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Abstract. Maritime transport carries out most of
the world’s commercial activities. One of the
elements most used for maritime transportation is the
container. Before being transported, operators stack
containers in a container terminal, also called containers
yard. The container terminals demand multiple and
complex stacking operations daily. Therefore, the
scientific community has paid attention to the container
stacking operations in the yard area. In this work,
we compare the performance of two methods, the
integer linear programming method and a metaheuristic
method as solutions to the problem of optimizing
the storage space allocation to imported containers
regarding the optimization value and the computational
time. We model this optimization problem as a
generalized assignment problem. Finally, we present
the mathematical formulations, their solutions, and our
experiments; resulting in a mixed solution of both
methods, depending on the size of the containers
terminal.

Keywords. Containers yard management, contai-
ners yard operation, generalized assignment problem,
storage space allocation problem.

1 Introduction

A research topic receiving increasing attention
from the academia and business logistics sector
is the efficient management of a containers yard.
A containers yard stores import, export, and

transshipment containers. First, import containers
arrive in groups to a yard from a ship, train, or truck.
These containers must remain in the yard until they
are requested by their customers. Second, the
containers export flow is inverse to the import flow.
The customers of the containers bring them to the
yard and expect to be returned full or empty to their
owners on ships or trains. Third, the transshipment
containers come from a vessel, pass throught the
yard, but they are loaded to other vessels.

To carry out container stacking operations in a
yard, several resources are used daily, vehicles,
cranes, and the storage space [22]. The
storage space remains unchanged in most of
the containers yards, even though the number of
containers received grows. When the containers
arrive at the yard, they are stacked in multi-level
stacks to save storage space using yard cranes.

The yard cranes can only access to the
containers on top of the stacks. Accessing to
intermediate containers of the stacks provokes
reshuffles.

Reshuffles are undesirable for customers and
operators because they provoke cranes deteriora-
tion, slowness in container download operations
and fuel consumption. Minimizing the reshuffles
has become the objective of several academic
research [2, 9, 21, 19, 16].
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Several authors have reported solutions to the
Storage Space Allocation Problem (SSAP) [10, 1,
19, 20, 5, 14, 21, 2]. Authors have used different
exact and heuristic methods. The solutions they
have provided differ according to the mathematical
modeling. The researchers have proposed the
objective function, constraints, and assumptions
according to the physical characteristics and
priorities of the containers yard. This study
compares two methods and three solutions to the
SSAP for import containers in a real containers
yard in Cuba. The first two solutions optimize the
SSAP by exact methods; the last solutions solves
it by the metaheuristic Genetic Algorithms (GA).
The heuristic methods have been applied to others
container terminals optimization problems such
as Bin Packing Problem [17], Blocks Relocation
Problem [8], etc.

In this work, we use free and open source
code Linear Programming (LP) Solvers for exact
solutions. Besides, we use a free and open
source code evolutionary computation framework
for metaheuristic solution.

The main contributions of this paper are as
follows:

— The mathematical modeling and the com-
parison between the performance of two
exact methods optimizing of the SSAP as
a generalized assignment problem for a
containers yard in Cuba.

— The modeling of the SSAP using GA and the
parameter tuning for each dataset.

— The selection of the exact method with the
best performance regarding the computational
time.

— The selection of the best optimization methods
by terminals configurations regarding the
number of reshuffles and computational time.

The remainder of this paper is organized as follows.
Section 2 describes a brief introduction to the
SSAP. Section 3 presents related work. Section
4 addresses the mathematical formulation of the
optimization problem. We present in Section 5
the SSAP solution by exact methods and the
experimental analysis for several instances; we

also analyze if the SSAP for import containers can
be solved, in acceptable computational time for the
operations of a real containers yard, using an exact
optimization method. Section 6 presents the GA
implementation for SSAP. We discuss in Section
7 the exact and metaheuristic solutions results.
Finally, we show the conclusions and future work.

2 Problem Description

The SSAP is about finding the best allocation for
containers in a yard. An optimal allocation is one
that reduces the yard’s operational time of store,
retrieve, and reshuffle containers.

Figure 1 depicts a containers yard where each
block is composed by a group of rows, tiers, and
bays. The intersection of a specific row and bay
of a block indicates a stack in a two-dimensional
schema, in contrast to the traditional schema
with three dimensions row, tier, and bay. The
three-dimensional schema allows us to represent
the specific position or slot of a container within
a block of the yard from the intersection of a
row, tier, and bay coordinates. Nevertheless, a
two-dimensional schema decreases the problem
complexity for an optimized computational solution.

The objective of a container storage space allo-
cation strategy depends on the type of container
and the information available on it. Therefore,
the studies that analyze this optimization problem
usually specify these aspects. The import
containers are usually downloaded from ships or
trains in large groups and retrieved by individual
customers in small numbers. The departure date
from the yard is usually unknown.

The export containers flow is different to the
import containers flow because the arrival date
is often unknown, but its departure date is
relatively fixed. The loading sequence of the
export containers depends on the weight of each
container, among other information [3].

Strategies for storage space allocation develop
solutions for individual containers or groups
of containers. The storage space allocation
for individual containers is about assigning the
containers to yard blocks and assigning them
specific positions within the selected block. The
second strategy deals with assigning groups of
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Fig. 1. Schema with the containers yard coordinates

containers to storage locations, where the groups
could be on their target vessel, owner, destiny,
among other features. Authors Bazzazi et al. [1]
explained that the SSAP can be formulated as
a generalized assignment problem. They also
explained that the SSAP belongs to the category
of NP-Hard problems.

In this paper, we model SSAP as a generalized
assignment problem for import container, and we
assign individual positions to each container within
a specific block. We have an input container arrival
sequence (c1, c2, ..., cn), where each container cn
has a known arrival and departure date. We know
the cost of assign every container to each position.
The outputs of the optimization method are the
positions for each container (s, t, c), where s is the
stack, t is the tier in this stack, and c is the container
in this stack and tier.

3 Related Work

The authors Kim and Kim published one of the
pioneer papers dealing with import containers in
1999 [9]. In this paper, the authors proposed a
segregation strategy to store containers. Their
strategy allocates storage spaces for each newly
arriving container in a vessel and prohibits to mix
container discharged from different vessels. Their
goal was to minimize the number of expected
reshuffles when delivering the containers, but
they did not optimize efficient exploitation of the
storage yard.

The authors Kim and Kim [10] presented a
mathematical model to obtain the optimal container

stacking plan in a terminal where there is a limited
free storage time for import containers. The
containers which stay too long time in the yard have
to pay storage costs. The goal of this work is “to
minimize the number of reshuffles by minimizing
the dwell times of containers.”

In [19] the authors Saurı́ and Martı́n proposed
three strategies to determine minimum reshuffles
in an import container terminal by a probabilistic
based mathematical model. The authors found
out that the optimal strategy depends on the
stacking height and the relationship between
vessel headway and container dwell time.

Several cases have been proposed using GA,
among them in [15, 11, 1, 20, 14, 21]. The
authors Park and Seo in the article [15] solved the
planar storage location assignment problem, which
consists in to store import and export containers
by minimizing the number of obstructive object
movements or reshuffles. The authors proposed
a mathematical model and a GA to solve the
problem.

The authors Kozan and Preston in [11] proposed
an iterative search algorithm that includes a
transfer model and an assignment model. The
algorithm cyclically determines the optimal storage
locations for import and export containers. They
also proposed a GA, a tabu search algorithm, and
a hybridization of these two algorithms.

The authors Bazzazi and Javadian in [1]
proposed a GA to solve the SSAP by considering
container types like regular, empty, refrigerated,
dangerous, etc. Their optimization objective was to
balance the workloads between blocks to minimize
the time required to store or to retrieve containers.

Authors Park et al. [16] proposed a two-step
algorithm. The algorithm dynamically allocates
stacking positions to containers in an automated
container terminal. They decided the best block
for an incoming container in the first step, and in
the second step, they selected the proper stacking
position of an import container within a block.

Sriphrabu et al. [20] solved a simulation
model for stacking containers applying a GA. They
minimize the total lifting time and increased service
efficiency of the container terminals. They showed
the suitable containers location assignment based
on the arrival of containers at a container terminal.
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Furthermore, they correlated it with the order of the
containers loaded onto container ships.

Ndiaye et al. [14] proposed a linear mat-
hematical model which assigned an accurate
storage location to every import containers. They
considered a container terminal which uses
straddle carriers (SCs) as transfer and handling
equipment and aimed to minimize simultaneously
the number of reshuffles and the total distance
traveled by the SCs between the quays and the
storage yard. The authors proposed an ant colony
algorithm, a bee algorithm, and two hybridizations
for numerical resolution.

Authors Yang et al. in [21] presented
the container Stacking Position Determination
Problem (SPDP) under the mode of loading
and unloading operations. They solved the
SPDP by a multi-objective programming model.
The objective combines the maximization of the
container circulation moreover, the minimization of
unbalance workloads. Then, they developed a GA
to solve the problem.

Boysen and Emde in [2] formalized the parallel
stack loading problem (PSLP). In this kind of
decision problem, a given stream of items is
successively stored in multiple parallel stacks
with limited capacity, such that blockages. The
blockages are, for example, items with lower
priority stacked on top of items with departure date
early. In this work, the blockages are minimized.
The authors showed the PSLP computational
complexity and presented an exact and heuristic
solution.

Although there are several solutions for SSAP,
none of the mathematical models fit the real
containers yard analyzed in this paper. The
schema of the real yard under modeling is
in Figure 2. The existing solutions are for
containers yards with larger dimensions, different
types of equipment, flow, and objective to be
optimized. In the containers real Cuban yard, the
operators employ a reachstacker crane for stacking
operations.

For this type of equipment, in the physical
conditions of the containers yard is difficult to
access the first row of containers in the yard
due to the existence of a fence. To access
to this row of containers, the operator must

perform unproductive movements in the second
row. However, the slots in the first row should
continue in use, to avoid the wasting of storage
space. These characteristics of the containers yard
demand a new solution, which takes into account
these requirements.

Fig. 2. Diagram of the real containers yard analyzed in
our work. Currently, the containers yard has six rows with
three access vials, and three tiers by stack. The number
of stacks by rows varies depending on the sizes of the
containers

4 Mathematical Programming
Formulation

In this section, we present a 0-1 integer linear
programming formulation to solve SSAP to import
container flow. We highlight our assumptions
before the description of the mathematical model.

4.1 Assumptions

We suppose that:

— We know the date of departure, the size,
the customer, and the destination of each
container.

— The size of the containers can be 20 or 40 feet.

— We take into account the containers already
stored in the yard.

— We assign containers to slots according to the
dimensions of each one.
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— We consider a multi-modal container terminal,
which means that an import container can
arrive at the yard by train or truck and to leave
by truck.

— The yard is organized in rows, where each row
contains several stacks and these are formed
by tiers.

— The intersection of a specific stack and tier is
considered a slot.

— We consider a small container terminal;
containers are stacked and transported by one
reachstacker.

— The reachstacker cannot access directly to the
first row of the yard because it is next to a
fence. The reachstacker to stack a container
in the first row, usually perform unproductive
moves in the second row.

4.2 Indices and Parameters

Indices
s : stack.
t: tier.
c: container.

Parameters
Ns: The total number of stacks in the yard.
T : The total number of tiers in every stack.
Nc: The total number of import containers to

stack.
Ss: Size of stacks s.
Tc: Departure date of arrival container c.
Sc: Size of the container c.
Cc

s,t: Cost of assign the position s, t to container
c.

Initposts:

{
1 if stack s and tier t is occupied.

0 otherwise

M : A big integer.

Decision Variable

Xc
s,t:

{
1 if location s, t is allocates container c

0 otherwise

4.3 Mathematical Model

The objective function is to minimize the value of
Z represented by the mathematical expression in
(1). The objective function minimizes the number
of expected reshuffles of the reachstacker when
unloading the containers. We use a cost matrix
Cc

s,t as a parameter of the objective function. The
cost matrix contains the cost of stacking each
new container of the input sequence (c1, c2, ..., cn)
to each position on the yard (s, t). Positions
previously assigned to another container are not
available and receive a very high cost (M ) in the
matrix.

The positions at first row of the yard are
difficult to access the reachstacker. Therefore,
corresponding values to the first row in the cost
matrix have an initial cost of five. For the remaining
positions in the yard, the cost is ten for each
reshuffle generated, or zero if there is not any
reshuffle. Hence, the cost of a reshuffle in row
one is higher than another position of the yard.
However, a container assigned to a position in
the first row but without generating reshuffles has
a cost of five, lower than another position which
generates a reshuffle. In this case, it will always
be preferable to stack it on row one. This decision
responds to the need to efficiently use the yard’s
space, even though what it is desirable to minimize
the number of unproductive movements of the
reachstacker:

min
Z

Ns∑
s=1

T∑
t=1

Nc∑
c=1

Cc
s,tX

c
s,t. (1)

The model is subject to:

Nc∑
c=1

Xc
s,t ≤ 1, ∀s, t, (2)

Ns∑
s=1

T∑
t=1

Xc
s,t = 1,∀, c, (3)

Ns∑
s=1

T∑
t=1

Xc
s,t ≥

Ns∑
s=1

T∑
t=1

Xc
s,t+1,∀, c, (4)

Ns∑
s=1

T∑
t=1

Xc
s,t + Initposts ≤ 1,∀c, (5)

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 197–211
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2916

Solutions To Storage Spaces Allocation Problem for Import Containers by Exact and Heuristic Methods 201



Ns∑
s=1

T∑
t=1

Nc∑
c=1

Xc
s,tSc =

Ns∑
s=1

T∑
t=1

Nc∑
c=1

Xc
s,tSs, (6)

Ns∑
s=1

T∑
t=1

Xc
s,tTc ≥

Ns∑
s=1

T∑
t=1

Xc
s,t+1Tc,∀c. (7)

Constraints in the mathematical expression (2)
state that each position can storage at most one
container. Constraints in expression (3) state
that each container must be assigned exactly
to one position. Constraints in expression (4)
state that the containers should be not in the air,
which means that a container should be allocated
over another container and not over an empty
slot. Constraints in expression (5) state that no
container must be assigned to an occupied position
in the yard. Constraints in expression (6) state
that all containers have to be assigned to a stack
of the same size. Finally, the last constraints
in expression (7) state that the arrival containers
should be ordered descending by their departure
dates.

The first three sets of constraints (2), (3), and
(4) are also posed by the authors Park and
Seo [15, 14]. In addition Ndiaye et al. [14]
defined constraints similar to our constraints in
expression (5). They also assumed that the yard
has occupied positions before the new containers
arrive, in their mathematical modeling. Authors
Ndiaye et al. [14], and Bazzazi et al. [1] also
defined constraints similar to our constraints in
expression (6). Usually, these constraints depend
on the policies established by the containers yard
operators. Finally, the sixth constraints have been
used by Ndiaye et al. in [14]. However, the
objective function present by Ndiaye et al. [14]
differs from the objective function of the present
study, among other aspects of its mathematical
modeling.

5 Exact Solution and Computational
Experiments

We write the SSAP in GNU Math-Prog language.
The hardware setup includes an Intel Core

i7-3520M, processor at 2.90 GHz and 8GB of
RAM.

We collect the data from the yard operations
for the last four years and organize them into
four datasets, to validate the efficiency of the
optimization method. Every instance in the dataset
represents a container to stack in the yard with
their respective date of arrival, size, customer,
destination, and departure date.

Since the optimization method used gives an
exact solution in all cases where it exists, it is
needless to evaluate the accuracy of the solution.
In contrast, we measure the efficiency of the
optimization method regarding its computational
time.

When the containers arrive at the yard, they are
downloaded to the platform. This operation takes
one hour for 25 containers. For this reason, we
assume that the solver should solve the model in
less than 3600 seconds. Initially, the containers
yard is:

— Empty.

— Partially filled with some empty slots higher
than the number of containers to stack.

— Partially filled with some empty slots less than
the number of containers to stack.

— Full.

The two initial configurations generate valid
solutions. However, for the last two configurations,
there is no solution in this work. The decision to
make when any of the last two situations occur will
be addressed in further work.

We divide the data into four datasets to create
four cases of study:

— Dataset 1. It contains instances describing
the current conditions of the storage yard,
45 stacks and 3 tier height in each one. It
only varies from one instance to another the
number of containers to stack, the number
of stacks in the first row and the initial yard
configuration. The initial yard configuration
represents the occupied and empty positions
in the yard.
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— Dataset 2. It contains instances that describe
a further situation in which the storage area
of the containers expands, increasing the
number of stacks to 90 stacks and the same
number of tiers of the dataset 1.

— Dataset 3. It contains instances of the further
variant in which the tiers of the stacks are
increased up to 4 and 5 levels, and the number
of stacks is 45 same dataset 1.

— Dataset 4. It contains instances of the further
variant in which the yard policies on the tiers
increased up to 4 and 5 levels, and the number
of stacks increases to 90 same dataset 2.

We represent the instances in each of the datasets
as a 5-element tuple. These elements are:

1. Initial yard configuration,

2. Number of stacks in the first row,

3. Size of each stack,

4. Containers already stacked in the yard,

5. Containers to stack.

Table 1 shows two examples of instances of
the structure of the dataset. The initial-yard-
configuration is a list of stacks. The value 1
indicates an occupied slot while 0 an empty slot.
By knowing the number of stacks in the first row, we
penalize the assignment of containers to this row
where is difficult the access of the reachstacker.

The stack-size is a list of two possible
values 20 or 40, allowing 20-feet or 40-feet
containers. The stacked-container is a list similar
to the initial configuration, but for the occupied
positions has the departure date of the container.
The containers-to-be-stacked is a container list
with a 4-elements tuple [Size, Departure Date,
Client, Destiny]. The last two elements of the
containers-to-be-stacked are needless in this work.
However, they are needed for further work.

Table 2 presents a description of the instances
by datasets. Each cell contains the number of
containers stacked in the yard, the number of
stacks in the first row, and the number of containers
to stack. An asterisk next to the number of stacks in

the first row indicates occupied slots. If the number
of stacked containers is 0, then the containers
yard is initially empty (e.g., first instances of all
datasets). Also, there are instances with an
equal number of stacked containers, containers to
stack, and stacks in the first row. However, these
instances differ in the initial configuration of the
yard (e.g., instances four and five of the dataset
one).

5.1 Solver Selection

We experiment with two free and open source
solvers for linear mixed-integer programming:

1. GLPK1 solver version 4.64.

2. lpSolve2 solver version 5.5.2.5.

The programming language used to develop GLPK
and LPSolve is ANSI C. Also, both accept files
in MPS, GNU MathProg, and CPLEX LP format.
GLPK uses the Dual and Primal Revised Simplex
and Interior Point methods for linear problems.
Additionally, uses Branch and Cut method for
mixed-integer linear programming problems, which
is a hybrid of Branch and Bound and cutting plane
methods. lpSolve uses Dual and Primal Revised
Simplex method for linear optimization problems
like GLPK, but for mixed-integer programming uses
the Branch and Bound method.

In our experiments, lpSolve takes a long time
to solve 22 instances of all dataset (See Figure
4). Therefore, we consider that lpSolve solver
computational time unacceptable for current yard
conditions or further situations.

Figure 5 shows the computational times for the
instances of the four datasets with the GLPK
solver. For the instances that represent the
current conditions of the yard (dataset 1) the
computational times do not exceed one second,
which is considered acceptable (See Figure 5a).

For the further conditions of the yard, represen-
ted in dataset 2, the longest time is approximately
four seconds corresponding to the first instance
(See Figure 5b). Computational times for instances
of the dataset 3 do not exceed three seconds, in

1http://www.gnu.org/software/glpk/
2lpsolve.sourceforge.net
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Table 1. Example instances of the structure of the dataset for import containers SSAP

Container 1 Container 2

Initial Config [110][100][111][000] [111][000][111][000]

Stack # First row 2 2

Stack size [20,20,40,20] [20,40,40,20]

Stacked containers [ [15/2/17, 18/2/17,0]
[1/1/17,0,] [1/1/17, 15/1/17,

18/1/17] [0,0,0] ]

[[15/2/17,18/2/17,1/1/17][0,0,0]
[1/1/17,15/1/17,18/1/17] [0,0,0]]

Containers to stack [[Size,Departure,Clie, Dest],
[Size,Departure,Clie, Dest]

[...]]

[[Size,Departure,Clie, Dest],
[Size,Departure,Clie, Dest]

[...]]

Table 2. Description of the instances by datasets [Stacked containers#, Stack#First row, Containers to stack #]

Instance Dataset 1 Dataset 2 Dataset 3 Dataset 4

1 [0,5,135] [0,15,270] [0,10,180] 0,15,360

2 [60,5*,45] [0,15,200] [0,10,225] 50,15*,180

3 [54,5,50] [50,15,200] [0,10,100] 0,15,450

4 [25,5,100] [50, 15*,200] [0,10,200] 50,15*,300

5 [25,5*,100] [100,15*,170] [100,10,60] 72,15,150

6 [0,5,50] [100,15*,150] [100,10*,60] 100,15*,150

7 [0,5,100] [100,15*,150] [140,10,50] 50,15,300

8 [30,10*,100] [100,15*,150] [140,10*,50] 50,15,200

9 [30,12*,100] [170,15*,60] [140,10*,25] 100, 15*,240

10 [51,10*,75] [170,15*,60] [100,10, 35] 100,15*,300

contrast to the four and six instances that exceed
the acceptable computational time. However, the
computational times for the instances of dataset
4 are higher (See Figure 5d). In this dataset,
GLPK needs more than 3600 seconds to solve
the model represented in four instances. We
consider acceptable the computational time of the
optimization method with the GLPK solver for the
two first dataset. Nevertheless, the third and fourth
dataset computational time is unacceptable.

Figure 3 summarizes the results of the
computational times of the GLPK solver for
the 40 instances. The computational time

grows according to the yard dimensions. As
a consequence, we conclude that the proposed
optimization method solved with the GLPK is
acceptable for the current conditions of the yard
moreover, for further conditions described in
dataset 2. Hence, we select the GLPK to
solve the SSAP for the real Cuban yard. Our
selection responds to four reasons. First, the GLPK
solves the SSAP in an acceptable computational
time according to our experiments. Second,
GLPK is one of the most popular free and open
source solver [12]. Third, it is available for
the different operating system. Fourth, GLPK
solves optimization problems without dimensional
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restriction. However, the proposed solution is
impractical for the configuration described in the
dataset 3 and 4. Therefore, it is necessary to
analyze other optimization methods that perform
the stacking with a cost close to the optimum but in
a shorter computational time. In the next section,
we analyze a solution with GA metaheuristic.

Fig. 3. Graph of the computational times employed by
the GLPK solver to optimize all instances of all datasets

Fig. 4. Graph of the computational times employed by
the lpSolve solver to optimize all instances of all datasets

6 Genetic Algorithm Implementation

Genetic algorithms are search methods inspired by
the natural selection [7]. In the GA, unlike the exact
methods, the decision variables of the problem
are encoded as an individual, which represents a
candidate solution, also known as a chromosome
in genetic terms. A fitness function compares
chromosomes regarding their profits, similar to the

objective function for exact methods. In GA, the
term population is a set of candidate solutions
or chromosomes. Unlike the exact methods,
which find the optimal solution to an optimization
problem even with high computational time, GA
find solutions close to the optimum (suboptimal
solutions) however, with lower computational time.
Therefore, we implement a GA in order to find
suboptimal solutions to the SSAP for the instances
of datasets 3 and 4 with acceptable computational
time.

GA follows the following steps to search
suboptimal solutions [6]:

1. Initialization,

2. Evaluation,

3. Selection,

4. Crossover,

5. Mutation,

6. Replacement.

Next, we describe our representation of the
SSAP and the solution with a GA. We present the
genetic operators and the parameters with the best
performance for each dataset. Additionally, we
show the computational time for each dataset.

6.1 Chromosome Representation

To represent the chromosome for the SSAP, we
use the number of containers to be stacked and
the number of available positions in the containers
yard.

Figure 6 shows the representation of the
chromosome obtained as the suboptimal solution,
for instance nine of dataset three. The position
index in the chromosome corresponds to the index
obtained by sorting the available positions in the
containers yard, which is not the position in the
containers yard. The length of the chromosome
is determined by the number of containers to be
stacked.

For example, a chromosome with length 25
corresponds to 25 containers to be stacked. The
possible values assigned to each gene of the
chromosome are the available positions in the
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(a) (b)

(c) (d)

Fig. 5. Graph of the Computational Times Employed by the GLPK Solver to Optimize the SSAP problem. a) Graph
for instances of the dataset 1 corresponding to the current conditions of the containers yard. b) Graph for instances
of the dataset 2 corresponding to further conditions of the containers yard. b) Graph for instances of the dataset 3
corresponding to further conditions of the containers yard. b) Graph for instances of the dataset 4 corresponding to
further conditions of the containers yard

containers yard sorted as we previously described.
For example, for the chromosome in Figure 6, each
gene could take a value between one and 85,
because there are 85 available positions.

With this representation of the chromosome, we
do not need the constraints (2), (5), and (7) of the
mathematical model. The number of containers
determines the length of the chromosome.
Therefore, there is always one container by
position, and there are not two containers assigned
to the same position. However, it is possible to
obtain a chromosome with a container assigned to
two positions. Hence, we include the constraint (3).

This representation also guarantees that the
containers are not assigned to positions that are
not available (Constraint (5)).

Fig. 6. Chromosome representation for containers
SSAP. First row indicates the length of the chromosome,
that is the number of containers to be stacked. Second
row represents the assigned available position index. For
example, in first column 1 is the first stacked container....
and 75 is the assigned position by the GA metaheuristic
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6.2 Parent Selection

As selection operator, we use the Roulette Wheel
Selection [13] is chosen 40% of the time, and
Tournament Selection [13] with a size of two
and chosen 60% of the time. Our fitness
function computes the cost of stacking each
container on each of available position. This cost
is measured regarding reshuffles. The fitness
function also includes three constraints 3, 4, and 6
as penalizations. So that, a chromosome is valid as
long as it does not violate any of these constraints.
Moreover, a chromosome is best-performed as
long as it does not violate the constraints and the
cost is small.

6.3 Crossover

In the actual scientific literature many crossover
operators have been designed, for example, by
the authors Raj Singh et al. in [18]. However,
according to our chromosome representation, we
decided to employ the two-point crossover random
crossing operator by Goldberg et. al [6]. Thus,
we avoid a greater repetition of genes in the child
chromosomes, which it conduces to a constraint
violation. Figure 7 shows an example of two
parent chromosomes crossed using the two-point
crossover and forming two new chromosomes.
We use a different crossing probability for each
dataset: for dataset 2 and 3 - 0.2, for dataset 1 -
0.4, and for dataset 4 - 0.45.

As we mentioned before, the datasets respond
to the current physical conditions of the containers
yard (dataset 1) and variants of possible growth
of the containers yard in horizontal and/or vertical
directions (dataset 2, 3, and 4). Therefore,
we adjust the GA parameters for each particular
dataset.

6.4 Mutation

We implement the mutation through an operator
that exchanges two genes of a chromosome (Swap
Mutation) [4]. The chromosomes of the population
are mutate with a certain probability: 0.05 for
all dataset in our research. First, we determine
which chromosomes will mutate using the previous
probability. Second, for the chromosomes that

Fig. 7. Two point crossover example for containers
SSAP

Fig. 8. Mutation operator example for instance of
containers yard

will mutate, we generate two random numbers
in the range between one and the size of the
chromosome. These numbers correspond to two
containers to which we exchange their positions.
For example, Figure 8 shows the mutation between
genes seven and 17 in a chromosome, this means
that the positions of both containers must be
exchanged.

In the new chromosome, container seven
occupies position 51 and container 17 occupies
position 82. This mutation operator allows us to
generate a new chromosome that meets most of
the constraints as the original chromosome. Other
mutation operators, more common, do not achieve
this advantage.

6.5 Numerical Experiments

Our solution, using GA, is implemented in ECJ3 for
all datasets, which is an evolutionary computation
framework written in Java. Similarly, all the
computational experiments are executed on the
same hardware used for the experimentation with
the exact methods. We generate the initial

3http://cs.gmu.edu/eclab/projects/ecj/
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Fig. 9. Graph of the computational times employed by
the ECJ (GA) solving all instances of all datasets

population of candidate solutions randomly across
the search space. The population size for each
dataset was different, to explore a big number of
solutions according to the size of the yard. For
dataset 1 we define 2000 chromosomes, while in
the other datasets, we define 2000, 3000, and
8000 chromosomes. Like the population size, the
number of generations allows generating better
chromosomes, although it can mean an increase
of the computational time [6]. We use between
2000 and 3000 generations for different datasets,
which a big generations number. However,
Figure 9 shows that the computational times
were acceptable for all the instances analyzed.
For cases where more containers are stacked
(instances 8, 9, and 10 of the last dataset)
the computational times did not exceed 1020
seconds achieving suboptimal solutions. In the
next section, we discuss the results obtained from
the implementation of the GA and the exact method
that gave the best results for the SSAP for the
containers yard.

7 Results Discussion

For containers yard operators, it is important to
obtain the container stacking plans in acceptable
computational time for the correct execution of
the operations in the containers yard. Also,
operators need solutions that minimize the number
of reshuffles, for the saving of their resources.

Hence, in this paper, we explore three solutions for
SSAP:

— Solver lpSolve with Branch and Bound
method.

— Solver GLPK with Branch and Cut method.

— GA metaheuristic with ECJ framework.

On the one hand, solutions with the Branch
and Bound method and the solver lpSolve did
not satisfy the computational time for any of the
datasets. Our claim is based on the fact that
a lot of instances of the four datasets exceeded
the acceptable computational time. Nevertheless,
the exact method with the GLPK solver obtained
better results; but, it did not find an optimal solution
in the computational time acceptable for some of
the instances that represent further growths of the
containers yard.

GA metaheuristic with the ECJ framework
allowed us to explore the search space differently.
Therefore, GA found suboptimal solutions for
all instances in acceptable computational time.
Although GA obtained solutions with reshuffles
than exact methods for most of the instances, it
managed to find solutions to all the instances in the
computational time defined as acceptable, 3600
seconds.

Figure 10 shows the computational times for all
instances solved with GA and the exact method
with GLPK solver. GA’s computational times are
lower for most of the instances. When the exact
method with the GLPK solver took longer than
the acceptable time, the GA did find a suboptimal
solution. Is worth to say that, although the GA
achieved better results than the exact method
regarding computational time, its solutions cause
a more number of reshuffles (See Table 3).

Also, when the containers yard is initially empty,
both the GLPK and the GA, find the best solution
with zero reshuffles. From these results, we
conclude that the operators of the containers yard
must use the exact solution for the current situation
and the growth of the containers yard represented
in dataset 2. While for the other conditions studied,
corresponding to other growths of the containers
yard, they must use the metaheuristics GA.
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Table 3. Expected containers reshuffles number all instances with GA metaheuristic and GLPK solver. It has been
marked with 0* those instances where the GLPK did not find the solution in the acceptable computational time and with
an unknown number of reshuffles

Dataset Method
Intance

1 2 3 4 5 6 7 8 9 10

1
GLPK 0 14 9 4 4 0 0 12 12 32

GA 0 20 13 11 15 0 0 17 18 27

2
GLPK 0 0 39 39 80 58 56 56 44 42

GA 0 0 83 73 100 88 91 91 51 50

3
GLPK 0 0 0 0* 44 0* 27 30 30 44

GA 0 0 0 0 76 76 47 57 40 51

4
GLPK 0 0* 0 0 0 0 0 0* 0* 0*

GA 0 25 0 259 97 121 206 80 249 250

Fig. 10. Graph of the computational times employed
by ECJ (GA) and GLPK (Branch and Cut) to compute
all instaces corresponding to each configurations of the
containers yard

8 Conclusion

This paper presented the mathematical model
for the SSAP for an import containers yard.
We modeled the optimization problem as a
generalized assignment problem. Next, we solved
the mathematical model using exact optimization
methods validating it by several experiments
performed on data from an import containers
yard. The instances used in the experiment were
grouped into four datasets according to different
configurations of the containers yard.

From our experiments, we found that the Branch
and Cut method with solver GLPK achieved
better results than the lpSolve, regarding the
computational time. Moreover, we noticed that
the SSAP for the current containers yard could
be solved with a mixed-integer linear programming
method in the acceptable computational time
defined. However, this method was not feasible for
the projected growths of the containers yard.

For the growths of the containers yard, we
explore the metaheuristics GA using the ECJ
framework. We adjust the GA’s main parameters
for each dataset, such as population size,
generations, mutation, and crossover probabilities.
Finally, we found that for the current dimensions of
the containers yard, represented in dataset 1 and
2, GLPK solved them in acceptable computational
time, always finding the optimal solution. However,
for instances 4 and 6 of dataset 3 and instances of
dataset 4, it was the GA who resolved all instances
in acceptable computational time. Therefore
we suggest a mixed solution of both methods,
depending on the size of the containers terminal.

As further work, we propose to analyze the
behavior of these optimization methods adding
some other constraints. For example, stacking
containers with different sizes in the first and
second yard row, grouping containers attending
to their customers and destination, and partial
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fulfillment of the containers yard with some of
empty slots less than the number of containers to
be stacked.
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