial
approaches, general operators such as the uniform
and/or the n-point crossover were applied [17].
However, it was soon clear that these operators
were quite disruptive. Particularly, they had a
tendency to create quite unbalanced partitions,
meaning that after the balancing mechanisms, the
offspring might share just a few features with their
parents [4]. An attempt to avoid this issue was
devised in [6]. In this case, the vertexes that share
the same class in both parents maintain their class
in the offspring.

Then, the remaining vertexes are set by using
a greedy constructive heuristic that ensures a
proper balance. One fact that is not taken into
account in the previous operator is that the specific
class identifier of a vertex is not really important.
The important features are related to the set of
vertexes that share the same class. Taking this
into account, more complex crossover operators
that are based on inheriting these kinds of features
have been devised [9, 8]. The principle behind
these schemes is to transmit large sets of vertexes
that share the same class between parents and
offspring. In [8], a greedy approach based on
maximizing intersections is used. More complex
non-greedy proposals were previously suggested
in [9]. However, in this last case, it was applied
to the graph coloring problem and not to the GPP.
Since these kinds of operators have reported really
promising results, our proposal also takes this
principle into account. Particularly, some of the
ideas suggested in [9], inspired the development
of our novel crossover operator.
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However, our operator also induces the creation
of relatively balanced partitions in the offspring,
which is an important feature in the GPP but not
in the graph coloring problem.

Finally, an important issue that has not been
studied in depth is the management of diversity.
However, some of the analyses show that the
proper control of diversity might be an issue for
the proper performance. In [8], the number of
generations was limited to 200. Authors argue
that after this number of generations, all the
individuals are located in the same region and that
further improvements are not expected with larger
executions. Additionally, in many cases, some
actions to delay the convergence are included.
For instance, in [5] offspring substitute the most
similar parent, whereas resorting to restarting
mechanisms when convergence is detected is
another typical approach [19].

3.2 Control of Diversity in EAs

Since our approach incorporates a novel way of
controlling the diversity, this subsection discusses
some of the most popular strategies that have
been designed with the aim of avoiding premature
convergence. Particularly, the techniques that have
been used in the experimental validation of our
proposal are described. Readers are referred
to [28] for additional techniques and for more
complete descriptions. Note that, a large number
of techniques to deal with premature convergence
have been devised [20].

The methods are usually classified in base of
the component of the EA that they modify in the
following groups [28]: selection-based, population-
based, crossover/mutation-based, fitness-based,
and replacement-based. Additionally, depen-
ding on the number of altered components,
they are referred to as uniprocess-driven or
multiprocess-driven. Although the development
of multiprocess-driven schemes might result in
higher-quality solutions, currently most of the
efforts have been placed on the design of
uniprocess-driven strategies. Controlling several
related stochastic components simultaneously
is much more complex, so probably for this
reason multiprocess-driven schemes are not so

popular. As a result, our proposal is a
uniprocess-driven strategy. Among the different
strategies, the replacement-based methods have
reported quite promising results with several
optimization problems [26, 23]. Since our
novel proposal belongs to this category, three
additional replacement-based schemes are taken
into account in this paper:

— The Restricted Tournament Selection [12],
(RTS) is a popular steady-state scheme in
which after each new individual (O) is created,
CF individuals from the current population are
selected at random. Then, the best individual
between O and its most similar individual in
the selected set survives. Note that this
scheme belongs to the group of crowding
strategies [18].

— In the Hybrid Genetic Search with Adaptive
Diversity Control [29] (HGSADC), individuals
are sorted by their contribution to diversity and
by their original cost. Then, the rankings of the
individuals are used to calculate a score using
two parameters (NClose and NElite) which are
used to determine the survivors.

— The clearing strategy (CLR) [21] is an
extension of fitness sharing and it alters both
the fitness assignment procedure and the
replacement selection phase. In the clearing
procedure, individuals are grouped into niches
— defined via the parameter σ — and the
resources of a niche are attributed to the
best W elements in each niche. Moreover,
the winners of each niche are copied to
the next population. In order to avoid a
large immobilization of the population, the
winners with a fitness lower than the mean are
discarded.

Note that, in addition to these techniques, a
generational scheme with elitism [7], (GEN ELIT)
is also incorporated in our experimental validation.
This replacement phase does not incorporate
any special mechanism to delay convergence.
However, since it is one of the mostly applied
strategies, it was taken into account. In GEN ELIT
the new population contains the offspring and the
best solution of the previous generation.
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4 Proposal

Our proposal (MAHMBCDP) is an EA that incor-
porates a local search strategy. The general
algorithm is a quite standard Memetic Algorithm
(see Algorithm 1). The only modification to
the general approach is the incorporation of a
balancing strategy to fulfill the GPP constraints.
In order to fully define our proposal, the genetic
operators, balancing operator, local search and
replacement strategy must be described. The next
subsections details each of these components.

Algorithm 1 Diversity-based Lamarckian Memetic
Algorithm
1: Initialization: Generate an initial population P0 with
N individuals. Assign t = 0.

2: Local Search: Perform a local search for every
individual in the population.

3: while (not stopping criterion) do
4: Mating selection: Perform binary tournament

selection on Pt in order to fill the mating pool.
5: Variation: Apply genetic operators to the mating

pool to create a child population CP .
6: Balancing Apply a balancing phase because of

the problem’s balance restrictions.
7: Local Search: Perform a local search for every

individual in the offspring.
8: Survivor selection: Combine Pt and CP , and

apply the BNP survivor selection strategy.
9: t = t+ 1

10: end while

4.1 Crossover Operator

As usual, the crossover operator takes two
individuals and generates two new ones with some
similar features to the parents. Many of the
crossover operators that are used for the GPP
are inspired in those developed for the graph
coloring problem. Our proposal considers a newly
designed crossover operator, the Hungarian Based
Crossover (HBX) — see Algorithm 2 — that is
inspired by the one devised in [9]. Particularly, it is
based on the principle of maximizing the number
of nodes that share the same class both in the
parents and offspring.

The HBX operator works as follows. Let I1 =
{S1

1 ,S1
2 , ...,S1

k} and I2 = {S2
1 ,S2

2 , ...,S2
k} be the

Algorithm 2 Hungarian Based Crossover
1: Let elg r a boolean vector for the ”eligible” rows.
2: Let elg c a boolean vector for the ”eligible” columns.
3: Let blc r a boolean vector for the ”blocked” rows.
4: Let blc c a boolean vector for the ”blocked” columns.
5: The elg vectors are set to true.
6: The blc vectors are set to false.
7: for i in {1, 2, ...,n} do
8: if i ≡ 0,mod(2) then
9: L = NULL

10: for l such that elg c[l] is true (in random order)
do

11: Bl =
⋃
k,m{ {Pk,l not erased} ∪ {Pσ−1(l),m

such that blc c[m] is true } }.
12: If L == NULL or |Bl| > |BL| set L = l.
13: end for
14: Tj = BL.
15: Erase from P all the elements of Tj .
16: elg c[L] = false.
17: elg r[σ−1(L)] = false.
18: blc r[σ−1(L)] = true.
19: else
20: L = NULL
21: for l such that elg r[l] is true (in random order)

do
22: Bl =

⋃
k,m{ {Pl,k not erased} ∪ {m,Pσ(l)

such that blc r[m] is true } }.
23: If L == NULL or |Bl| > |BL| set L = l.
24: end for
25: Tj = BL.
26: Erase from P all the elements of Tj .
27: elg r[L] = false.
28: elg c[σ(L)] = false.
29: blc c[σ(L)] = true.
30: end if
31: end for

parents selected for the crossover operator. The
Hungarian method is a well-known combinatorial
optimization algorithm that solves, in polynomial
time, the assignment problem in weighted bipartite
graphs, i.e. it calculates the maximum or minimum
weight matching. In this case, a complete bipartite
graph (G) with 2 × k vertexes is built. The first
k vertexes are associated to the subsets of I1,
whereas the last ones correspond the subsets of
I2. The edges connect any of the first k vertexes
with any of the last k vertexes. The weight of each
edge is established as the size of the intersection
of the sets associated with each vertex.
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Fig. 1. Illustration of the HBX

The permutation σ obtained with the application
of the Hungarian Algorithm to G maximizes:
k∑
i=1

‖S1
i ∩ S2

σ(i)‖.

4.1.1 Main Properties of HBX

Previously to giving the specific crossover pro-
cedure, it is important to discuss some of the
properties that share the offspring. Let P be an
intersection matrix defined in a way that Pi,j =
S1
i ∩S2

j , and let T = {T1,T2, ...,Tk} be the offspring.
Then, T has the following properties:

1. For each j, there is a unique ij such that S1
ij
∩

S2
σ(ij)

⊂ Tj ⊂ S1
ij
∪ S2

σ(ij)
.

2. Pi,j ⊂ Tl for all the pairs (i, j) and some l.

3. Tl is the union of exactly k distinct Pi,j .

The reason behind the use of σ is that the
Hungarian Algorithm gives the maximum matching
between the sets in both partitions. This means
that S1

i is somewhat similar to S2
σ(i) and their

intersection is susceptible to have a lot of elements.
The property 1) establishes that these intersections
are used as the core of the sets in the new
partition. It also establishes that the elements
are selected exclusively from the unions of the
considered subsets.

Taking these properties into account, it can be
stated that operators that share these properties
are not very destructive operators. This because
property 2) focuses on inheriting together large
subsets of vertexes that were assigned to the
same subset in both parents. Finally, the principle
behind the third property, is to avoid an excessive
imbalance in the sizes of the newly generated
subsets. However, note that some imbalance
usually appears, so a method to properly balance
the subsets is required.
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Algorithm 3 Mutation based on Random Con-
nected Component
1: Let w be a random node in the graph.
2: Let set be a set that contains w.
3: k = niter
4: while k > 0 do
5: for u in set do
6: for v neighbor of u do
7: Take p random in [0, 1].
8: if p < pm then
9: Add v to set

10: end if
11: end for
12: end for
13: k −−
14: end while
15: Move all the vertexes in set to a randomly selected

subset

4.1.2 Construction

This section is devoted to present the specific
algorithm used to build two offspring that fulfill
the aforementioned properties. Let P be the
intersection matrix previously defined. Then
Algorithm 2 is the process required to create the
first new individual. This process is illustrated in
Fig. 1. The main principle is to select in each
step the position (i,σ(i)) of the matrix, where the
union of some elements of the corresponding row
and column (see lines 11 and 22 for details) is
maximized. Note that it can be proved that in line
11 there are exactly k− j/2 distinct Pi,l not erased
from P and j/2 Pσ−1(l),m such that the column m is
“blocked”. Something similar is true in line 22 and
this proves the property 3 of HBX.

In order to generate the second offspring, the
order in which rows and columns are considered
is exchanged, i.e. the even iterations take into
account the columns, whereas the odd iterations
take into account the rows. Note that regardless
of the order considered, both individuals share the
same properties described above.

In Fig. 1 the evolution of HBX for a specific
individual is shown. In this case, k = 4, σ =
(2, 1, 3, 4). Each of the four images in Fig. 1 can
be considered as a matrix, P . Each entry, Pi,j ,
of these matrices represent the intersection of the
corresponding sets in the parents S1, S2.

In the last image, the union of the sets
with the same color represents an element in
the new partition, T . The first image shows
how T1 is chosen as a row from P and how
column 3 is blocked. Note that the row was
chosen randomly and the column considered the
Hungarian permutation. In the second image, part
of T2 is taken from a column of P and the remaining
elements are taken from sets in row 2 that are in a
blocked column (P2,3). Similarly in the image 3 and
4, T3 and T4 are created. Everything follows the
procedure described in Algorithm 2

Another important fact of the novel operator is
that no information belonging to the GPP definition
was used in the design. Thus, this crossover
operator might be used in any optimization problem
in which sharing the same value in different
variables is an important feature.

4.2 Mutation Operator

In the GPP it is desirable to keep connected
components together in one subset of the parti-
tion. The reason is that connected components
encapsulates common edges, meaning that lower
cut edges might be induced. Taking this property
into account, the principle of the mutation operator
is to move parts of connected components from
one subset to another one. In order to select this
subcomponent, the same approach than the one
presented in [25] is applied. Then, the selected
vertexes are moved to a set Si, where i is selected
in a random way. Algorithm 3 describes the
process. In this work we use pm = 0.1 and niter =
5.

4.3 Balancing Operator

The balancing routine consists of two phases
and it is very important because of the problem’s
balancing restriction. This restriction might not be
valid after the application of the crossover and/or
mutation operator so it has to be restored. The
procedure that is in charge of this process is given
in Algorithm 4.

In the first phase, nodes are moved from larger to
smaller sets by taking into account the implications
of the move on the edge cut. This process
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Algorithm 4 Balancing Operator
1: Let ind the input individual to balance.
2: k = niterBal
3: while k > 0 and ind is not balanced do
4: Select i randomly in {i such that ‖Si‖ is not

biggest set of ind}.
5: Find u the node of maximum gain among ∪Sj

such that ‖Sj‖ > ‖Si‖.
6: Move u to Si.
7: k −−
8: end while
9: while ind is not balanced do

10: Choose u ∈ ∪Sj such that ‖Sj‖ > Smax.
11: Move u to a random set Sk with ‖Sk‖ < Smax.
12: end while

is repeated niterBal, which is set to |V | in our
experimental validation.

The second phase, which ensures the attai-
nment of a properly balanced solution, moves
randomly selected nodes from sets that do not
fulfill the given restriction to subsets where there
is space available.

4.4 Local Search

In order to create individuals with better fitness, a
local search algorithm was added. This routine
is performed after the balancing procedure and it
consists of two phases.

In the first phase, the strategy that is called the
“perfectly balanced local search by negative cycle
detection” in [22] is carried out. The principle
behind this algorithm is to find a cycle of negative
gain and move the nodes around it. In this way the
balance is kept and the fitness is diminished.

The second phase is a stochastic hill climbing.
For this routine two individuals are neighbor if their
only difference is a swap in an edge. It means, if
(u, v) is an edge and individual I1 fulfill that u ∈ Scu
and v ∈ Scv , with cu 6= cv, then individual I2 such
that u ∈ Scv and v ∈ Scu is neighbor of I1 if and only
if the previous one is their only difference. Once
the notion of neighborhood is defined, a usual
stochastic hill climbing is applied [27].

Algorithm 5 BNP survivor selection technique
Require: Population, Offspring
1: for all I ∈ Offspring do
2: I.cost = edge cut associated with individual I
3: end for
4: Penalized = ∅
5: CurrentIndividuals = Population ∪ Offspring
6: Best = Individual with lowest edge cut in CurrentIndi-

viduals
7: NewPop = { Best }
8: CurrentIndividuals = CurrentIndividuals \ { Best }
9: Update D taking into account the elapsed time (Te),

stopping criterion (Ts) and initial value of D (DI ):
D = DI−DI∗ Te

Ts
. We tookDI = distInitFactor∗M ,

where M is the mean distance in the first population
and distInitFactor ∈ [0, 1].

10: while (|NewPop| < N) do
11: for all I ∈ CurrentIndividuals do
12: I.DCN = distance to the closest individual of I in

NewPop
13: if I.DCN < D then
14: I.cost = Infinity
15: Penalized.insert(I)
16: CurrentIndividuals.erase(I)
17: end if
18: end for
19: for all I ∈ Penalized do
20: I.DCN = distance to the closest individual of I in

NewPop
21: end for
22: if CurrentIndividuals is empty then
23: Selected = I with largest I.DCN in Penalized
24: Penalized = Penalized \ {Selected}
25: else
26: Selected = I with lowest I.cost in CurrentIndivi-

duals
27: CurrentIndividuals = CurrentIndividuals \

{Selected}
28: end if
29: NewPop = NewPop ∪ Selected
30: end while
31: Population = NewPop

4.5 Survivor Selection

Our memetic algorithm applies a novel repla-
cement phase which is called the Best-Non-
Penalized (BNP) survivor selection strategy (see
Algorithm 5). One of the principles of the BNP
strategy is to avoid the selection of too close
individuals. Specifically, the approach tries to avoid
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the selection of pairs of individuals that are closer
than a D value. Since in the initial phases it is
important to explore, whereas in the last phases
the process should intensify, the D value varies
during the execution. Particularly, the variable D
is initialized in base of the content of the first
population (see line 9) and it is decreased in a
linear way.

In each execution of the survivor operator
N individuals from the previous population and
offspring are selected to survive. BNP iteratively
selects the best element that is not penalized.
Then, all the remaining individuals with distance
at most D to the previously selected ones
are penalized. If it is not possible to find a
non-penalized individual, the individual with larger
distance to the currently selected individuals is
taken.

Note that the principles of BNP are similar
to the ones that guided the design of the
Replacement with Multi-objective based Dynamic
Diversity Control strategy(RMDDC) [25]. The main
difference is that in RMDDC the same importance is
given to quality and diversity, so a multi-objective
selection is used. In the case of GPP, due
to the high computational cost associated with
some components, not too many generations
can be evolved. Thus, the incorporation of an
additional bias towards high-quality solutions that
is performed in the BNP strategy is mandatory
to obtain high-quality solutions with the stopping
criterion set in our analyses.

An important fact that should be noticed is
that the survivor operator requires a distance-like
function between individuals. In this case, a
function based on the Hungarian Algorithm is
used. Let τ be a permutation of k elements, then

d(S1,S2, τ) = |V |−
k∑
i=1

‖S1
i ∩S2

τ(i)‖. Our distance is

defined as the minimum d(S1,S2, τ) over all the τ ’s.
This value can be calculated efficiently by using the
Hungarian Best Matching Algorithm.

5 Experimental Validation

In this section, the experiments conducted with our
proposal (MAHMBCDP) are described. Since our
proposal is a stochastic algorithm, each execution

was repeated 30 times and comparisons were
carried out by applying a set of statistical tests.
A similar guideline as the one applied in [24] was
used. Specifically, the following tests were applied,
assuming a significance level of 5%. First, a
Shapiro-Wilk test was performed to check whether
or not the values of the results followed a Gaussian
distribution.

If so, the Levene test was used to check for
the homogeneity of the variances. If samples had
equal variance, an ANOVA test was done; if not,
a Welch test was performed. For non-Gaussian
distributions, the non-parametric Kruskal-Wallis
test was used to test whether samples are drawn
from the same distribution. The following section
describes the set of benchmarks and experiments
that have been taken into account to validate our
proposal.

Our approach involves the setting of some
parameters. The population size was set to 50,
the crossover probability (pc) was set to 0.85
and the mutation probability (pm) was set to
0.1. These values are quite standard values
and we are aware that some improvements
might be obtained by applying parameter setting
schemes [16]. However, since very large
executions were performed (the stopping criterion
was set to 48 hours) and they provided promising
results no further experimentation was carried out.

Our validation involves the application of several
replacement strategies in addition to the BNP
strategy used in MAHMBCDP. Depending on the
replacement phase, additional parameters might
be required. In order to set them, some initial
experiments were developed by considering some
values that have reported promising results [23]
in other problems, as well as some modifications
of these values. The ones that obtained the best
performance are the following. In the RTS, CF was
set to 25. In HGSADC, NClose and NElit were set to
3 and 8, respectively. In CLR, σ was set to 0.20×M ,
where M is the mean distance among individuals
of the first population.

Finally, in the BNP strategy, distInitFactor was
set to 0.6. More information on the sensitivity of this
parameter is given in the following subsections.
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Table 1. Features of the graphs selected for the
experimental validation

Graph |V | |E| Graph |V | |E|
add20 2395 7462 data 2851 15093
3elt 4720 13722 uk 4824 6837
add32 4960 9462 bcsstk33 8738 291583
whitaker3 9800 28989 crack 10240 30380
wing nodal 10937 75488 fe 4elt2 11143 32818
vibrobox 12328 165250 bcsstk29 13992 302748
4elt 15606 45878 fe sphere 16386 49152
cti 16840 48232

5.1 Benchmark

In order to evaluate the performance of our
proposal, test cases from the graph partitioning
archive (TGPA) of Chris Walshaw [13], were used.
This is a site that has been maintained since 2000
and includes results from most of the important
partitioning software packages. The whole set is
composed of 34 graphs.

The smallest graph has 2, 395 nodes and 7, 462
edges and the biggest has 448, 695 nodes and
3, 314, 611 edges. The number of edges in these
graph are usually between two and twenty times
the number of nodes. For each of these graphs,
the best known partitions for k ∈ {2, 4, 8, 16, 32, 64}
and ε ∈ {0.0, 0.01, 0.03, 0.05} are available. The
values k ∈ {4, 8, 16, 32, 64} and ε = 0.0 were taken
into account for testing our algorithm. We chose
k = 2n in order to compare our results with the
ones in TGPA, but the scheme can be applied for
any arbitrary k.

In this work, the first 15 graphs in TGPA
were selected. The reason is that we identified
that our algorithm was not able to evolve a
reasonable number of generations (more than
1, 000), in graphs with more than 17, 000 edges,
which is quite important for the proper performance
of diversity-based memetic algorithms. Table 1
details the number of nodes and edges of the
selected graphs.

5.2 Analysis of Diversity

One of the most important features of our
approach is that it considers the diversity
explicitly. Our proposal depends on a parameter,

distInitFactor ∈ [0, 1]. In order to use the
same parameter value in every case, a preliminary
experiment was performed.

Particularly, five different equidistributed values
were used with two instances and two different
values of k. The mean and best results obtained
for 30 executions are shown in Table 4 for each
of the tested values. The values 0.6 and 0.8
reported quite competitive results. Since the value
0.6 reported a lower mean in more cases, this value
is used in all the remaining experiments.

Table 2. Comparison among different schemes for the
3elt graph

3elt
k = 4 k = 64

Scheme Best Mean Worst Best Mean Worst
MAHMBCDP 201 201 201 1535 1537.1 1539
RTS 201 210 463 1538 1551.4 1569
HGSADC 201 262.2 463 1536 1546.8 1558
CLR 291 389.3 517 1601 1692 1796
GEN ELIT 237 402.4 532 1545 1555.6 1569

For validating the BNP survivor selection inte-
grated in MAHMBCDP, some additional popular
schemes were also tested. Specifically, results
were obtained with the following methods: RTS,
HGSADC, CLR and GEN ELIT. Table 2 summarizes
the results obtained with the 3elt graph. Specifi-
cally, the best, mean and worst values are reported
for k = 4 and k = 64. The same information is
shown in Table 3 for the uk instance. It is clear that
MAHMBCDP obtained the most promising results.
In fact, the statistical tests described before were
applied and showed the superiority of MAHMBCDP
in every case. Particularly, the maximum p value
was equal to 0.00013 in the comparisons.

In order to properly understand the reasons
behind the superiority of the BNP technique it is
important to analyze the evolution of the diversity
and fitness (cut edge). Fig. 2 shows the evolution
of the diversity whereas Fig. 3 shows the evolution
of the fitness for the aforementioned cases. The
diversity was measured as the mean distance
among all the individuals in the population.

It is noticeable that the only scheme that induces
a gradual decrease in diversity is MAHMBCDP,
i.e. the scheme that applies the BNP strategy.
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Fig. 2. Evolution of diversity in four different test cases
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Fig. 3. Evolution of fitness in four different test cases
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Table 3. Comparison among different schemes for the
uk graph

uk
k = 4 k = 64

Scheme Best Mean Worst Best Mean Worst
MAHMBCDP 41 45.8 73 420 425.2 430
RTS 153 198.73 249 444 460 489
HGSADC 119 187.13 249 450 488.1 532
CLR 195 253.2 329 585 625.7 686
GEN ELIT 194 247.5 322 466 507.1 489

The large diversity in the initial phases explains
why MAHMBCDP does not attain very promising
partitions initially. In this phase, it is looking
for promising regions in the variable space but
intensification is not promoted. At the end of
the execution, the diversity is low, meaning that
intensification is promoted in the most promising
regions identified. This results in solutions of
higher quality in the long term.

An interesting thing is that the decrease of
diversity was not linear as we expected by
decreasing D in Algorithm 5 in that way.

This is specially clear in the cases with k = 4.
Thus, creating an adaptive algorithm to manage
the decrease of diversity seems promising, but that
work is beyond the reach of this paper.

5.3 Validation with the Graph Partitioning
Archive

In order to illustrate the effectiveness of the
proposed memetic algorithm, test with the 15 first
graphs of the Graph Partitioning Archive were
performed. MAHMBCDP was tested with the values
k = {4, 8, 16, 32, 64}. Tables 5, 7 and 6 summarize
the results obtained with MAHMBCDP. In addition
to the best, mean and worst results obtained, the
best-known solution found by any solver previous
to this paper is shown in the column TGPA.
MAHMBCDP reaches the best known solution for
almost every instance for k = 4 and k = 8.
Moreover, in five test cases it could generate a
new best-known solution. The only cases where
the best-known solution could not be attained are
bcsstk29 and vibrobox. The number of edges
for these two instances and bcsstk33 is at least
twice than for the rest. This reduced hundreds of

times the number of generations evolved by our
algorithm, meaning that in these cases the way
of managing the diversity of MAHMBCDP might not
be adequate because it usually requires a lot of
generations to reach high-quality solutions.

For the larger values of k, the performance
of MAHMBCDP also degraded. Again, we could
identify that the number of generations evolved was
drastically reduced with the increase of k. In fact,
in many cases, less than 1, 000 generations could
be evolved. Thus, the MAHMBCDP is really useful
for those cases where many generations can be
evolved. However, taking into account that several
computationally expensive operators are used, the
proposal is not scalable to large graphs (greater
than about 17, 000 edges) or to large values of k. In
any case, for values of k larger than 8, MAHMBCDP
could identify five new best-known solutions.

As a summary, it is quite important to remark that
best-known solution could be improved further in
ten cases. Taking into account that these graphs
have been tackled with a very large amount of
proposals, this achievement is an important proof
of the proper performance of the solver designed
in this paper.

6 Conclusions and Future Work

The Graph Partitioning Problem (GPP) is a
well-known NP-hard combinatorial optimization
problem that has been addressed with numerous
optimizers. Among them, hybrid metaheuristics
that combine population-based approaches with
trajectory-based schemes have reported the most
promising results. Recently, the state-of-the-art
of some related problems could be advanced
significantly by taking into account the diversity of
the population in an explicit way. This paper studies
the applicability of these kinds of approaches in
the GPP. Specifically, a memetic algorithm that
incorporates a hill-climber and a relatively large
neighborhood has been designed. The proposal
(MAHMBCDP) incorporates a novel replacement
strategy, the best-non-penalized scheme (BNP),
that is based on considering both the diversity
and quality in the survivor selection phase.
Additionally, an important novelty is the design of
a crossover operator that is based on the principle
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Table 4. Summary of the results obtained with different distInitFactor values

0.0 0.2 0.4 0.6 0.8 1.0
Instance Mean Best Mean Best Mean Best Mean Best Mean Best Mean Best
uk, k = 4 193.83 135 132.9 44 73.33 41 45.8 41 43.46 41 43.467 42
uk, k = 64 539.2 492 445.83 429 427.2 421 425.26 420 425.767 418 425.97 421
3elt, k = 4 375.9 270 201 201 201 201 201 201 201 201 201 201
3elt, k = 64 1558.23 1544 1538.56 1534 1537.4 1535 1537.13 1535 1537.63 1535 1538.1 1536

Table 5. MAHMBCDP results for k = 4, 8

k = 4 k = 8
Instance TGPA Best Mean Worst TGPA Best Mean Worst
add20 1154 1151 1153.1 1155 1686 1681 1682.73 1685
data 382 382 382 382 668 668 668.07 669
3elt 201 201 201 201 345 345 345 345
uk 41 41 47.37 81 84 83 86.6 94
add32 34 34 34 34 67 67 67.33 68
bcsstk33 21717 21717 21717 21717 34437 34437 34444.7 34454
whitaker3 381 381 381 381 656 656 657.1 658
crack 366 366 366 366 679 679 679.07 680
wing nodal 3575 3575 3578.2 3582 5435 5435 5436.93 5439
fe 4elt2 349 349 349 349 607 606 607.6 609
vibrobox 18976 18988 19116.27 19268 24484 24479 24479.57 24481
bcsstk29 8035 8069 8086.7 8106 13986 14001 14034.57 14084
4elt 326 326 326 768 545 545 565.23 807
fe sphere 768 768 768.07 769 1156 1156 1205.47 1383
cti 954 954 954 1178 1788 1788 1796.13 1848

Table 6. MAHMBCDP results for k = 64

k = 64
Instance TGPA Best Mean Worst
add20 2949 2952 2961.23 2968
data 2839 2841 2852.03 2856
3elt 1532 1535 1537.07 1539
uk 408 416 424.53 437
add32 485 485 493.43 502
bcsstk33 107185 107413 107632.23 107814
whitaker3 2491 2505 2525.43 2538
crack 2535 2549 2560 2568
wing nodal 15775 15781 15801.37 15821
fe 4elt2 2478 2490 2503.27 2518
vibrobox 46571 46692 46820 46952
bcsstk29 55241 55807 56203.93 56742
4elt 2565 2572 2588.57 2606
fe sphere 3543 3594 3634.03 3671
cti 5629 5697 5737.3 5787

of maximizing the number of nodes that share the
same class both in the parents and offspring.

The experimental validation has been performed
with test cases of the Chris Walshaw’s Graph
Partitioning Archive. Comparisons against other

strategies that were devised with the aim of
facing premature convergence show the important
benefits of the BNP strategy. It is also remarkable
that in ten test cases, new best-known solutions
could be attained. Taking into account the large
number of techniques that have been used to deal
with the GPP, this is a quite important achievement.
The main drawback of the proposal is that due
to the incorporation of computationally expensive
components, there are issues with the scalability.
Both the increase on the number of edges and the
increase on the number of classes of the desired
partitions provoke degradation on the performance.

Several lines of future work might be explored.
First, some actions to improve the scalability might
be studied. Particularly, taking into account more
simple neighborhood definitions but with more
complex trajectory-based schemes to intensify,
seems a promising approach. Second, applying
adaptive ways to manage the diversity might
bring additional benefits. Finally, parallelizing the
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Table 7. MAHMBCDP results for k = 16, 32

k = 16 k = 32
Instance TGPA Best Mean Worst TGPA Best Mean Worst
add20 2047 2041 2047.03 2052 2362 2360 2362.8 2367
data 1127 1127 1127.8 1128 1799 1799 1803.2 1813
3elt 573 573 573 573 960 960 961.53 962
uk 146 148 153.63 161 254 253 259 264
add32 118 118 118 122 213 213 213.77 218
bcsstk33 54680 54687 54721.27 54800 77414 77508 77616.93 77824
whitaker3 1088 1089 1090.47 1094 1668 1672 1684.8 1697
crack 1088 1088 1089.8 1091 1679 1682 1687.7 1697
wing nodal 8334 8333 8341.77 8377 11768 11774 11793.13 11825
fe 4elt2 1007 1008 1008.77 1010 1614 1619 1628.67 1642
vibrobox 31892 32428 32744.6 32920 39477 39443 39699.7 39975
bcsstk29 21958 22136 22217.73 22332 34968 35130 35283.63 35533
4elt 934 937 957.13 1084 1551 1554 1566.9 1597
fe sphere 1714 1719 1875.63 2068 2490 2500 2561.3 2659
cti 2793 2799 2846.37 2895 4046 4069 4114.2 4153

proposal to reduce the time required to obtain
high-quality solutions seems a plausible approach.
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28. Črepinšek, M., Liu, S.-H., & Mernik, M.
(2013). Exploration and exploitation in evolutionary
algorithms: A survey. ACM Computing Surveys,
Vol. 45, No. 3, pp. 35:1–35:33.

29. Vidal, T., Crainic, T. G., Gendreau, M., & Prins,
C. (2013). A hybrid genetic algorithm with adaptive
diversity management for a large class of vehicle
routing problems with time-windows. Computers &
Operations Research, Vol. 40, No. 1, pp. 475–489.

Article received on 01/02/2017; accepted on 16/05/2017.
Corresponding author is Emmanuel Romero Ruiz.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 347–361
doi: 10.13053/CyS-22-2-2951

Memetic Algorithm with Hungarian Matching Based Crossover and Diversity Preservation 361

ISSN 2007-9737


