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Abstract. It is known that, depending on the numerical
method, the simulation accuracy of a spiking neuron
increases monotonically and that the computational cost
increases in a power-law complexity as the time step
reduces. Moreover, the mechanism responsible for
generating the action potentials also affects the accuracy
and computational cost. However, little attention has
been paid to how the time span and firing rate influence
the simulation. This study describes how the time
span and firing rate variables affect the accuracy,
computational cost, and efficiency. It was found that the
simulation is importantly affected by these two variables.
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1 Introduction

Much research in recent years has focused on
spiking neurons (SNs). They are mathematical
models describing the action potential (AP) in a
membrane patch of biological neurons [40, 54,
21, 39, 22] and are essential for several practical
purposes. For instance, to simulate the generation
of the electrical signals in phenomenological
and detailed brain models [17, 56], to serve
as elemental computational units in the third
generation of artificial neural networks [53, 62], to
fit experimental data from real neurons [42, 67, 19],

and to build neurobiologically inspired hardware
[36, 83].

An SN is defined as a non-linear system of
coupled ordinary differential equations that depend
on time. Due to most are hard to treat analytically,
they must be solved using a numerical method
through a sequence of discrete time instants
[40, 2, 31, 57, 38, 8, 39, 22]. Numerical
methods have an order which has to do with the
number of derivative evaluations to estimate the
slope to extrapolate the solution over the time
instants [26, 10, 12, 24, 20, 25]. Consequently,
higher order methods and small time instants
produce accurate, but computationally expensive
simulations, and vice-versa. Furthermore, the
accuracy and computational cost are the two key
factors to determine whether an SN simulation is
efficient or not [60, 8, 72, 61].

Theoretical studies on numerical methods deal
with error estimation, existence, consistency,
uniqueness, stability, and convergence [26, 57, 10,
20, 25]. Nevertheless, these qualitative studies
do not explicitly determine the precise numerical
method and step size to simulate a particular SN
efficiently. For efficient simulation, we mean the
best balance between accuracy and computational
cost [2, 31, 57, 8]. Quantitative studies try to
decide the precise numerical method and step size
producing an effective simulation [31, 27, 68, 47,
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71, 6, 59, 58, 29, 72, 81]. Finding such simulation
involves comparing a testing simulation against
a reference simulation. Reference simulation
is implemented by the analytic or a numerical
solution. The latter is performed by a high-order
numerical method and a small step and can be
used in any SN. The former is limited to analytically
solvable models.

Not only the simulation efficiency depends on
the numerical method and step size, but also on
the intrinsic properties of SNs. For example, the
Leaky Integrate-and-Fire model (LIF) [46, 73, 44]
introduces a discontinuity error every time a spike
is produced. This local error is proportional to
the step size, and the global discontinuity error
depends on the number of spikes generated in a
simulation window [27]. Figure 1 (top) shows a lag
in the LIF spike train that depends on the simulation
windows of (a) 20 ms, (b) 100 ms, and (c) 1, 000 ms.

The simulation in blue is a testing simulation
that is compared against a reference simulation in
black. The lag is because of the combination of
the errors mentioned. In contrast, the Izhikevich
(IZH) [37] introduces two discontinuity errors: one
for the voltage variable and the other for the
recovery variable, see Eq. (5). The error in
the recovery variable depends on the error of
the voltage variable [79]. As opposed to other
bi-dimensional models (e.g., the quartic [78] or
the adaptive exponential [7]), the IZH adaptation
variable blows up without a threshold value [77].

This makes the model sensitive to threshold
values and, as a consequence, the step size
must be small to avoid an alteration in the system
dynamics [77, 79].This agrees with practical works
where a high-order numerical method and a
small step were necessary to obtain an accurate
implementation [35, 72, 81]. Figure 1 (middle)
depicts the considerable lag generated by the IZH
as the simulation window increases. In Fig. 1f, it is
seen that the lag is such that the penultimate spike
(blue line) tends to match the last spike (black line).
On the other hand, continuous models, such as
the Hodgkin-Huxley (HH) [33], do not introduce any
discontinuity error because the spike generation is
based on continuous functions. Figure 1 (bottom)
shows that the lag is negligible at any of the
simulation windows. If the rate function values

are pre-stored in tables (as suggested by Hodgkin
and Huxley in [33]), the lag is slightly increased,
see the light blue line in Fig. 1i. This lag is for
the reason that the continuous rate functions are
discretized when stored in tables. Testing and
reference simulations in Fig. 1 were solved by
the same numerical methods and step sizes. The
reference simulation for each SN was implemented
by a high-order numerical method and a small step.
The firing rate was similar among them.
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Fig. 1. Lag produced by the truncation, round-off
and discontinuity errors as the time span increases.
(Top) Leaky Integrate-and-Fire (LIF) model. (Middle)
Izhikevich (IZH) model. (Bottom) Hodgkin-Huxley (HH)
model. The black line corresponds to a benchmark
simulation and the dark blue to a testing simulation. The
light blue line in g-i is the HH with the rate constants
stored in tables. The Fourth-Order Runge-Kutta (RK4)
method with a step size of 0.0001ms was employed for
the reference simulations and the Forward Euler (FE)
with a step size of 0.05ms for the testing ones. Each
spiking neuron gave a firing rate of 70Hz

Although earlier works have focused on how the
simulation is affected by the numerical method,
step size and spike generation mechanisms,
little attention has been paid to the time span
and firing rate influence. Depending on the
numerical method and SN, the accuracy increases
monotonically as the step size reduces [61, 81,
34, 72, 29]. This is consistent with the theory
of numerical methods where the solution provided
by a convergent method approximates the exact
solution as the step size tends to zero [26, 10, 24,
20, 25]. What is more, quantitatively, the accuracy
behavior is not yet well understood given the wide
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range of measures to calculate the precision, the
large number of SNs and numerical methods in the
literature; and the infinite number of step sizes to
choose from.

On the contrary, it is known that the compu-
tational cost increases in a power-law complexity
as the step sizes reduces [82]. This behavior
is also dependent on the numerical method and
SN. The most studied aspect of SN simulation is
the discontinuity error produced by the resetting
mechanism to generate the AP that plenty of
algorithms have emerged, mainly that of the LIF
[27, 71, 47, 52, 6, 59, 66, 58, 29] and IZH [80, 79,
34]. Even though there are several open issues
in the single SN simulation, this paper focuses
on the time span and firing rate influence. It is
thought that the firing rate changes the accuracy
that some studies [50, 72, 81] have included it, but
its impact has not been measured. The influence
of the time span variability has been ignored and,
in consequence, remains unknown. Most current
works have carried out simulations just on a single
time span [31, 27, 68, 47, 71, 52, 6, 59, 66, 58, 79,
29, 72, 34, 81].

This study describes how the accuracy, compu-
tational cost, and efficiency of an SN simulation
are influenced by the time span and firing rate
variability. We followed and extended the studies
carried out in [72] and [81] where three important
SNs were investigated: the LIF, IZH, and HH.
In those works, each SN was solved with three
different numerical methods and five different time
steps.

Also, the SNs were stimulated with a constant
input current to produce one of the simplest
neuro-computational properties: the regular firing
pattern [38]. Those studies analyzed three different
firing rates. A numerical solution was implemented
as a benchmark simulation since the exact solution
is unknown for the IZH and HH. However, they
used a single time span, and the influence of the
firing rate to the simulation was not studied. This
work examines the influence of other simulation
windows not considered in the previous researches
and studies the impact of the firing rates on the
simulation. An important difference between [72]
and [81] are the measures they used to test

the accuracy, computational cost, and efficiency.
These measures will be discussed in Section 4.

On the whole, it was found that the simulation
efficiency and accuracy fall linearly as the
simulation window increases. The efficiency and
accuracy stay constant for some firing rates and
varies linearly or no-linearly for others depending
on the SN model. The computational cost
increases linearly with the time span and remains
constant with the firing rate. All of these suggest
that not only the numerical method, step size
and spike generation mechanisms affect the SN
simulation, but also the time span and firing rate. In
previous studies, these two parameters have been
considered irrelevant to the SN simulation.

In his influential article [38], Izhikevich stated
that 1) the HH is prohibitive, 2) the IZH is as
efficient as the LIF, and 3) the IZH is more efficient
than the HH. Until now, these statements have
had a profound impact in the SN research area.
Conversely, other authors have suggested these
statements could be wrong [35, 51, 77, 72, 49, 81].
This paper gives new evidence in line with them,
but for the firing rate and time span variation. When
the efficient SN simulations were compared, the
HH showed the highest efficiency level for any time
span and firing rate, by contrast, the IZH showed
the lowest. A similar behavior was observed for
the accuracy in most cases. In all cases, the IZH
computational cost is close to that of the HH and
HH-T rather than that of the LIF.

This article is organized as follows. Section
2 describes the SNs models. The numerical
methods are given in Section 3. Section 4
shows the measures to test the level of the SN
simulations. Section 5 focuses on the results.
Section 6 makes the conclusions.

2 Spiking Neurons

There is a significant number of SNs [22, 39]. For
simplicity, the LIF, IZH, and HH were reviewed
because they are used in many simulation studies
[38, 74, 67, 50, 72, 81, 82, 61] and to re-test
the Izhikevich affirmations above mentioned. Also,
these SNs are elemental models from which
reductions or extension are proposed. The LIF is
the simplest representation of the spike generation
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that is widely used owing to its low computational
cost and implementation ease [1, 9].

The HH is the most biologically plausible model
that works at the particle dynamics and electrical
current levels. The HH also can be seen as a
generalization of the LIF where the LIF works with
passive and the HH with active conductances [40].
The IZH is a dimensional reduction of the HH [39]
that can reproduce twenty neuro-computational
properties [38]. On the contrary, the LIF
reproduces three properties and the HH at least
seventeen [38]. The IZH can be an integrator as
the LIF or a resonator as the HH [38].

2.1 Leaky Integrate-and-Fire

Taking the notation in [40], the LIF [46, 73, 44] is
defined as:

τ dVdt = RI − V ,
If V ≥ Vth, then V = Vrest,

(1)

where V , Vth, and Vrest are the trans-membrane,
threshold and resting potentials, respectively. R
is the trans-membrane resistance; I is the
stimulation current, and τ = RC is the membrane
time constant (here C is the trans-membrane
capacitance).

2.2 Hodgkin-Huxley

Hodgkin and Huxley [33] defined their Nobel-Prize
winning model as:

C dV
dt = −gKn4 (V − EK)− gNam3h (V − ENa)

−gL (V − EL) + I,
(2)

dn
dt = αn (1− n)− βnn,

dm
dt = αm (1−m)− βmm,
dh
dt = αh (1− h)− βhh,

(3)

where V is the trans-membrane voltage, C =
1 µF/cm2 is the membrane capacitance, and I is the
stimulation current. EK = −12 mV and ENa =
115 mV are equilibrium potentials for the K and Na
ions, respectively.
EL = 10.6 mV is the reversal potential for

chloride and other ions. ḡK = 36 mS/cm2,
ḡNa = 120 mS/cm2 and gl = 0.3 mS/cm2 are the
conductance for the K, Na, and other ions,

respectively. Equilibrium potentials, conductances,
and capacitances are constant values defined in
[33]. α’s and β’s are rate constants defined as:

αn = 0.1−0.01V
exp(1−0.1V )−1 , βn = 0.125exp (−V/80) ,

αm = 2.5−0.1V
exp(2.5−0.1V )−1 , βm = 4exp (−V/18) ,

αh = 0.07exp (−V/20) , βh = 1
exp(3−0.1V )+1 .

(4)

α’s and β’s definition was taken from [72].

2.3 Izhikevich

The IZH [37] is modeled as:

dV
dt = 0.04V 2 + 5V + 140− n+ I,

dn
dt = a (bV − n) ,

If V ≥ Vth, then

{
V ← c

n← n+ d.

(5)

Here V is the trans-membrane potential, n is a
recovery variable, I is the stimulation current, a is
a time scale for n, b is the sensitivity to the sub-
threshold fluctuations of n, c is a reset value of V ,
and d is a reset value for n.

2.4 Configuration

The constant stimulation currents and simulation
parameters were taken from [72] and [81]. The
passive parameters for the LIF were C =
5.0675 nF, R = 8.22 MΩ, Vth = 30 mV and Vrest =
0 mV. Each spike was followed by a refractory
period of tref = 5 ms. The input currents to
generate the firing rates of 70, 90, and 120 Hz were
18, 28, and 55 µA/cm2 , respectively.

The values for the IZH were a = 0.02, b = 0.2,
c = −65 and d = 2 to generate a regular spiking
[37]. The IZH was stimulated with the adimensional
constant currents of 13, 15, and 19 to produce the
firing rates of 70, 90, and 120 Hz.

The HH was stimulated with the constant
currents of 13, 20, and 50 µA/cm2 to produce the
firing rates of 70, 90, and 120 Hz. Applying the
I’Hôpital rule, we defined αn = 0.1 for V = 10 and
αm = 1.0 for V = 25 as αn and αm in Eq. (4) are
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indeterminate for those values [13]. According to
[33], the initial values for n, m, and h are:

n0 =
αn0

αn0
+βn0

,

m0 =
αm0

αm0
+βm0

,

h0 =
αh0

αh0
+βh0

,

(6)

where α’s and β’s are evaluated for V0.
The HH was simulated by the α’s and β’s

pre-stored in tables at intervals of 1 mV (as
suggested by Hodgkin and Huxley [33] and
implemented in [30, 72, 81]). In the rest of this
work, the HH using tables will be referenced as
HH-T and the other as HH.

3 Numerical Methods

Many numerical methods, classified as time- and
event-driven techniques, can be chosen to solve
an SN [8, 61]. Time-driven techniques include the
exponential integrators and Runge-Kutta methods,
which can be implicit or explicit [26, 10, 24, 20, 25].
Implicit numerical methods are more complicated
for implementation than the explicit given the use
of a current and a next state to calculate the
solution approximation. Therefore, ODEs must
be algebraically rearranged to join the next state
variables. Event-driven techniques are exclusive
to analytically solvable SNs for the reason that the
exact solution is necessary to calculate the event
(spike) timing [8, 61].

For the sake of simplicity, three explicit numerical
methods were selected: the Forward Euler (FE)
[18], the Fourth-Order Runge-Kutta (RK4) [45] and
the Exponential Euler (EE) [65, 55]. Other authors
have found that the LIF, IZH, and HH are solved by
these methods [13, 16, 5, 28, 37, 38, 35, 63, 69, 4,
72, 81].

Apart from that, the FE is the simplest numerical
method, and the RK4 is one of the most accurate
[26, 10, 24, 20, 25]. The EE is the default integrator
in many neural simulation software [55], and this
is thought to produce efficient solutions in neural
systems [5, 31, 23]. The EE is the simplest
exponential integrator [32]. Making a differential
equation an arbitrary function, i. e. dy/dt = f(t, y),

the solution for y in the next time update yn+1 can
be extrapolated from a previous value yn by some
integration technique. Based on that, the FE, RK4,
and EE can be derived.

3.1 Forward Euler

As defined by Euler [18], the FE is:

yn+1 = yn + hk1, (7)

where
k1 = f (tn, yn) , (8)

where h is the step size, which is a fixed value
during the entire simulation.

3.2 Fourth-Order Runge-Kutta

Kutta [45] expressed his method as:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) , (9)

where

k1 = f (tn, yn) ,
k2 = f

(
tn + h

2 , yn + h
2k1

)
,

k3 = f
(
tn + h

2 , yn + h
2k2

)
,

k4 = f (tn + h, yn + hk3)

(10)

are slope evaluations for f(t, y).

3.3 Exponential Euler

Exponential integrators date back to [65]. MacGre-
gor [55] was one of the first in applying exponential
integrators to neural modeling. As the ODEs of
the SNs studied here are of first-order, they can
be represented as:

dy

dt
= f(t, y) = −Ay +B, (11)

where A and B are arbitrary functions of t. If A
and B are constant during the interval h, then the
solution of Eq. (11) is given by:

yn+1 =

(
yn −

B

A

)
e−hA +

B

A
. (12)

It is noteworthy to mention that, as in [81],
when the SNs and the numerical method were put
together the resulting expressions were rearranged
to reduce the computational cost.
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3.4 Benchmark Scheme

As there is not an analytic solution for the IZH
and HH, the benchmark scheme defined in [72]
and [81] was employed. In this scheme, several
testing simulations were compared to a reference
simulation. The selected numerical algorithm
and step size were those that resulted in the
maximum accuracy and minimum computational
cost possible.

In this work, each SN (i.e., the LIF, IZH, HH-T,
and HH) was solved by each numerical method
(i.e., the FE, RK4, and EE) with the step sizes of
0.0001, 0.001, 0.01, 0.1, and 1 ms. The reference
simulation for each SN was implemented using the
RK4 with a step size of 0.0001 ms [72, 81]. Each SN
was stimulated by three different constant currents
given in Subsection 2.4 to produce a regular firing
rate of approximately 70, 90, and 120 Hz [72, 81].
The regular firing pattern is one of the simplest
neuro-computational properties an SN produces.
Apart from the time span of 1000 ms studied in
[72] and [81], each simulation was run over the
windows of 10 and 100 ms.

4 Accuracy and Computational Cost
Measures

There are several aspects to determine whether an
SN simulation is efficient or not. As in [81], the
simplest aspects were analyzed: the voltage time
course and the spike-timing. The computational
cost can be measured by the Floating Point
Operations (FLOPS) or the CPU execution time.
The latter was used.

The Root Mean Square Error (RMSE) is one
of the simplest and commonest measures to
calculate the difference between the voltage time
course of a testing and a reference simulation.
Nevertheless, the RMSE is not a reliable measure
of accuracy [84, 11]. The RMSE increases the
influence of large differences in the total error. For
this reason, the Voltage Coincidence Factor (VCF)
[42] was used. Contrary to the RMSE, the VCF
reduces the influence of large differences giving
more importance to the similarities. Whereas
in [72] the RMSE was measured on a single
spike, in [81] the VCF was computed on the

entire spike train. This is important because, as
already mentioned, the various errors produce a
lag increment with the time span (see Fig. 1). So,
the voltage time course for the whole simulation
window was measured.

The Spike Coincidence Factor (SCF) [41, 42, 43]
was used to measure the spike-timing precision
of a testing simulation. In [72], the spike-timing
precision was measured by the second and last
spike-timing that were later used to calculate a
frequency error, thereby eliminating the precise
spike-timing. Spike-timing is thought as a critical
factor for complex neural computations in real
neurons and artificial learning algorithms, including
functional and morphological plasticity in learning
and memory, coincidence detection, directional
selectivity, synaptic integration, synchronization;
and AP initiation and conduction [48, 85, 15,
75]. Some artificial algorithms where the precise
spike-timing is a key factor include the SpikeProp
[3] and ReSume [64, 76].

The common measure of computational cost
is the CPU time. Other studies have used the
Floating Point Operations (FLOPS). Nonetheless,
the CPU time is more precise than FLOPS
because FLOPS are only a qualitative description
of the computational cost. While the FLOPS were
utilized in [72], the Computational Cost Factor
(CCF) was used in [81]. The CCF is a normalized
measure that is based on the CPU execution time.

The Global Performance Factor (GPF) was used
to find the overall efficacy of an SN implementation
[81]. The GPF is a weighted sum that scalarizes
the SCF, VCF and the CCF into a single objective
function. The weighted sum is the commonest and
simplest approach when there exists a trade-off
between several objectives [14].

4.1 Voltage Coincidence Factor

The VCF determines whether the voltage time
course in a testing simulation is optimal against
that of a reference simulation [42]. The VCF is set
as:

V CF = 1/T

∫ T

0

g (x) dt, (13)
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where T is the simulation time span, x is
the voltage difference between the testing and
benchmark simulations divided by the precision
tolerance x =

Vref−Vtest

∆ and g is a generic function
g(x) = 1

1+x2 that goes from 0 to 1. Accuracy
tolerance was defined as ∆ = 15 mV [72, 81].
The VCF is a normalized measure that gives 1 for
coincident simulations and 0 for non-coincident.

4.2 Spike Coincidence Factor

The SCF allows determining the spike-timing level
of a testing simulation against a reference [43,
41, 42]. This factor is defined as the number of
spike coincidences minus the number of related
correspondences divided by the total spike number
in both simulations. More precisely:

SCF = α
Ncoinc − 〈Ncoinc〉
1/2 (Nref +Ntest)

, (14)

where Nref and Ntest are the spike number in
the reference and testing simulations, respectively.
Ncoinc is the number of coinciding spikes in both
simulations with a precision of ∆ = 2 ms, the AP
duration in cortical neurons [41, 42]. 〈Ncoinc〉 =
2v∆Nref is the expected number of coincidences
generated by a homogeneous Poisson process
with an occurrence rate of v = Ntest

T (where T is
the length of the simulation) at the same rate of
occurrence as the testing simulation. If and only if
Ncoinc = Nref = Ntest, the factor α = (1− 2v∆)

−1

normalizes the coincidence to a maximum value
of 1. A Poisson process with the same rate of
occurrence as the testing simulation produces on
average 0.

This implies that the benchmark simulation is
better than the testing simulation because there
is no correlation between the spike-timing in both
simulations as the testing spike train was random.
A negative value can be obtained, in which case,
there is a negative correlation between the two
spike trains. The denominator 1/2 (Nref +Ntest)
ensures that the average firing rate of the two spike
trains is the same. Although the SCF depends on
the tolerance ∆, there is no critical dependence
to ∆ = 2 ms because its value is constant for
1 ≤ ∆ ≤ 12 ms [41]. More importantly, the SCF
is accurate for constant input currents [70].

4.3 Computational Cost Factor

The CCF determines the level of computational
cost for a testing simulation [81]. This factor
is based on the CPU time of both testing and
reference simulations, i.e.:

CCF = 1− xtest
xref

, (15)

where xref is the CPU execution time of the
benchmark simulation and xtest is the CPU time
from the testing simulation.

It is supposed that the reference simulation
consumes more or at least the same CPU time
than any testing simulation (i.e., xref ≥ xtest)
since the reference simulation is configured with
the highest order method and the smallest step
size possible. In the upper boundary, if the
computational cost in the testing simulation is
equal to that of the reference simulation (i.e.,
xref = xtest), the ratio xtest

xref
gives 1.

In the hypothetical and lower bound case where
the testing simulation does not spend any fraction
of time (i.e., xtest = 0), the ratio xtest

xref
gives 0. Thus,

the ratio xtest

xref
is a function that is minimized as the

testing CPU time decreases.

It is better either to maximize or to minimize
all factors to work easier with mixed objectives
(i.e., accuracy maximization and computational
cost minimization). By the duality principle in
optimization problems [14], the ratio xtest

xref
was

converted from a minimization function to a
maximization one by subtracting it from 1.

In this way, if xref = xtest then CCF = 0, which
means that the testing simulation is not optimal in
computational cost. If xtest → 0 then CCF → 1,
which indicates that the testing simulation tends
to be optimal. CCF = 1 is impossible to reach
as none simulation is performed without expending
any fraction of CPU time. Owing to the simulation
time fluctuates for each run, the CPU time was
recorded as the average of 20 runs.
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4.4 Global Performance Factor

This factor is a weighted sum:

GPF =

k∑
i=1

1

2i
F i, (16)

where k is the number of factors F i to include in
the overall performance, and i is an index. There
are three factors: F 1 = CCF , F 2 = SCF , and
F 3 = V CF . Hence, Equation (16) becomes

GPF =
1

2
(CCF ) +

1

4
(SCF ) +

1

8
(V CF ) . (17)

The efficient SN simulation will be that with the
maximum GPF value. The weights for each factor
were assigned according to [81] and following the
recommendations in [42]. They suggest that the
maximum weights would be given to the most
important factors. The maximum weight has been
paid to the CCF due to it is imperative to get the
numerical method and time step size producing
the minimum computational cost possible. For
simulation accuracy, it was decided on the SCF
with a higher weight than VCF because of the
spike-timing importance in neural computation
and to the necessity to guarantee the firing rate
coincidence.

5 Results

Previous works have paid little attention to the
consequences of the time span and firing rate
for the SN simulation. This work describes how
the simulation is affected by these two aspects.
To achieve such an objective, we limited our
research to three relevant SNs: the LIF, IZH, and
HH. Each one was stimulated with three different
constant currents to produce a regular firing rate
of approximately 70, 90, and 120 Hz. These SNs
were solved by three commonly used numerical
methods in neural simulation: the FE, RK4, and
EE. Each numerical method used the time steps of
0.0001, 0.001, 0.01, 0.1, and 1 ms. Simulations were
run over three different time spans: 10, 100, and
1, 000 ms.

The accuracy was measured by considering
the simplest aspects of an SN simulation: the

voltage time course and the spike-timing. The
accuracy level between a testing and a reference
simulation was calculated by the VCF and the
SCF. The VCF and SCF give a normalized value
of the coincidence level in two simulations for the
voltage time course and spike-timing, respectively.
On the other hand, the computational cost was
measured by the CCF, which gives a normalized
CPU execution time for the testing simulation when
compared to the reference simulation. The GPF
was used to determine the efficiency level of an
SN simulation. The GPF is a weighted sum that
scalarizes the VCF, SCF, and CCF into a single
decision function. These factors are more accurate
than those used in [72] and other studies.

As there is no analytic solution for the IZH
and HH, the benchmark scheme in [72] and [81]
was used. Several testing simulations using
different numerical methods and step sizes were
compared to the reference simulation. The
reference simulation for each SN was implemented
by the RK4 with a step size of 0.0001 ms. The
numerical algorithm and step size giving an
efficient simulation were those that resulted in the
maximum GPF. The GPF, VCF, SCF, and CCF were
studied for the different time spans and firing rates
mentioned.

5.1 Accuracy

Table 1. Spike Coincidence Factor (SCF) for a firing rate
of 70Hz over a 10ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 1.0000 1.0000 1.0000 1.0000 1.0000
LIF RK4 1.0000 1.0000 1.0000 1.0000 1.0000

EE 1.0000 1.0000 1.0000 1.0000 1.0000
FE 1.0000 1.0000 1.0000 1.0000 -0.8000

IZH RK4 1.0000 1.0000 1.0000 1.0000 -0.8000
EE 1.0000 1.0000 1.0000 1.0000 0.8571
FE 1.0000 1.0000 1.0000

HH-
T

RK4 1.0000 1.0000 1.0000

EE 1.0000 1.0000 1.0000 1.0000 -0.6667
FE 1.0000 1.0000 1.0000

HH RK4 1.0000 1.0000 1.0000
EE 1.0000 1.0000 1.0000 1.0000 -0.6667

Table 1 shows the SCF for a firing rate of 70 Hz
over a time span of 10 ms. It is seen that the
LIF produces satisfactory temporal coincidences at
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Fig. 2. The Voltage Coincidence Factor (VCF) given in Table 3 in function of the step size for a firing rate of 70Hz
and a time span of 10ms. Numerical methods: (a) FE=Forward Euler, (b) RK4=Fourth-Order Runge-Kutta and (c)
EE=Exponential Euler. Spiking neurons: LIF=Leaky Integrate-and-Fire, IZH=Izhikevich, HH=Hodgkin-Huxley and HH-
T=HH using tables

Table 2. Spike Coincidence Factor (SCF) for a firing rate
of 70Hz over a 100ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 1.0000 1.0000 1.0000 1.0000 0.0648
LIF RK4 1.0000 1.0000 1.0000 1.0000 0.0648

EE 1.0000 1.0000 1.0000 1.0000 0.0648
FE 1.0000 1.0000 1.0000 0.1883 0.3188

IZH RK4 1.0000 1.0000 1.0000 1.0000 0.1968
EE 1.0000 1.0000 1.0000 0.0260 0.2222
FE 1.0000 1.0000 1.0000

HH-
T

RK4 1.0000 1.0000 1.0000

EE 1.0000 1.0000 1.0000 0.1407 -0.1154
FE 1.0000 1.0000 1.0000

HH RK4 1.0000 1.0000 1.0000
EE 1.0000 1.0000 1.0000 0.1407 -0.3077

any numerical method and step size. Remember
that SCF = 1 means a timing coincidence. The
spike-timing of the IZH, HH-T, and HH is imprecise
when a step size of 1 ms is used. As a result, the
LIF produces a higher spike-timing precision than
the other SNs.

Table 2 reports the SCF for the same firing rate
reported in Table 1 but over a time span of 100 ms.
Comparing Tables 1 and 2 reveals that the SCF is
reduced with the time span increment when a time
step of 0.1 and 1 ms is used. Figure 1 confirms
this behavior where the lag in the spike-timing
increases as the temporal window increases. The
following paragraph discusses the VCF results,
which give a more precise value to appreciate the
accuracy behavior.

Table 3. Voltage Coincidence Factor (VCF) for a firing
rate of 70Hz over a 10ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 1.0000 0.9999 0.9990 0.9902 0.9165
LIF RK4 1.0000 0.9999 0.9990 0.9902 0.9167

EE 1.0000 0.9999 0.9990 0.9902 0.9167
FE 0.9999 0.9982 0.9693 0.7820 0.5340

IZH RK4 1.0000 0.9997 0.9962 0.9088 0.4817
EE 0.9998 0.9982 0.9672 0.6970 0.4707
FE 1.0000 0.9999 0.9971

HH-
T

RK4 1.0000 0.9999 0.9900

EE 1.0000 0.9998 0.9891 0.8159 0.4068
FE 1.0000 0.9999 0.9972

HH RK4 1.0000 0.9999 0.9990
EE 1.0000 0.9998 0.9901 0.8098 0.4126

Tables 3 and 4 lists the VCF for a firing rate
of 70 Hz over a time span of 10 and 100 ms,
respectively. It is demonstrated that the VCF is also
reduced as the time span is increased from 10 to
100 ms. This is visible in Fig. 1 where the voltage
time course suffers from a mismatch as the time
window varies.

Figure 2 plots the VCF given in Table 3 for the (a)
FE, (b) RK4, and (c) EE. As illustrated, the voltage
accuracy increases monotonically as the step size
reduces.

The same happens to the other time spans and
firing rates (data not shown). This agrees with the
theory where the solution provided by a convergent
numerical method approximates the exact solution
as the step size tends to zero. Figure 2 also
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Table 4. Voltage Coincidence Factor (VCF) for a firing
rate of 70Hz over a 100ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 1.0000 0.9999 0.9988 0.9769 0.6413
LIF RK4 1.0000 0.9999 0.9988 0.9768 0.6417

EE 1.0000 0.9999 0.9988 0.9768 0.6417
FE 0.9998 0.9968 0.9574 0.7768 0.7373

IZH RK4 1.0000 0.9989 0.9858 0.8573 0.5830
EE 0.9997 0.9962 0.9561 0.7595 0.7285
FE 1.0000 1.0000 0.9984

HH-
T

RK4 1.0000 1.0000 1.0000

EE 0.9999 0.9953 0.8961 0.6175 0.4930
FE 1.0000 1.0000 0.9993

HH RK4 1.0000 1.0000 1.0000
EE 0.9999 0.9951 0.8941 0.6075 0.4924

Table 5. Spike number for a firing rate of 70Hz over a
10ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 1 1 1 1 1
LIF RK4 1 1 1 1 1

EE 1 1 1 1 1
FE 3 3 3 3 2

IZH RK4 3 3 3 3 2
EE 3 3 3 3 4
FE 1 1 1

HH-
T

RK4 1 1 1

EE 1 1 1 1 1
FE 1 1 1

HH RK4 1 1 1
EE 1 1 1 1 1

indicates that the IZH is the least accurate and the
LIF the most one for a firing rate of 70 Hz and a time
span of 10 ms. The same happens for 70 Hz and a
time span of 100 ms (see Table 4).

Table 5 lists the spike number in a time span of
10 ms for a firing rate of 70 Hz. It is seen that any
numerical method and step size produce the same
spikes compared to the reference simulation (RK4
with a step size of 0.0001 ms), except with the IZH.
There is a different spike number produced by the
step size of 1 ms. This confirms the IZH inaccuracy.

Table 6 displays the spike number, but in a time
span of 100 ms. Inspection of Tables 5 and 6 shows
that, as the time span increases, the spike number
difference also increases. This is in line with the
VCF reduction in Tables 1-4.

It is thought that the spike number or firing rate
is enough to determine the accuracy level. The

Table 6. Spike number for a firing rate of 70Hz over a
100ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 7 7 7 7 6
LIF RK4 7 7 7 7 6

EE 7 7 7 7 6
FE 11 11 11 11 9

IZH RK4 11 11 11 11 4
EE 11 11 11 11 13
FE 8 8 8

HH-
T

RK4 8 8 8

EE 8 8 8 7 5
FE 8 8 8

HH RK4 8 8 8
EE 8 8 8 7 5

firing rate does not ensure that the voltage and
the spike-timing are coincident. In any case, the
coincidence in the spike number is a necessary but
not a sufficient condition.

This is taken into account in Eq. (14) where the
expression 1/2 (Nref +Ntest) ensures that at least
there is the same spike number in the testing and
reference simulations. We now know an accurate
simulation will be produced by those numerical
methods and step sizes giving the same spike
number to that of the reference simulation.

This is seen in Tables 5 and 6 where the smallest
step sizes give the same spike number for any
SN. As theoretically expected, the most accurate
simulations are produced by the smallest step
sizes and highest order methods, as detailed in
Tables 1-6.

Table 7. CPU execution time (s) to produce a firing rate
of 70Hz over a 10ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 0.04903 0.00471 0.00048 0.00005 0.00001
LIF RK4 0.10925 0.01067 0.00110 0.00012 0.00002

EE 0.04522 0.00436 0.00043 0.00005 0.00001
FE 0.09038 0.00732 0.00074 0.00007 0.00001

IZH RK4 0.23522 0.02245 0.00228 0.00023 0.00003
EE 0.08686 0.00795 0.00077 0.00008 0.00001
FE 0.20432 0.01974 0.00392

HH-
T

RK4 0.61181 0.05957 0.00801

EE 0.22407 0.02148 0.00419 0.00250 0.00227
FE 0.32085 0.02967 0.00296

HH RK4 1.05758 0.10325 0.01033
EE 0.35166 0.03198 0.00321 0.00033 0.00005
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Table 8. CPU execution time (s) to produce a firing rate
of 70Hz over a 100ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 0.62502 0.06217 0.00492 0.00047 0.00005
LIF RK4 1.09056 0.10448 0.00882 0.00091 0.00009

EE 0.66814 0.06047 0.00450 0.00047 0.00004
FE 1.12423 0.11154 0.00872 0.00080 0.00007

IZH RK4 2.61853 0.25704 0.02238 0.00224 0.00022
EE 1.20733 0.11550 0.00834 0.00082 0.00009
FE 2.29054 0.24005 0.02298

HH-
T

RK4 6.41724 0.64085 0.06256

EE 2.63950 0.26347 0.02478 0.00462 0.00276
FE 3.40682 0.34813 0.03099

HH RK4 10.81581 1.07270 0.10625
EE 3.77999 0.37424 0.03335 0.00334 0.00033

Table 9. Computational Cost Factor (CCF) for a firing
rate of 70Hz over a 10ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 0.5513 0.9569 0.9956 0.9995 0.9999
LIF RK4 0.0000 0.9023 0.9899 0.9989 0.9998

EE 0.5861 0.9601 0.9961 0.9995 0.9999
FE 0.6158 0.9689 0.9968 0.9997 0.9999

IZH RK4 0.0000 0.9046 0.9903 0.9990 0.9999
EE 0.6307 0.9662 0.9967 0.9997 0.9999
FE 0.6660 0.9677 0.9936

HH-
T

RK4 0.0000 0.9026 0.9869

EE 0.6338 0.9649 0.9932 0.9959 0.9963
FE 0.6966 0.9719 0.9972

HH RK4 0.0000 0.9024 0.9902
EE 0.6675 0.9698 0.9970 0.9997 0.9999

Our evidence suggests that the time span also
affects the simulation accuracy (i.e., the SCF,
VCF, and spike number). It may be reasonable
to suppose a correlation between the SCF, VCF
and spike number. The spike number must be
the same in the testing and reference simulations
to be accurate in both the voltage time course
and spike-timing. The spike-timing in the two
simulations must match to be coincident with the
voltage time course, and vice-versa. Up to this
point, an efficient simulation cannot be found given
that the computational cost influence has not been
considered.

5.2 Computational Cost

Tables 7 and 8 contain the average CPU time
for 20 runs over a time span of 10 and

Table 10. Computational Cost Factor (CCF) for a firing
rate of 70Hz over a 100ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 0.4269 0.9430 0.9955 0.9996 0.9999
LIF RK4 0.0000 0.9042 0.9919 0.9992 0.9999

EE 0.3873 0.9446 0.9959 0.9996 0.9999
FE 0.5707 0.9574 0.9967 0.9997 0.9999

IZH RK4 0.0000 0.9018 0.9915 0.9991 0.9999
EE 0.5389 0.9559 0.9968 0.9997 0.9999
FE 0.6431 0.9626 0.9964

HH-
T

RK4 0.0000 0.9001 0.9903

EE 0.5887 0.9589 0.9961 0.9993 0.9996
FE 0.6850 0.9678 0.9971

HH RK4 0.0000 0.9008 0.9902
EE 0.6505 0.9654 0.9969 0.9997 0.9999

100 ms, respectively. The firing rate for both
temporal windows was 70 Hz. As expected, the
computational cost is markedly affected by the
temporal window where the highest values are
produced by the larger simulation window.

Also, the numerical method with higher order
and smaller step size provide higher CPU times.
As anticipated in [82], the CPU time follows a
power-law behavior with the step size. Figure 3
(top) shows the power-law distribution of data in
Table 7. A power-law distribution can be converted
to a linear equivalent form by applying the natural
logarithm on data (Fig. 3 (bottom)). Inspection of
Fig. 3 indicates that the most expensive is the HH,
followed by the HH-T, IZH, and LIF. In addition, the
RK4 is more expensive than both the FE and EE,
which are similar in computational cost. The same
is true for a firing rate of 70 Hz and a simulation
window of 100 ms. In [82], a procedure to fit the
CPU time data to a power-law function has been
proposed. This function can be a reliable measure
of computational cost.

Tables 9 and 10 present the CCF, which is based
on the ratio between each testing CPU time and
the reference CPU time shown in Tables 7 and
8. The CCF stays similar with the simulation
window. Also, the CCF is higher for simulations
carried out by low-order numerical methods and
large step sizes. Remember that the CCF is the
dual function (maximization) of the computational
cost minimization. So, the reference simulation
gives CCF = 0 to the most expensive (i.e., the
RK4 with a step of 0.0001 ms).
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Fig. 3. Power-law distribution (top) and its linearization (bottom) for various spiking neurons: (a and e) Leaky Integrate-
and-Fire (LIF), (b and f) Izhikevich (IZH), (c and g) Hodgkin-Huxley (HH) and (d and h) HH using tables (HH-T). Numerical
methods: FE=Forward Euler, RK4=Fourth-Order Runge-Kutta, and EE=Exponential Euler. The CPU time is an average
of 20 runs

Now, we are in a position to select a numerical
method and step size leading a balanced
simulation through the GPF.

5.3 Global Performance Factor

The accuracy (i.e., the SCF and VCF) and
computational cost (i.e., the CCF) separately do
not determine which numerical method and step
size produce an efficient simulation. For that
purpose, the GPF considers the contribution of
these three factors. Table 11 lists the GPF, which
is based on data in Tables 1, 3, and 9, for a
firing rate of 70 Hz and a time span of 10 ms. The
maximum value (gray cells) for each SN indicates
the best compromise between computational cost
and accuracy according to the balance function
defined in Eq. (17). These results prove that the
LIF is efficiently simulated by the EE with a step
size of 0.1 ms and the IZH needs the RK4 with a
step size of 0.01 ms. The FE and a step size of
0.01 ms produce the highest efficiency for both the
HH-T and HH. Table 12 gives the GPF, which is

based on data in Tables 2, 4, and 10, for a time
span of 100 ms and similar results are seen. The
only difference is the reduction in the step size for
the LIF from 0.1 ms to 0.01 ms.

Up to this point, the time spans of 10 and
100 for a firing rate of 70 Hz were analyzed. A
similar procedure was carried out to obtain the
efficient simulations for the time span of 1, 000 ms
and the frequencies of 90, and 120 Hz. Table 13
summarizes the numerical method and step size
giving an efficient simulation (maximum GPF) for
each pair window-frequency. It is seen that the
LIF is best simulated by the EE with a step size of
0.01 ms for the windows of 100 and 1, 000 ms, and
with a step size of 0.1 ms for the simulation window
of 10 ms.

The IZH produces the best efficiency with the
RK4 and a step of 0.01 ms for any time span
and firing rate. It is apparent that the FE and a
step length of 0.01 ms increase the HH-T and HH
simulation efficiency. The RK4 could be necessary
when a simulation window of 1, 000 ms is used for
the HH and HH-T. Table 13 suggests that neither
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the time span nor the firing rate could affect the
final numerical method and step size selection.
However, it will be demonstrated that the efficiency
(i.e., the GPF), accuracy (i.e., the SCF and VCF)
and computational cost (i.e., the CCF) levels do are
affected by the time span and firing rate.

Table 11. Global Performance Factor (GPF) for a firing
rate of 70Hz over a 10ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 0.6506 0.8534 0.8727 0.8735 0.8645
LIF RK4 0.3750 0.8261 0.8698 0.8732 0.8645

EE 0.6681 0.8550 0.8729 0.8735 0.8645
FE 0.6829 0.8592 0.8696 0.8476 0.3667

IZH RK4 0.3750 0.8272 0.8697 0.8631 0.3601
EE 0.6903 0.8579 0.8693 0.8370 0.7731
FE 0.7080 0.8598 0.8714

HH-
T

RK4 0.3750 0.8263 0.8683

EE 0.6919 0.8574 0.8702 0.8500 0.3823
FE 0.7233 0.8610 0.8733

HH RK4 0.3750 0.8262 0.8700
EE 0.7087 0.8599 0.8722 0.8511 0.3849

Table 12. Global Performance Factor (GPF) for a firing
rate of 70Hz over a 100ms time span

Step size (ms)
SN NM 0.0001 0.001 0.01 0.1 1

FE 0.5884 0.8465 0.8726 0.8719 0.5963
LIF RK4 0.3750 0.8271 0.8708 0.8717 0.5964

EE 0.5687 0.8473 0.8728 0.8719 0.5964
FE 0.6603 0.8533 0.8680 0.6440 0.6718

IZH RK4 0.3750 0.8258 0.8689 0.8567 0.6220
EE 0.6444 0.8525 0.8679 0.6013 0.6466
FE 0.6965 0.8563 0.8730

HH-
T

RK4 0.3750 0.8251 0.8701

EE 0.6693 0.8539 0.8601 0.6120 0.5326
FE 0.7175 0.8589 0.8735

HH RK4 0.3750 0.8254 0.8701
EE 0.7002 0.8571 0.8602 0.6110 0.4846

The time span and the firing rate impact can
be seen through the GPF. From a comparison of
Tables 11 and 12, the maximum GPF varies as the
simulation window changes. The variation within
the simulation windows and firing rates is better
seen if the maximum GPFs giving the results in
Table 13 are placed in a graphical depiction (see
Fig. 4).

Figure 4 (top) shows that the efficiency
(maximum GPF) reduces linearly as the simulation
window increases. The LIF and IZH efficiency

Table 13. Numerical method (NM) and step size
selection for optimal simulation on different firing rates
and time spans

Time span

1000 ms 100 ms 10 ms

SN Rate NM Step NM Step NM Step
70 Hz EE 0.01 EE 0.01 EE 0.1

LIF 90 Hz EE 0.01 EE 0.01 EE 0.1
120 Hz EE 0.01 EE 0.01 EE 0.1

70 Hz RK4 0.01 RK4 0.01 RK4 0.01
IZH 90 Hz RK4 0.01 RK4 0.01 RK4 0.01

120 Hz RK4 0.01 RK4 0.01 RK4 0.01
70 Hz RK4 0.01 FE 0.01 FE 0.01

HH-T 90 Hz FE 0.01 FE 0.01 FE 0.01
120 Hz RK4 0.01 FE 0.01 FE 0.01

70 Hz FE 0.01 FE 0.01 FE 0.01
HH 90 Hz RK4 0.01 FE 0.01 FE 0.01

120 Hz RK4 0.01 FE 0.01 FE 0.01

decreases linearly with the time span. But, the IZH
efficiency presents a little negative inflection from
10 to 100 ms for a firing rate of 120 Hz. It should
be noted that the HH-T and HH efficiency barely
increases from 10 to 100 ms at all firing rates. This
last is contrary to the IZH negative inflection at the
same time span. The efficiency variation from 10 to
1, 000 ms is little affected (0− 1.57 %, depending on
the SN and firing rate).

According to Fig. 4 (bottom), the efficiency
remains constant for the frequencies of 70 and
90 Hz, whereas for a firing rate of 120 Hz the
efficiency changes depending on the SN. The LIF
efficiency falls linearly with the simulation window
increment and the IZH, HH-T, and HH efficiency
increases from 90 to 120 Hz. The efficiency change
from 70 to 120 Hz is little affected (i.e., 0.11−1.09 %,
depending on the SN and simulation window).
Hence, the efficiency varies more within the time
spans than within the firing rates.

It is observed from Fig. 4 that the HH is the most
efficient. In most cases, the IZH is the less efficient,
except for a firing rate of 120 Hz and a time span of
1, 000 ms. The LIF and HH-T are closer considering
the firing rates of 70 and 90 Hz and the time spans
of 100 and 1, 000 ms.

5.4 A Single Efficient Simulation

To choose a single numerical method and step size
producing efficient simulation for any simulation
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Fig. 4. The maximum Global Performance Factor (GPF) as a function of the time span (top) and firing rate (bottom).
Spiking neurons: LIF=Leaky Integrate-and-Fire, IZH=Izhikevich, HH=Hodgkin-Huxley, and HH-T=HH using tables

Table 14. Average of the Global Performance Factor
(GPF) over all pairs window-frequency

Neuron Numerical Time step size (ms)
model method 0.0001 0.001 0.01 0.1 1

FE 0.5892 0.8445 0.8696 0.7663 0.6789
LIF RK4 0.3750 0.8254 0.8677 0.7661 0.6789

EE 0.5727 0.8454 0.8697 0.7663 0.6789
FE 0.6685 0.8541 0.8573 0.6654 0.6366

IZH RK4 0.3750 0.8259 0.8664 0.7552 0.5336
EE 0.6588 0.8525 0.8532 0.6510 0.6258
FE 0.6998 0.8575 0.8691

HH-T RK4 0.3750 0.8255 0.8682
EE 0.6771 0.8502 0.7664 0.6614 0.5390
FE 0.7178 0.8598 0.8721

HH RK4 0.3750 0.8260 0.8701
EE 0.7045 0.8534 0.7627 0.6604 0.5349

window and firing rate studied here, the GPF over
all the simulation windows and firing rates was
averaged. The results are given in Table 14 where
the maximum averaged GPFs (gray cells) reveal
that the LIF is efficiently simulated by the EE (or
even by the FE since it produces virtually the same
result) and the IZH by the RK4. The HH-T and
HH are best simulated by the FE. All SNs are
efficiently simulated with a step size of 0.01 ms.
These results can also be inferred from Table 13.
It is also observed from Table 14 that the HH

presents the highest efficiency (0.8721), followed by
the LIF (0.8697), HH-T (0.8691), and IZH (0.8664).

Figure 5 displays the VCF as a function of
the time span (top) and firing rate (bottom) for
the single efficient simulation. Figure 5 (top)
demonstrates that the accuracy diminishes as the
simulation time span reduces where in most cases
the HH is the most accurate. The accuracy
reduction from 10 to 1, 000 ms is 2.37 − 9.59 %,
5.22 − 9.14 %, and 5.92 − 9.87 % for the LIF, IZH,
and HH-T, respectively. The HH increases 0.17 %
for 70 Hz and decreases 2.85− 6.13 % for the other
frequencies. As shown in Fig. 5 (bottom), not
necessarily the accuracy reduces with the firing
rate.

In particular, the IZH accuracy increases from 70
to 90 Hz over 10 ms and 90 to 120 Hz over 1, 000 ms.
Surprisingly, the HH-T accuracy increases linearly
with the frequency for a temporal window of
1, 000 ms. The accuracy decrement from 70 to
120 Hz is 0 − 7.40 % and 1.84 − 0.40 % for the
LIF and IZH, respectively. The HH-T increases
0.04 − 4.30 %. The HH increases 0.09 % for 70 Hz
and reduces 0.07− 6.19 % from 90 to 120 Hz.
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From Fig. 6, it can be seen the CPU time as
a function of the time span (top) and firing rate
(bottom) for the single efficient simulation. The
computational cost increases linearly with the time
span (Fig. 6 (top)) and remains nearly constant
with the firing rate (Fig. 6 (bottom)). The increment
from 10 to 1, 000 ms is 14, 708− 15, 779 %, 10, 977−
12, 078 %, 5, 307− 6, 612 %, and 11, 131− 11, 507 %
for the LIF, IZH, HH-T, and HH, respectively. The
HH is the most expensive, followed by the IZH,
HH-T, and LIF. It seems probable that the HH is
not prohibitive as Izhikevich stated in his influential
paper [38].

From the FLOPS mentioned by Izhikevich in [38]
(i.e., 13 FLOPS for the IZH and 1, 200 for the HH),
the HH is 9, 130 % more expensive than the IZH.
From Fig. 6, the HH is 24 − 40 % more expensive
than the IZH depending on the simulation window
and firing rate. Figure 6 shows that the IZH
CPU time is nearer to both the HH-T and HH,
instead of the LIF. The IZH and HH-T are close in
computational cost.

6 Conclusions

Prior work paid little attention to the simulation
window and firing rate consequences for the SN
simulation. In this study, we reviewed the LIF, IZH,
and HH models for the simulation windows of 10,
100, and 1, 000 ms and the firing rates of 70, 90, and
120 Hz. SNs were solved by the FE, RK4, and EE
with the step sizes of 0.0001, 0.001, 0.01, 0.1, and 1
ms.

The accuracy of the voltage time course and
spike-timing were measured by the SCF and
VCF, respectively. The computational cost was
measured by the CPU time through the CCF. The
GPF, which is a weighted sum considering the SCF,
VCF, and CCF contribution, was used to determine
the efficiency level. These factors were studied for
the time spans and firing rates mentioned.

It was found that in all cases, the SN simulation
is affected by the time span and firing rate.
The efficiency reduces linearly as the simulation
window increases and remains constant for the
frequencies of 70 and 90 Hz. For a firing rate of
120 Hz, the efficiency changes depending on the
SN. In any case, the efficiency variation is little

affected. The HH is the most efficient of all SNs. In
most cases, the IZH is the less efficient, except for
a firing rate of 120 Hz and a time span of 1, 000 ms.
The LIF and HH-T are closer in efficiency for the
firing rates of 70 and 90 Hz and the time spans of
100 and 1, 000 ms.

The accuracy diminishes as the simulation time
span reduces where in most cases the HH is
the most accurate. The reduction is enough to
consider an important accurate variation with the
simulation window. The accuracy can decline or
rise depending on the SN. The accuracy changes
more with the time span than with the firing rate.

The computational cost increases drastically in
a linear way with the time span and remains
practically constant with the firing rate. The HH
is the most expensive, followed by the IZH, HH-T,
and LIF. The IZH computational cost is nearer to
both the HH-T and HH rather than to the LIF. The
IZH and HH-T are close in computational cost.
It is suggested using the EE numerical method
to efficiently solve the LIF, the RK4 for the IZH,
and the FE for the HH and HH-T (all numerical
algorithms with a step size of 0.01 ms). Also, we
recommend using the HH-T rather than the HH.

Our results expand prior work demonstrating
that the accuracy increases monotonically and
the computational cost increases in a power-law
complexity as the step size increases. Also,
previous works have shown that the accuracy
and computational cost depend on the internal
mechanisms to generate the spikes.

This study provides compelling evidence for
a clear time span and firing rate impact on
the SN simulation. This study serves to make
better decisions for a broad range of applications,
such as simulation of phenomenological or
detailed large-scale neural networks, artificial
neural networks, neurophysiological data fitting or
silicon neurons. We recommend measuring the
effects that the different parameters have on the
simulation for a particular problem. In this way,
efficient or optimal parameters could be found.

Although several works are tackling the SN
simulation problem on different fronts, a framework
to test the SN simulation optimality is inexistent.
This study and the preceding ones [77, 50, 79, 72,
81, 82] represent the first steps to understand how
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the different parameters influence the single SN
simulation to construct such a framework.

Besides, our findings are in agreement with other
authors suggesting that the Izhikevich statements
could be mistaken. In most cases when the
efficient simulations are compared, the HH shows
the highest efficiency for any time span and firing
rate whereas the IZH shows the lowest. A similar
behavior was observed for the accuracy in most
cases. In all cases, the IZH computational cost
is closer to that of the HH and HH-T rather than
that of the LIF. Moreover, the IZH could be more
expensive than the HH-T.

Prohibition level is hard to calculate because
there are no established criteria to determine an
SN is prohibitive or not. The HH has been
considered as the most prohibitive. If so, this work
suggests that the IZH is also prohibitive. Previous
works have suggested that the HH is not restrictive
and that the IZH is also expensive as it [72, 81].
The HH reduction through the IZH involved an
increment in the inaccuracy, computational cost,
and inefficiency. Notably, the biological plausibility
was also eliminated in the IZH. As in [72] and [49],
we recommend using the HH or HH-T rather than
the IZH because of the biological closeness.

Some limitations being out of the scope of
this work are worth noting. The primary aim
was to describe and highlight the importance of
two parameters (i.e., the firing rate and time
span) being ignored in previous studies. Other
parameters should be measured. This study
included only three simulation windows and three
firing rates. Future work should, therefore, include
a greater number of simulation windows and
firing rates to obtain a more precise accuracy,
computational cost, and efficiency behavior. Other
SNs models, firing patterns, numerical methods,
and time steps also should be included.

Appendix

All tests carried out on a computer running the
Linux Ubuntu 14.04 LTS 64 bits operating system
on an Intel Core i7-2600 (3.4 GHz with eight cores)
processor. The memory of the computer was 8
GB. Neuronal models were implemented in Python
2.6.5 and timing was calculated with the library

time.clock() provided by the library time (https:
//docs.python.org/2/library/time.html).
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Segev, I., & Schürmann, F. (2015). Reconstruction
and simulation of neocortical microcircuitry. Cell,
Vol. 163, No. 2, pp. 456–492.

57. Mascagni, M. V. & Sherman, A. S. (1998).
Numerical methods for neuronal modeling. The MIT
Press, Cambridge, Massachusetts, second edition,
pp. 569–606.

58. Mayr, C. G. & Partzsch, J. (2010). Rate and pulse
based plasticity governed by local synaptic state
variables. Front. Synaptic Neurosci., Vol. 2, No. 33,
pp. 1–28.

59. Morrison, A., Straube, S., Plesser, H. E., & Dies-
mann, M. (2007). Exact subthreshold integration
with continuous spike times in discrete-time neural
network simulations. Neural Comput., Vol. 19, No. 1,
pp. 47–79.
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