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Abstract. The averaged Hausdorff distance ∆p is an
inframetric which has been recently used in evolutionary
multiobjective optimization (EMO). In this paper we
introduce a new two-parameter performance indicator
∆p,q which generalizes ∆p as well as the standard
Hausdorff distance. For p, q > 1 the indicator ∆p,q (that
we call the (p, q)-averaged distance) turns out to be a
proper metric and preserves some of the ∆p advantages.
We proof several properties of ∆p,q, and provide a
comparison with ∆p and the standard Hausdorff distance.
For simplicity we restrict ourselves to finite sets, which is
the most common case, but our results can be extended
to the continuous case.

Keywords. Averaged Hausdorff distance, generational
distance, inverted generational distance, multiobjective
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1 Introduction

In most cases, the solution of a multiobjective
optimization problem (MOP), is a subset of Rn
called Pareto set (P ). Sometimes P can be
computed analytically but, typically, the use of
a numerical algorithm is necessary to find a
reasonable finite size approximation.

To establish the accuracy of an EMO-algorithm
trying to approximate this Pareto set or its image,
the Pareto front (PF ), we can measure the distance
between the algorithm outcome set A and the
respective Pareto set or front. Since, in general,
a specific distance to PF can be attained for
different sets A, this method will not produce unique
solutions.

For any metric space X, the standard Hausdorff
distance dH (see [3, 6]) is a metric for Pc(X)
(the family of all possible compact subsets of X).
Intuitively, if dH(X,Y ), is small it means that every

x ∈ X is close to some y ∈ Y and vice versa.
The metric dH is used in Brownian motion [15],
matrix theory [1], dynamical systems [2], or fractal
geometry [7], among other research areas. In the
theory of evolutionary multiobjective optimization
(EMO), the closeness of a set A to certain PF
determines the approximation (called convergence
in the EMO literature) of the outcome, and the
closeness of PF to A determines the spread
(maximal gap).

The metric dH is rarely used by the EMO
community because its values allow for undesirable
ambiguities. An illustrative example is that a large
value of dH(PF ,A), can indicate both: a “bad”
approximation or a “good” one with at least one
outlier (see Figure 1). Instead of dH , several
alternative indicators have been introduced, e.g. the
hypervolume indicator [17], the R indicators [10],
or the averaged Hausdorff distance ∆p introduced
in [13]. The adequacy of the use of different
indicators has been studied in [14]. Among them,
the performance indicator ∆p has the advantage of
not punishing heavily the outliers and to produce
solutions evenly spread around PF (which is
highly desirable [16]), but the disadvantage of not
satisfying the triangle inequality. In other words, ∆p

is not a metric but a semimetric with relaxed triangle
inequality, which we will refer to as an inframetric.
This terminology, explained with more detail at the
end of the Section 2, does not conflict with related
(but different) notions and it has also been used in
computer science (see [8]).

In this paper we introduce a new indicator ∆p,q,
that we call the (p, q)-averaged Hausdorff distance,
or simply (p, q)-averaged distance for brevity.

When p, q > 1 this distance turns out to
be a proper metric and preserves the principal
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advantages of ∆p. When |p|, |q| > 1 (but not p, q >
1), we show that ∆p,q satisfies a relaxed triangle
inequality, turning it into an inframetric. Moreover
∆p,q is related to the p-averaged Hausdorff distance
∆p and the standard Hausdorff distance dH in the
following way:

∆p,−∞(· , ·) := lim
q→−∞

∆p,q(· , ·) = ∆p(· , ·), (1.1)

and

: ∆∞,−∞(· , ·) := lim
p→∞
q→−∞

∆p,q(· , ·) = dH(· , ·). (1.2)

The remainder of this paper is organized
as follows: Section 2, presents some basic
preliminaries, including well-known properties
of q-power means, the Generational Distance
GD, the Inverted Generational Distance IGD,
and their p-averaged versions GDp and IGDp,
respectively. This section concludes with a review
of the inframetric properties of the p-averaged
Hausdorff distance ∆p. Section 3, presents
GDp,q and IGDp,q which are modifications of
GDp and IGDp, respectively. We introduce
here the (p, q)-averaged distance ∆p,q and prove
several properties, including a result related to
Pareto-compliance. Section 4, presents some
numerical results showing the behavior of ∆p,q

as an indicator. Finally, in Sections 5 and 6, we
present our conclusions and future work proposals,
respectively.

2 Preliminaries

2.1 Multiobjective Optimization

For a vector valued function f : X ⊂ Rn → R`,
the multiobjective optimization problem (MOP),
under consideration requires the simultaneous
minimization of its ` component functions f1, . . . , f`.
A solution is optimal when the elements of the
image Y = f(X), are nondominated in the sense of
Pareto [11], which derives from a partial order in R`,
whose definition we recall below for the convenience
of the reader.

Let (Y ,�) be a subset Y ⊂ R` equipped with the
partial order � defined for y, y′ ∈ Y by:

y � y′ if and only if yi 6 y′i for all i = 1, . . . , `.

An element y ∈ Y is said to be dominated by y′ ∈ Y
and denoted y′ ≺ y, if y′ � y and y 6= y′. Moreover,
y ∈ Y is dominated by Y ′ ⊂ Y , written Y ′ � y,
if there exists some y′ ∈ Y ′ such that y′ � y,
otherwise it is said to be nondominated by it, Y ′ � y.
A subset Y ′ ⊂ Y is dominated by a subset Y ′′ ⊂ Y ,
and written Y ′′ � Y ′, if for every y′ ∈ Y ′ there exist
some y′′ ∈ Y ′′ such that y′′ � y′. If this is not
the case Y ′ is said to be nondominated by Y ′′ and
denoted Y ′ � Y ′′.

If Y = f(X) is the objective space of some
MOP with decision space X ⊂ Rn and objective
function f : X → R`, its Pareto front is defined
as the set Y ∗ := {y ∈ Y | @ y′ ∈ Y : y′ ≺ y} of
nondominated elements. An element x ∈ X is
called Pareto-optimal if its image is nondominated,
i.e., f(x) ∈ Y ∗, and the set X∗ of all Pareto-optimal
points is called Pareto set.

Finally, if Y ⊂ R`, we say that a performance
indicator given by a function I : P(Y ) → R is
Pareto-compliant if for subsets A,B ⊂ Y the strict
dominance condition A � B and B � A implies
the relation I(A) 6 I(B) (or in a stronger version
I(A) < I(B)). We refer the reader to [18] for details.
In section 3.2 we provide a brief discussion of the
compliance of the indicator associated to ∆p,q with
Pareto-related optimality criteria.

2.2 Power Means

For a finite setX = {xi}Ni=1 ⊂ [0,∞) and a non-zero
real q, the q-average or the q-power mean of X is
given by:

Mq(X) :=

(
1

N

N∑
i=1

xqi

) 1
q

.

Remark. When the set of values taken by an
indexing quantity has been explicitly specified, e.g.
i ∈ I := {1, . . . ,N}, for convenience, the following
abbreviated notation will be used:

Mq

i∈I
(xi) := Mq({xi}i∈I) = Mq(X).
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A comprehensive reference on the theory and
properties of means is e.g. [5], where proofs of the
statements presented in this section can be found.

It is well-known that limit cases of power means
recover familiar quantities, for example:

lim
q→0

Mq(X) =

( N∏
i=1

xi

) 1

N

,

is the standard geometric mean of X, additionally:

lim
q→∞

Mq(X) = max{x1, . . . ,xN}, and

lim
q→−∞

Mq(X) = min{x1, . . . ,xN}.

The special case q = −1 corresponds to the
harmonic mean and it is also of our interest:

harm(X) := M−1(X).

Now, we can define the q-average of a finite set
for any q in the extended real line R := [−∞,∞].
Let Y := {yi}i∈I be a finite subset of [0,∞). The
following properties hold for power means:

1. If xi 6 yi for all indices i ∈ I, then for any q ∈ R:

Mq(X) 6 Mq(Y ). (2.1)

2. For p, q ∈ R, if p 6 q, then:

Mp(X) 6 Mq(X). (2.2)

3. If A = (aij) denotes an array of indexed positive
elements with i ∈ I and j ∈ J , then their p-average
satisfies:

Mp(A) = Mp

i∈I

(
Mp

j∈J
(aij)

)
= Mp

j∈J

(
Mp

i∈I
(aij)

)
. (2.3)

4. For p > 1 it follows from Minkowski inequality
that:

Mp

i∈I
(xi + yi) 6 Mp

i∈I
(xi) + Mp

i∈I
(yi). (2.4)

5. The harmonic mean admits the bound:

harm(X) 6 N min(X). (2.5)

2.3 Averaged Hausdorff Distance

Suppose that A and B belong to the family of
finite subsets of Rn, denoted by P0(Rn), and that
p > 1. Recall that the “modified” generational
distance (GDp) and the inverted generational
distance (IGDp) are defined by power means as
follows (see [13]):

GDp(A,B) :=

(
1

NA

NA∑
i=1

d(ai,B)p
)1

p

,

=

(
1

NA

NA∑
i=1

min
j=1..NB

{
d(ai, bj)

p
})1

p

,

and:

IGDp(A,B) := GDp(B,A),

where d(·, ·) stands for the standard Euclidean
metric. Let us denote by ∆p : P0(Rn)×P0(Rn)→ R
the so-called averaged Hausdorff distance, i.e.:

∆p(A,B) := max{GDp(A,B), IGDp(A,B)}.

It has been established in [13] that ∆p does not
satisfy the triangle inequality but a weaker version
given by:

∆p(A,C) 6 N
1
p
(
∆p(A,C) + ∆p(B,C)

)
,

where N > 1 is a constant with |A|, |B|, |C| 6 N .
Because of this, ∆p is not a proper metric
but a semimetric with relaxed triangle inequality.
This notion has appeared with several conflicting
names in the literature, among which inframetric is
probably the one with less friction with pre-existing
terminology.

There are two related conditions that relax the
triangle inequality for a function d : X ×X → [0,∞).
Namely, the existence of a constant C > 0 such
that for any points a, b, c ∈ X one of the following
properties hold:

1. The C-relaxed triangle inequality:

d(a, b) 6 C
(
d(a, c) + d(c, b)

)
.

2. The C-inframetric inequality:

d(a, b) 6 C max
{
d(a, c), d(c, b)

}
.
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Since condition (2) implies (1), with the same
constant C and, reciprocally, the C-relaxed triangle
inequality implies the 2C-inframetric one, it is clear
that both conditions are equivalent for appropriate
choice of constants. Hence, a semimetric satisfying
anyone of these conditions will be called an
inframetric.

3 The (p, q)-Averaged Distance

In order to simplify the forthcoming calculations we
use the following abbreviation:

N∑
i=1

xi :=
1

N

N∑
i=1

xi = M1({x1, . . . ,xN}),

to denote the average of x1, . . . ,xN ∈ [0,∞].

Definition 3.1. For p, q ∈ R\{0}, the generational
(p, q)-distance GDp,q(A,B) between two finite sets
A = {ai}NA

i=1 and B = {bj}NB
j=1 in Rn is given by:

GDp,q(A,B) :=

(NA∑
i=1

(NB∑
j=1

d(ai, bj)
q

)p
q
)1

p

.

When p < 0 or q < 0 it will always be assumed
for consistency that A ∩ B = ∅. The indicator
GDp,q(A,B) can be extended for values of p = 0
and/or q = 0 by taking the limits when p→ 0 and/or
q → 0, respectively. In such cases, the properties
mentioned in the previous section suggest the
following appropriate definitions:

GDp,0(A,B) :=

(NA∑
i=1

(NB∏
j=1

d(ai, bj)

) p

NB

)1
p

,

for p 6= 0,

GD0,q(A,B) :=

(NA∏
i=1

(NB∑
j=1

d(ai, bj)
q

)1
q
) 1

NA

,

for q 6= 0, and

GD0,0(A,B) :=

(NA∏
i=1

(NB∏
j=1

d(ai, bj)

) 1

NB

) 1

NA

.

We can also calculate GDp,q when p→ ±∞ and/or
q → ±∞, by changing the respective sum for a
minimum or a maximum. In particular, if A∩B = ∅,
we have the nice relation:

lim
q→−∞

GDp,q(A,B) = GDp(A,B). (3.1)

Note that the definition of GDp,q has two drawbacks,
namely GDp,q(A,B) does not necessarily vanish if
A = B, and in general GDp,q(A,B) 6= GDp,q(B,A),
thus this indicator does not define a metric. In order
to get a proper metric we introduce the following
notion.

Definition 3.2. The (p, q)-averaged distance is the
map ∆p,q : P0(Rn)× P0(Rn)→ R given by:

∆p,q(A,B) :=max{GDp,q(A,B\A), GDp,q(B,A\B)}.

If A ∩ B = ∅ then GDp(A,B) = GDp(A,B\A),
therefore using (3.1) and Definition 3.2 we easily
obtain:

lim
q→−∞

∆p,q(A,B) = ∆p(A,B). (3.2)

More generally, ∆p,−∞(A,B) > ∆p(A,B) always
holds. We point out that similarly to the relation:

GDp(A,B) = N
− 1

p

A ‖DAB‖p,

between the generational distance GDp(A,B)
and the matrix `p-norm of the distance matrix
(DAB)ij := d(ai, bj), we also have the following
relation between the (p, q)-generational distance
GDp,q(A,B) and the matrix `p,q-norm ‖DAB‖p,q
(defined precisely as GDp,q but with standard sums∑

instead of the normalized ones
∑

, see e.g. [9]):

GDp,q(A,B) = Mp

i∈I

(
Mq

j∈J
(d(ai, bj))

)
,

= N
− 1

p

A N
− 1

q

B ‖DAB‖p,q, (3.3)

where I := {1, . . . ,NA} and J := {1, . . . ,NB}.

3.1 Metric Properties

Now we study the behavior of the distances GDp,q

and ∆p,q from a metric perspective. Since the
elements of the distance matrix do not satisfy a
relation of the kind DAC = DAB + DBC (and
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in general these matrices are of different sizes),
their properties are not immediate from (3.3) and
the triangle inequality for `p,q-norms. Here, we
provide self-contained proofs for future reference
and completeness.

Theorem 3.3. For parameters p, q ∈ [1,∞) the
generational (p, q)-distance GDp,q satisfies the
triangle inequality, namely:

GDp,q(A,C) 6 GDp,q(A,B) + GDp,q(B,C),

for any finite sets A,B,C ⊂ Rn.

Proof. Let assume that A = {ai}NA
i=1, B = {bj}NB

j=1,
and C = {ck}NC

k=1. From the triangle inequality for
the Euclidean metric d(· , ·) on Rn we know that for
arbitrary values of the indices i ∈ I := {1, . . . ,NA},
j ∈ J := {1, . . . ,NB}, and k ∈ K := {1, . . . ,NC} it
holds that:

d(ai, ck) 6 d(ai, bj) + d(bj , ck).

Let us abbreviate these quantities by δik := d(ai, ck),
δij := d(ai, bj), and δjk := d(bj , ck), where the
indices i, j, k will be understood to take values in
the sets I, J , and K defined above, respectively.
Then, for any of them:

δik 6 δij + δjk.

By (2.1), we can take the q-average over all k ∈ K
at both sides of the previous inequality to obtain:

Mq

k∈K
(δik) 6 Mq

k∈K
(δij + δjk),

6 Mq

k∈K
(δij) + Mq

k∈K
(δjk),

where the last line follows by using Minkowski
inequality (2.4) for q > 1. Since the averaged
quantities in the first term are independent of k,
we have for all i ∈ I and j ∈ J that:

Mq

k∈K
(δik) 6 δij + Mq

k∈K
(δjk). (3.4)

Here, we consider two cases for the parameters
p, q ∈ [1,∞) independently.

Case p 6 q: Under this assumption, we take at
both sides of (3.4) the p-average over all i ∈ I, and

using (2.4) for p > 1 at the RHS (right-hand side),
we get:

Mp

i∈I

(
Mq

k∈K
(δik)

)
6 Mp

i∈I
(δij) + Mp

i∈I

(
Mq

k∈K
(δjk)

)
.

Due to the independence on i ∈ I of the p-averaged
quantity in the last term at the RHS, this simplifies
to:

Mp

i∈I

(
Mq

k∈K
(δik)

)
6 Mp

i∈I
(δij) + Mq

k∈K
(δjk),

the LHS (left-hand side) is precisely GDp,q(A,C).
Now, we take at both sides the p-average over all
j ∈ J , use that the LHS is independent of j, and
employ (2.4) for p > 1 at the RHS, to find:

GDp,q(A,C) 6 Mp

j∈J

(
Mp

i∈I
(δij)

)
+ Mp

j∈J

(
Mq

k∈K
(δjk)

)
,

6 Mp

i∈I

(
Mp

j∈J
(δij)

)
+ Mp

j∈J

(
Mq

k∈K
(δjk)

)
,

where the interchange at the last line is allowed
by property (2.3). Now, property (2.2) for p 6 q
ensures that in the first term at the RHS we can
replace the inner Mp by Mq to get an equal or larger
quantity, therefore:

GDp,q(A,C) 6 Mp

i∈I

(
Mq

j∈J
(δij)

)
+ Mp

j∈J

(
Mq

k∈K
(δjk)

)
,

= GDp,q(A,B) + GDp,q(B,C),

which proves the claim.
Case q 6 p: Let us take at both sides of (3.4)

the q-average over all j ∈ J . Using that the LHS is
independent of j, and (2.4) for q > 1 at the RHS, we
obtain:

Mq

k∈K
(δik) 6 Mq

j∈J
(δij) + Mq

j∈J

(
Mq

k∈K
(δjk)

)
,

6 Mq

j∈J
(δij) + Mp

j∈J

(
Mq

k∈K
(δjk)

)
,

where the change of Mq by Mp in the last-term of
the RHS is justified by property (2.2) for q 6 p.

Finally, we take at both sides the p-average over
all i ∈ I, employ (2.4) for p > 1 at the RHS and use
that the last term is independent of i ∈ I, to write:

GDp,q(A,C) 6 Mp

i∈I

(
Mq

j∈J
(δij)

)
+ Mp

j∈J

(
Mq

k∈K
(δjk)

)
,

= GDp,q(A,B) + GDp,q(B,C).
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The corollary below states that the indicator ∆p,q

is a semimetric that becomes a metric if p, q > 1.
When this is not the case but still |p|, |q| > 1, the
theorem that follows assures that ∆p,q is at least
inframetric and provides the associated constants.

Corollary 3.4. For p, q ∈ R the (p, q)-averaged
distance ∆p,q is a semimetric on disjoint members of
the family P0(Rn) of finite subsets of Rn. Moreover,
for p, q ∈ [1,∞], the (p, q)-averaged distance is a
proper metric on disjoint subsets of P0(Rn).

Proof. From Definition 3.2, it is easy to see that
∆p,q(A,B) > 0 as well as:

∆p,q(A,B) = ∆p,q(B,A),

for every A,B ∈ P0(Rn) and all p, q ∈ R.
Moreover, it is also clear from Definition 3.1 that
GDp,q(A,B\A) = 0 if and only if A = ∅ or B ⊆ A,
hence from Definition 3.2 we find, for A,B 6= ∅,
that:

∆p,q(A,B) = 0 if and only if A = B.

These properties show that ∆p,q is a semimetric for
any p, q ∈ R.

Since the maximum of two functions satisfying
the triangle inequality also satisfies it, Theorem 3.3
shows that ∆p,q satisfies the triangle inequality for
all p, q ∈ [1,∞) and the cases p or q equal to ∞
follow by taking the appropriate limits.

Theorem 3.5. For any p, q ∈ R with |p|, |q| > 1
the generational (p, q)-distance GDp,q satisfies a
relaxed triangle inequality. Explicitly:

GDp,q(A,C) 6 N
1
r

(
GDp,q(A,B) + GDp,q(B,C)

)
,

for all A,B,C ∈ P0(Rn), any constant N > 1 such
that |A|, |B|, |C| 6 N and where r is given by:

1

r
:=

1

|p|
+

1

|q|
.

Proof. For arbitrary p 6= 0, let us assume that q < 0,
so that |q| = −q. We can write:

GDp,|q|(A,B) =

(NA∑
i=1

([NB∑
j=1

[
d(ai, bj)

q
]−1]−1)p

q
)1

p

,

=

(NA∑
i=1

(
N−2
B harm

j=1..NB

{
d(ai, bj)

q
})p

q

)1
p

,

which combined with the property (2.5) gives us:

GDp,|q|(A,B) 6

(NA∑
i=1

(
N−1
B min

j=1..NB

{
d(ai, bj)

q
})p

q

)1
p

,

= N
1
−q
B

(NA∑
i=1

(
min

j=1..NB

{
d(ai, bj)

q
})p

q

)1
p

,

6 N
1
|q|
B

(NA∑
i=1

(NB∑
j=1

d(ai, bj)
q

)p
q
)1

p

,

= N
1
|q|
B GDp,q(A,B).

An analogous inequality holds for arbitrary q 6= 0 if
we assume that p < 0. Therefore, we can write in
general:

GD|p|,|q|(A,B) 6 N
1
r GDp,q(A,B),

where NA,NB 6 N and:

r :=

{
|min{p, q}| if pq < 0,
1
2 harm{|p|, |q|} if p < 0, q < 0.

Notice that in both cases r can be chosen to take
the second value, i.e., 1

r
:= 1

|p| + 1
|q| , when the

sharpness of the constants does not matter. Finally,
when |p|, |q| > 1 we employ the triangle inequality
for GD|p|,|q| to conclude that:

GDp,q(A,C) 6 GD|p|,|q|(A,C),

6 GD|p|,|q|(A,B) + GD|p|,|q|(B,C),

6 N
1
r

(
GDp,q(A,B) + GDp,q(B,C)

)
,

which finishes the proof.

From Corollary 3.4 we know that ∆p,q is a metric
for p, q > 1. More generally, the following corollary
states that ∆p,q is an inframetric when |p|, |q| > 1.

Corollary 3.6. For any p, q ∈ R with |p|, |q| >
1 the (p, q)-averaged distance ∆p,q satisfies the
following relaxed triangle inequality on disjoint
subsets A,B,C ∈ P0(Rn):

∆p,q(A,C) 6 N
1
r

(
∆p,q(A,B) + ∆p,q(B,C)

)
,

for any constant N > 1 such that |A|, |B|, |C| 6 N

and where 1

r
:=

1

|p|
+

1

|q|
.
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Proof. The corollary follows immediately from
Theorem 3.5 and Definition 3.2.

Theorem 3.7. Let A,B ∈ P0(Rn) and suppose that
p 6 p′, q 6 q′, then:

∆p,q(A,B) 6 ∆p′,q(A,B), and
∆p,q(A,B) 6 ∆p,q′(A,B).

Proof. If follows easily from Definition 3.2 and two
applications of property (2.2).

Corollary 3.8. LetA,B ∈ P0(Rn) and suppose that
p 6 p′, then:

∆p(A,B) 6 ∆p′(A,B).

Proof. We obtain the corollary by using (3.2) and
taking the limit q → −∞ in Theorem 3.7. For
the convenience of the reader we present here
an alternative, self-contained proof useful in the
continuous case. Let X be a measure space with
finite µ-measure. For any function f : X → C in
the Lebesgue space Lr(X) with r > 1, a simple
modification of the Hölder inequality tells us that:(∫

X

|f | dµ
)r

6 µ(X)r−1

∫
X

|f |rdµ. (3.5)

For any p, p′ ∈ R with 1 6 p 6 p′ we have p′

p
> 1, so

with r =
p′

p
and f = gp in (3.5) we obtain:

(∫
X

|gp| dµ
)1

p

6 µ(X)
1
p−

1
p′

(∫
X

|gp′ | dµ
)1

p′

. (3.6)

Taking as X the set A = {ai}Ni=1, as g : Rn → R
the function given by g(x) := d(x,B), and as µ the
discrete measure µd on A:

µd(x) :=

{
1 if x ∈ A,

0 if x /∈ A;

the inequality (3.6) becomes:( N∑
i=1

d(ai,B)p
)1

p

6

( N∑
i=1

d(ai,B)p
)1

p′

.

That is GDp(A,B) 6 GDp′(A,B), which easily
implies ∆p(A,B) 6 ∆p′(A,B).

3.2 Pareto-Compliance

A discussion of the Pareto-compliance for the
averaged GDp, IGDp and ∆p-indicators appeared
in [13, Sec. III]. Similar observations can be made
for the corresponding (p, q)-indicators introduced
in this work. Here we will concentrate only in
providing a complete proof of a result (analogous
to Proposition 3 there) that describes the behavior
of the GDp,q-indicator. The assumptions required
are stronger than the compliance notion defined in
Section 2.1 but they are useful to understand what
will be needed in a very general situation.

If a MOP problem has an associated objective
function f : X ⊂ Rn → R` whose objective space
Y = f(X) has a Pareto front Y ∗, and A ⊂ Y
denotes an approximating subset, the explicit GDp,q

and ∆p,q-performance indicators assigned to A are
given, respectively, by:

IGD
p,q (A) := GDp,q(A,Y ∗), and

I∆
p,q(A) := ∆p,q(A,Y ∗).

For convenience, given x, y ∈ R` and q ∈ R we will
abbreviate δq(x) := Mq

y∈Y∗ d(x, y).

Theorem 3.9. Let p, q ∈ R and suppose that a pair
of distinct finite subsets A,B ⊂ Y satisfy:

1. A � B, i.e., ∀b ∈ B, ∃a ∈ A such that a � b.

2. ∀a ∈ A, ∃b ∈ B such that a � b and with
δq(b) 6 Mp

{
δq(b

′) | a � b′, b′ ∈ B
}

.

3. ∃a ∈ A\B, ∃b ∈ B\A such that a ≺ b.

4. ∀a ∈ A, ∀b ∈ B the following property holds,

a ≺ b =⇒ δq(a) < δq(b).

then IGD
p,q (A) < IGD

p,q (B).

Proof. Let us assume that A = {ai}NA
i=1, where its

elements are arranged in a nonincreasing order with
respect to δq(ai), this means that:

i < j =⇒ δq(aj) 6 δq(ai).

By conditions 1 and 2, we can decompose B into
a partition B = B1 ∪ · · · ∪ Bm of subsets defined
recursively for i = 1, . . . ,m (with 1 6 m 6 NA), as:

Bi := {b ∈ B\(B0 ∪ · · · ∪Bi−1) | ai � b},
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with B0 := ∅. Let Ni denote the size of Bi satisfying
1 6 Ni 6 NB =

∑m
i=1Ni and arrange the elements

of each subset Bi = {b(i)k }
Ni

k=1 in a nondecreasing
order with respect to δq(b

(i)
k ), i.e., for each fixed i:

k < k′ =⇒ δq(b
(i)
k ) 6 δq(b

(i)
k′ ).

Note that from the construction and condition 4, for
i = 1, . . . ,m, we have that:

b ∈ Bi =⇒ δq(ai) 6 δq(b).

In particular, for the first element b(i)1 of each Bi,
which minimizes the set

{
δq(b) | b ∈ Bi

}
we have

δq(ai) 6 δq(b
(i)
1 ). Moreover, condition 2 necessarily

implies:
δq(b

(i)
1 )p 6

∑
b∈B\Bi

δq(b)
p. (3.7)

Due to the ordering of A and this observation,

IGD
p,q (A)p =

NA∑
i=1

δq(ai)
p 6

m∑
i=1

δq(ai)
p,

6
m∑
i=1

δq(b
(i)
1 )p. (3.8)

But the inequality still holds if, for any given value
of j = 1, . . . ,m, we replace at the RHS of (3.8) the
element b(j)1 in the j-th term by any other b(j)k ∈ Bj
(with k = 2, . . . ,Nj) while keeping all the remaining
terms fixed. Therefore, there are Nj possible
choices for this element, and in consequence Nj
different inequalities for any given j = 1, . . . ,m:

IGD
p,q (A)p 6

1

m

( m∑
i=1
i6=j

δq(b
(i)
1 )p + δq(b

(j)
kj

)p
)

,

where kj = 1, . . . ,Nj . When varying j = 1, . . . ,m,
this procedure yields a total of

∑m
j=1Nj = NB

inequalities with the same LHS, and using (2.1) we
can take the average of all of them. Since the LHS
remains the same, we obtain:

IGD
p,q (A)p 6

1

NB

m∑
j=1

Nj∑
kj=1

1

m

( m∑
i=1
i6=j

δq(b
(i)
1 )p + δq(b

(j)
kj

)p
)

,

=

m∑
j=1

1

NB

( m∑
i=1
i 6=j

Nj δq(b
(i)
1 )p+

Nj∑
kj=1

δq(b
(j)
kj

)p
)

.

Notice that conditions 3 and 4 imply that the
previous inequality has to be strict since the LHS
contains all the elements of A and the RHS all the
elements of B.

Rearranging and counting the terms, we get that:

IGD
p,q (A)p,

<

m∑
j=1

1

NB

( m∑
i=1
i 6=j

Nj δq(b
(i)
1 )p +

Nj∑
kj=1

δq(b
(j)
kj

)p
)

,

=
1

m

m∑
j=1

m∑
i=1
i 6=j

Nj

NB
δq(b

(i)
1 )p +

1

NB

m∑
j=1

∑
b∈Bj

δq(b)
p,

which after a reordering in the first term becomes:

=
1

m

m∑
i=1

m∑
j=1
j 6=i

Nj

NB
δq(b

(i)
1 )p +

1

m

∑
b∈B

δq(b)
p,

=
1

m

m∑
i=1

(
NB −Ni

NB

)
δq(b

(i)
1 )p +

1

m

∑
b∈B

δq(b)
p,

but using (3.7) we obtain the inequality:

6
1

m

m∑
i=1

(
NB −Ni

NB

) ∑
b∈B\Bi

δq(b)
p +

1

m

∑
b∈B

δq(b)
p,

=
1

mNB

m∑
i=1

∑
b∈B\Bi

δq(b)
p +

1

m

∑
b∈B

δq(b)
p,

=
(
m− 1

m

)∑
b∈B

δq(b)
p +

1

m

∑
b∈B

δq(b)
p,

=
∑
b∈B

δq(b)
p.

Thus, IGD
p,q (A) < IGD

p,q (B) as expected.

The behavior of I∆
p,q is more delicate due to

the definition of ∆p,q, but for disjoint subsets not
intersecting Y ∗ similar arguments can be employed.
We remark also that condition 3 is only needed
to ensure an strict inequality in the conclusion.
We would have obtained IGD

p,q (B)p 6 IGD
p,q (B)p

by removing condition 3 and weakening 4 to the
condition:

4’. ∀a ∈ A, ∀b ∈ B: a � b =⇒ δq(a) 6 δq(b).
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4 Numerical Experiments

4.1 Working with ∆p,q

In this section we consider a hypothetical Pareto
front P given by the line segment from (0, 1) to (1, 0)
in R2, i.e. the set of all points:

(t, 1− t) ∈ R2 for 0 6 t 6 1.

This is the same example considered in [13, p. 506],
and enables us to make a comparison with values
of ∆p. In order to use the (p, q)-averaged distance,
we discretize P ′, by taking 11 uniformly distributed
points over P . We assume two archives: X1 is
obtained from P ′ by changing (0, 1) for (0, 10),
including an outlier, and adding 1

10 to the remaining
ordinates. X2 is obtained from P ′ by adding 5 to
each ordinate. See Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Fig. 1. A hypothetical Pareto front discretization P ′ (black
circles) and two different archives: X1 (blue dots) and X2

(orange squares)

From [13], we know that:

∆∞(A,B) := lim
p→∞

∆p(A,B)

coincides with the standard Hausdorff distance dH .
In this case:

∆1(P ′,X1) = 0.9091, ∆1(P ′,X2) = 4.5412,

dH(P ′,X1) = 9, dH(P ′,X2) = 5;

according to Corollary 3.8 and [13, p. 512], these
values must increase as p increases.

Tables 1 and 2 show that we can find values
of p and q such that the (p, q)-averaged distance
does not punish heavily the outliers, for example
p = q = 1 or p = 1 and q = −1. We remark that the
values of ∆p,q(P

′,X1) do not present a significative
change under variations of q 6 1 for a fixed p.

Thus it is possible to work with q = 1, in which
case ∆p,q is a metric according to Corollary 3.4,
and still obtain values close to the ones given by
the inframetric ∆p, with the same p > 1.

For large values of p the behavior of ∆p,q present
the same disadvantages of ∆p or of the standard
Hausdorff distance. For example, in Table 1 it
can be observed that all distances for p > 5 are
useless because they imply that the distance from
the discrete Pareto front P ′ to the archive X1 is
larger than its distance to the archive X2.

Figure 1 suggests that this is an undesirable
outcome.

Table 1. ∆p,q(P ′,X1) for different values of p and q

HHHHq
p

1 2 5 10 20

−∞ 0.9091 2.7153 5.5714 7.0811 7.9831
−100 0.9272 2.7701 5.6839 7.2241 8.1443
−20 0.9537 2.8367 5.8202 7.3974 8.3396
−5 0.9895 2.8624 5.8705 7.4613 8.4117
−1 1.1131 2.8782 5.8848 7.4795 8.4322
1 1.3243 2.9112 5.8920 7.4886 8.4425
2 2.9277 2.9295 5.8956 7.4932 8.4476
5 5.8920 5.8956 5.9063 7.5068 8.4630
10 7.4886 7.4932 7.5068 7.5292 8.4882

Table 2. ∆p,q(P ′,X2) for different values of p and q

HH
HHq
p

1 2 5 10 20

−∞ 4.5412 4.5497 4.5751 4.6160 4.6867
−100 4.6442 4.6529 4.6790 4.7209 4.7933
−20 4.8425 4.8518 4.8795 4.9239 5.0003
−5 4.9624 4.9720 5.0007 5.0465 5.1250
−1 5.0008 5.0105 5.0394 5.0856 5.1646
1 5.0203 5.0301 5.0591 5.1055 5.1848
2 5.0301 5.0398 5.0690 5.1154 5.1949
5 5.0591 5.0690 5.0983 5.1450 5.2248
10 5.1055 5.1154 5.1450 5.1921 5.2725
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 0.078161 0.631198
0.628327 0.079225

∆1,−1(A,P1) = 0.284588

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 0.035432 0.741545
0.293920 0.293920
0.741526 0.035361

∆1,−1(A,P1) = 0.249429

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 0.003083 0.921541
0.027631 0.766555
0.076121 0.617317
0.147360 0.477502
0.239594 0.350552
0.350552 0.239595
0.477502 0.147360
0.617317 0.076121
0.766555 0.027631
0.921541 0.003083

∆1,−1(A,P1) = 0.179112

Fig. 2. Optimal ∆1,−1 archives A for the connected
Pareto front P1 given by (4.1) with 2, 3, and 10 elements
(blue circles). Each figure includes the respective archive
coordinates and the ∆1,−1 distance

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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1.0 ∆1,−1(A,P1) = 0.149745

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 ∆1,−1(A,P1) = 0.138330

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 ∆1,−1(A,P1) = 0.129002

Fig. 3. Optimal ∆1,−1 archives A for the connected
Pareto front P1 given by (4.1) with 20, 30, and 40 elements
(blue circles). Each figure includes the respective ∆1,−1

distance
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.921842 0.368871
0.371485 0.920851

∆1,−1(A,P1) = 0.286536

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.966393 0.247380
0.708284 0.702164
0.248504 0.966059

∆1,−1(A,P1) = 0.247348

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.996918 0.078459
0.972370 0.233445
0.923880 0.382684
0.852639 0.522498
0.760405 0.649448
0.649448 0.760405
0.522498 0.852639
0.382683 0.923879
0.233445 0.972370
0.078459 0.996917

∆1,−1(A,P1) = 0.174482

Fig. 4. Optimal ∆1,−1 archives A for the connected
Pareto front P2 given by (4.1) with 2, 3, and 10 elements
(blue circles). Each figure includes the respective archive
coordinates and the ∆1,−1 distance
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1.0 ∆1,−1(A,P1) = 0.149339
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1.0 ∆1,−1(A,P1) = 0.137245

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6
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1.0 ∆1,−1(A,P1) = 0.130142

Fig. 5. Optimal ∆1,−1 archives A for the connected
Pareto front P2 given by (4.1) with 20, 30, and 40 elements
(blue circles). Each figure includes the respective ∆1,−1

distance
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1.0 q = 1
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1.0 q = 1
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1.0 q = − 1
2

Fig. 6. Optimal ∆1,q five point set archives A for the
connected Pareto front P1 given by (4.1) with p = 1 and
different values of q
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∆1,−1(A,P

(5, 1
10 )

3 ) = 0.160658
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∆1,−1(A,P

(5, 1
10 )

3 ) = 0.131550
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∆1,−1(A,P

(5, 1
10 )

3 ) = 0.111132

Fig. 7. Numerical optimal ∆1,−1 archive A for the
disconnect step Pareto front P (5)

3 given by (4.2) with 5,
10, and 20 elements. Each figure includes the respective
∆1,−1 distance
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Table 3. Percentage of the triangle inequality violations
for different values of p and q. Here we randomly chose 80
sets, each one containing 2 points in [0, 10]2, and verified
the triangle inequality for all possible set permutations
(that is 492960)

HHHHq
p

1 2 5 10

−1 0.05396 0 0 0
−2 0.10265 0.00041 0 0
−5 0.28815 0.01217 0 0
−10 0.35622 0.05031 0.00041 0
−20 0.43046 0.08439 0.00446 0.00041

Table 4. The same as Table 3 but with sets containing 3
points in [0, 10]2

HH
HHq
p

1 2 5 10

−1 0.00446 0 0 0
−2 0.02881 0 0 0
−5 0.15660 0.01379 0 0
−10 0.30388 0.05558 0.00609 0.00122
−20 0.40774 0.09250 0.01461 0.00609

Tables 3 and 4 show that ∆p,q is close to a metric
when q 6 −1 and p > 1. The percentage of
the triangle inequality violations decreases as p
increases or q decreases. Comparing both tables
we can see, also, that this percentage decreases
as the size of the sets increases.

4.2 Optimal Archives for Spherical Pareto
Fronts

We now consider two standard Pareto sets: The
convex and concave quarter-circle, see Figures 2,
3, 4, and 5.

P1 =
{

(cos θ + 1, sin θ + 1): − π 6 θ 6 −π
2

}
,

P2 =
{

(cos θ, sin θ) : 0 6 θ 6
π

2

}
. (4.1)

To numerically find the optimal ∆p,q archive of
size M , we discretized the Pareto front with
1000 equidistant points (which is an acceptable
discretization according to [12, p. 603]) and
randomly choose an initial M -sized archive. Then
we used a random-walk evolutionary algorithm
moving one point at a time. Finally we refine
the optimal archive with the “evenly spaced”
construction suggested by [12, p. 607].

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

−→ p = 10
−→ p = 5

−→ p = 1
−→ p = −1

Fig. 8. Optimal ∆p,−1 one point archives A for the
connected Pareto front P1 given by (4.1) with q = −1
and different values of p. In all cases, the archives are
located in the line x = y

When finding optimal ∆p,q archives, our
numerical experiments suggest a clear geometrical
influence of the parameters p and q. When p > −1
increases the optimal archive moves away from
the Pareto set (see Figure 8). For values of p in
(−∞,−1) the optimal archive sets are basically the
same. When q ∈ [−1, 1] increases the optimal
archive tends to lose dispersion, converging to
one point. When q > 1 the optimal archive
collapses to one point and when q ∈ (−∞,−1] the
corresponding optimal archives are basically the
same (see Figure 6).

4.3 Optimal Archives for Disconnected Pareto
Sets

In this section we present the optimal ∆p,q archives
for a disconnected step Pareto front:

P
(s,γ)
3 =

{(
t, 1−γt+(γ−1)

bstc
s

)
: 0 6 t 6 1

}
, (4.2)

where s is the number of steps, γ > 0 is a small
constant responsible for the step’s twist, and b·c
stands for the integer part function.

Figure 7 show numerical optimal ∆1,−1 archives
of sizes 5, 10, and 20, respectively. In each case
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(as in the previous section), the archive coordinates
reveal that:

A ∩ P (5, 1
10 )

3 = ∅,

i.e., the optimal archive points do not lie over the
Pareto front but they are so close to it that this is
hardly noticeable. It is also evident that the archives
are evenly distributed along the Pareto front.

5 Conclusions

1. The indicator ∆p,q generalizes the well-known
averaged Hausdorff distance ∆p (see (1.1)
and (3.2)), it is still related with the standard
Hausdorff distance (see (1.2)), and admits an
expression in terms of the matrix `p,q-norm
‖DAB‖p,q (see (3.3)).

2. For arbitrary values of p, q ∈ R, the indicator
∆p,q is an inframetric on the space of finite
subsets of Rn, and when p, q ∈ [1,∞) it is a
proper metric (see Corollary 3.4). With a proper
metric the principle “the distance between two
objects is the length of the shortest path joining
them” is satisfied, thus, working with a metric
has the advantage of avoiding unpleasant
geometrical phenomena like the one shown
in Figure 1.

3. For p, q ∈ R the GDp,q and ∆p,q-performance
indicators are compliant with an optimality
associated to the dominance relations derived
from the conditions in Theorem 3.9.

4. The parameters p and q play geometrical roles
in the ∆p,q-optimal archive finding process,
i.e., when p increases the optimal archive
moves away from the Pareto set (see Figure
8) and when q increases, the optimal archive
loses dispersion (see Figure 6). Thus the
(p, q)-averaged distance can be calibrated to
fulfill a large variety of optimization objectives.

5. Comparing our solutions with the optimal ∆1

archives shown in [13], we conclude that they
are very close and the procedure to calculate
∆p,q is no harder than the one used for ∆p,
both analytically or numerically.

6 Future Work

1. Suppose that p, q ∈ [1,∞) are fixed. Given a
Pareto front and an arbitrary archive, it would
be useful to establish a procedure to find a
shortest or best “path” of configurations joining
the given archive with the optimal one. In
principle, this is possible when we are working
with a proper metric.

2. Section 3 shows that the metricity of ∆p,q is a
consequence of the properties of power means
for appropriate values of p and q. This indicates
viable ways in which one would be able to
modify or generalize this indicator preserving
its behavior.

3. A deeper study of the Pareto-type compliance
of the GDp,q and ∆p,q-indicators is desirable to
better assess their characteristics and possible
drawbacks. This is also very important for
applications.

4. The details of the extension of GDp,q and ∆p,q

to continuous sets and their properties are
part of ongoing research and will appear in
forthcoming publications (see [4]).
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