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Abstract. The search guided by a user contributes
to solving optimization problems. No adequate
mechanisms for algorithms that use the metaheuristic
Ant Colony (ACO), to achieve this interaction are
known. This paper proposes a model of integration
of visualization techniques in these algorithms that
allows the user to interact with real-time search and
guide her. A software tool was implemented to solve
Traveling Salesman Problem (TSP), with ACO algorithm
according to the proposed model. An experimental
analysis with the developed tool was performed and the
results showed the efficiency of the model, finding better
solutions to problems TSP in less time.

Keywords. Ant colony optimization, user guide search,
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1 Introduction

The combinatorial optimization problems included
in the NP-complete class are of great scientific
and technological interest given their everyday
applicability.They cover different areas of know-
ledge including Mathematics, Computer Science,
Operational Research, Genetics, Engineering
and Electronics. They involve optimization
from the classic problems of telecommunication
network design, route programming, frequency
assignment, machine planning or production

organization to the most current engineering and
software re-engineering [11].

Traveling Salesman Problem (TSP), is a classic
problem of class NP-Complete and has as
objective given the complete graph Kn with edge
weights cuv, find a shortest Hamiltonian tour in Kn

[13]. Due to their intractability, a large number of
approximate methods have been designed to solve
them, which find good solutions in reasonable
times.

One of these methods is the Metaheuristic of
Optimization by Ant Colonies. Since its inception,
ACO algorithms have proven effective in solving
combinatorial optimization problems, but collective
intelligence, which is the main weapon of these,
makes the quality of the solutions found directly
proportional to the number of agents (Ants), that
are interacting in the colony. This coupled with
the existence of many problems characterized by
the large size of their real instances, makes the
execution of the ACO algorithms very costly for the
time it takes to reach a sufficiently good, or perhaps
optimal solution.

Obtaining information and interacting with a run-
time algorithm, with its parameters, components
and/or strategies is a powerful variant to improve
its efficiency.
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Moreover, in ACO metaheuristics algorithms,
characterized by a set of parameters that influence,
to a great extent, the search, its levels of
intensification and exploration. From the above,
we derive the problem of ignorance of adequate
mechanisms to interact with real-time optimization
algorithms that improve their efficiency.

To solve the problem we proposed: design a
model of integration of visualization techniques
to the ACO optimization algorithms, which would
allow the user to guide the search of the solutions
through their interaction with the visualization of the
algorithm in real time and in this way improve their
quality; and implement a software tool according to
the model to solve TSP problems with the algorithm
System of Ant Colony and user interaction [3].

The topic of the user-driven search is very
young, the literature on the subject covers some
studies: Fast and Robust Hand Tracking Using
Detection-Guided Optimization [15], RNA-guided
human genome engineering via Cas9 [10], Su-
perior solution guided particle swarm optimization
combined with local search techniques [18],
Guided Policy Search [9].

2 Related Work

2.1 Metaheuristic Optimization by Ant Colonies

The metaheuristic of Optimization by Ant Colonies
has its source of inspiration in the behavior of
the real ants that minimize the route between its
colony and any source of supply, and is based
fundamentally in the indirect communication that
takes place between the same ones the traces of
a substance called pheromone, which they leave
behind [1].

The structure of a generic algorithm for ACO
metaheuristics is as follows [5]:

Procedure ACOMetaheuristic
Schedule Activities

1. ConstructAntsSolutions

2. UpdatePheromones

3. DaemonActions

End-Procedure
End-ScheduleActivities

— ConstructAntsSolutions: manages a colony
of ants that concurrently and asynchronously
visit adjacent states of the considered problem
by moving through neighbor nodes of the
problems construction graph. They move by
applying a stochastic local decision policy that
makes use of pheromone trails and heuristic
information. In this way, ants incrementally
build solutions to the optimization problem.
Once an ant has built a solution, or while
the solution is being built, the ant evaluates
the (partial), solution that will be used by the
UpdatePheromones procedure to decide how
much pheromone to deposit [5].

— UpdatePheromones: is the process by which
the pheromone trails are modified. The trails
value can either increase, as ants deposit
pheromone on the components or connections
they use, or decrease, due to pheromone
evaporation. From a practical point of view, the
deposit of new pheromone increases the pro-
bability that those components/connections
that were either used by many ants or that
were used by at least one ant and which
produced a very good solution will be used
again by future ants. Differently, pheromone
evaporation implements a useful form of
forgetting: it avoids a too rapid convergence
of the algorithm toward a suboptimal region,
therefore favoring the exploration of new areas
of the search space [5].

— DaemonActions: procedure is used to
implement centralized actions which cannot
be performed by single ants. Examples of
daemon actions are the activation of a local
optimization procedure, or the collection of
global information that can be used to decide
whether it is useful or not to deposit additional
pheromone to bias the search process from a
nonlocal perspective. As a practical example,
the daemon can observe the path found by
each ant in the colony and select one or a few
ants (e.g., those that built the best solutions
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in the algorithm iteration), which are then
allowed to deposit additional pheromone on
the components/connections they used [5].

Several algorithms of ACO metaheuristics have
been proposed, among those most cited in the
literature: An Ant System (AS) [7], Ant Colony
System (ACS) [6] and Max-Min Ant or Max-Min Ant
System (MMAS) [16].

2.2 Integration Model of Visualization
Techniques

Among the goodness of the visualization we can
mention that it allows to describe the behavior of
the algorithms at each moment of its execution, the
state of each variable, the search space, in order to
give a more direct treatment to the algorithm and to
be able to search for desired behaviors or to locate
regions of interest, and interact with the information
provided in order to find solutions that are closer to
the best and faster. All this based on the ability
of the human brain to easily analyze visual images
with a lot of information [2, 8, 17].

Visualization also contributes to the balance
between intensification and diversification, as
the user can guide the search as appropriate.
We refer to intensification as the way to direct
the most exhaustive search process in a given
neighborhood and to diversification as the ability to
appropriately visit various distant neighborhoods.

This balance is of fundamental importance
since in most of the optimization problems the
intensification and diversification strategies are
opposed, in other words, a metaheuristic the more
time it takes to intensify the search in a given
region, the less time it can devote to diversify it in
regions still unexplored, and vice versa [11].

For example, with the modification in the
execution time of the algorithm of the amount of
pheromone in the arcs that have higher values, it is
possible to increase the exploration.

2.3 Visualizations and Interactions that can be
Implemented

An interactive system provides the possibility
for the user to have external control over the
information being displayed and allows him to
modify the algorithm whose behavior is being
observed or the values of the data or parameters
being processed. The information with which the
ACO algorithms work can be visualized and thus a
set of interactions can be implemented. Here are
some alternatives:

— Display at each moment of the execution of
the algorithm the route of each of the ants.
It allows us to observe the trajectory that
the ants follow to construct their solution and
the accumulated cost in each moment, to
analyze preferences of the ants for following
certain trajectories, which is proportional to
the high amount of pheromone in the arches
that compose it.

— Show the best / worst trajectories of ants from
time to time.

— Clone or delete one or more ants. This
interaction is associated with the two previous
views. When cloning an ant, usually one with
a good trajectory, the chances of obtaining a
better solution in the end are increased and by
eliminating the ants that follow a bad trajectory
would save time by exploring bad solutions.

— Display and interact with the pheromone
matrix by adding or deleting a value to the
pheromone imprint in certain arcs. Adding
pheromone to the arc joining the nodes i and j
means raising the probability that an ant being
at the node I is decided by the option to go
to node j, likewise when removing pheromone
in an arc restricts to a greater extent the
choice to opt for that arc. This possibility
is of vital importance, since the construction
of the solutions of the ants and in general
the solution of the problem to be optimized
depends directly on the matrix of pheromone
traces and in this way the construction of the
solutions can be guided by the user. Figure
1A, shows an example of a pheromone matrix
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display, where the arcs are drawn in shades
of gray and represent the pheromone trace in
them. The greater the clarity of the bow, the
less pheromone and vice versa.

— Filter the graph where the pheromone levels
are shown showing only the arcs whose
pheromone fingerprint is in a certain range
(See Figure 1B).

This interaction is important since it shows
more clearly the arcs whose levels of
pheromone are in a selected range. In another
case all arcs (n2 - n), would be shown, which
would make it difficult to analyze them.

— Set an initial node or a region from where to
get the initial node with which the ants begin
building their solution.

— Set an initial node or a region from where to
get the initial node with which the ants begin
building their solution.

— Provide information about nodes and arcs. It
includes the number of the node that identifies
it in the path and the weight of the arcs,
it is very useful when the data is displayed
in a certain scale. This information can be
displayed from the beginning and statically or
dynamically, for example by moving or clicking
the mouse over the node or arc.

— Show in more detail a selected region. It
is very advantageous if the number of nodes
in the graph is large and you want to better
observe the behavior of ants in a certain
region or modify parameters that are not easy
Visual access.

— Visualize the solutions and filter according
to their quality. It allows us to compare
the finished solutions with the ones that ants
are building. One way of representing the
solutions can be seen in Figure 1C. This
provides a lot of visual information, because
the solutions found are displayed in different
colors, where values closer to red would be
the worst solutions, while the best would be
close to blue.

— Vary the run speed of the algorithm. It makes
it possible to look more closely at the data or
how the trajectories of the ants vary.

— Stop the algorithm. In this way the parameters
involved in the algorithm can be analyzed
without being modified during the time that the
analysis is consumed.

— Change the number of ants at any point in
the execution of the algorithm. Each running
ant means an attempt to find a good solution,
but in turn implies a greater consumption
of computational resources. Both indicators
should be balanced appropriately depending
on the available conditions.

— Vary the execution time of the algorithm.

— Modify algorithm parameters, e.g. initial
pheromone and evaporation constant. The
researcher is free to experiment by modifying
these values for their specific problems in
order to find the most appropriate ones,
which provides a convenient flexibility to the
algorithm.

— Fix a global path to which the solution of the
problem must approach while optimizing the
objective function. There are two fundamental
reasons for this interaction: one is that we
intuitively identify what can be a good route,
and whether total or partial; and the second,
the possibility of having certain risks in specific
areas, which would condition to some extent
the chosen path. In Figure 1D, the path in
yellow would be the one that the user would
set, whereas the trajectory of the ant (drawn in
green) should approach that path.

— Draw a part of the path. P1-P2-P3-P4 draws
a non-convex polygon that can be replaced by
the path P1-P3-P2-P3-P4. P4 with the same
nodes that minimizes the cost.

— Fix or delete an arc of the path. It can be
assumed in certain cases that a specific arc
must belong to the solution (Figure 1F, arc in
blue) and fix it by means of the interaction.
This implies that the moment one of the
vertex of the arc appears in the solution,
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automatically the other vertex of the arc will be
next.

— Show numerical results of the algorithm state.
The execution of the algorithm at each
moment is producing numerical values that
can be visualized.

A B

C
D

E F

Fig. 1. Visualizations / Interactions that can be
implemented in ACO algorithms

2.4 Model Schema

The integration of visualization techniques in
algorithms presupposes the visualization, during
the execution of the algorithm, of the information
that is handled. This information is presented to
the user so that he can interact with it and can
modify it at his convenience. Figure 2, exemplifies
an integration model of visualization techniques in
ACO metaheuristics algorithms.

The operation of this model is as follows.
The algorithm begins with the initialization of
parameters that could be: quantity of ants, initial
pheromone, evaporation constant, visibility scaling
factor, among others. The nodes that make up the
graph of the problem are displayed, for example
their number, with this visualization the user can
interact (represented in the figure by a rectangle
with circular corners), selecting the initial node

Fig. 2. Model of integration of visualization techniques
to ACO algorithms

in which the ants must begin to construct their
solution or a region from which to obtain said initial
node. After the creation of the ants, these begin
their activity in parallel and asynchronous.

For each one of them, the construction of its
solution is visualized in real time drawing the arcs
between the states in which they are moving. From
the visualization of the trajectories (to visualize also
the ants with better and worse trajectories), can
be cloned or eliminated ants. When an ant is
cloned, the new ant receives the path traversed
by the cloned ant. From the visualization of the
trajectories the interactions that have to do directly
with the decision to choose the next node that will
be part of the route, are given off, among them:
to fix a global route to which the solution of the
problem must be approached at the same time as
optimize the objective function, draw a part of the
path, set or exclude an arc of the path.

When the ants deposit pheromone, the same for
algorithms with online update step by step, that
for those who update the pheromone a posteriori,
the visualization of the matrix of pheromones
(resource represented in the figure by a circle),
must also be updated so that the user can interact
in real time with this visualization and modify the
matrix. The pheromone graph can be shown with
arcs in different colors, illustrating the amount of
pheromone in each arc.

The user can at any time filter this graph to
choose the arcs that have a certain amount of
pheromone. After each iteration of the algorithm
can be visualized, also with different colors, the
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solutions found according to a pre-established
scale. The user can also filter the display that is
presented, according to the quality of the solutions.
In addition, the numerical results of the algorithm
can be displayed and the parameters of the
algorithm can be varied at any time in the run.

2.5 Visualization Tool

To validate the proposed integration model, we
developed a software prototype: ACOVis version
1.0, which solves TSP problems with the ACS
algorithm. This tool allows the user guide the
search to find a good solution to the problem by
interacting with the visualization of the algorithm.
The implementation was done in Java language,
using the Java2D library for visual representations
and multi-thread programming to simulate the
parallel and asynchronous behavior of the ants [4].

Fig. 3. Main view of ACOVis 1.0

Figure 3, shows how the main view of the
application was conformed. In general, this view
has: a menu with several options, four panels,
some buttons: two that allow you to exchange the
left and right panels, one to change the displayed
ant, another to activate the window that shows
the best and worst paths in the moment that is
executed and the others with movement functions
of the major panel, three input fields to set the
parameters: number of ants, run time and number
of iterations and several slider. The larger left panel
is mainly to visualize the path of the ants, the upper
right shows the graph of pheromone traces, the

lower right displays the solutions found in some of
the iterations of the algorithm and the panel below
shows the numerical results of the algorithm.

2.6 Experimental Results

An experimental study was carried out to compare
the behavior of the pure ACS algorithm and the
ACS algorithm with user interaction through the
graphical interface created. We work with a set
of instances representative of TSP [12], namely:
eil51, berlin52, st70, kroA100, a280, rat783 and
pr1002. The algorithm was applied to each of them
with and without user interaction using the same
parameters:

α = 1,β = 2,ϕ = 0.1, q0 = 0.9, (1)

proposed by Gambardella and Dorigo [6], and 10
ants. There were 10 executions for the first five
instances and 5 executions for the remaining ones,
in both tests.

In the case of user-guided executions, the main
interaction that was applied was the modification
of the pheromone matrix, before and after
the beginning of the algorithm, increasing or
decreasing a value to the pheromone trace in
the arcs estimated convenient (arcs that visually
the user estimates that increasing the degree of
pheromone can obtain better solutions), also in
some iterations ants with good or bad behaviors
respectively were cloned or eliminated.

The results were obtained in a workstation that
among its features has a Core i5-3470 processor,
with 8 gigabyte of DDR3 RAM and graphics
adapter Intel HD Graphics 2500. The dataset and
the best solution registered at TSPLIB1. TSPLIB
is a library of sample instances for the TSP (and
related problems), from various sources and of
various types [14]. Table 1, summarizes the results
obtained in the study.

To compare the mean values of the costs
obtained in the executed runs of the pure ACS
algorithm and the ACS algorithm guided by the
user, for the seven instances of the TSP analyzed,
we used the nonparametric test of the Wilcoxon

1http://www1.iwr.uni-heidelberg.de/groups/comopt/software
/TSPLIB95/index.html
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Table 1. Experimental results

Name # Nodes ACS ACS user-guided Best Solution
Cost Iterations Cost Iterations

eil51 51 443.6 500 426.9 300 426
berlin52 52 7585.4 500 7542 300 7542

st70 70 705.3 500 675 300 675
kroA100 100 24024.5 500 21321.5 300 21282

a280 280 2885.9 500 2599.3 300 2579
rat783 783 10005.6 1000 8901.4 300 8806
pr1002 1002 301957.2 1000 279066.3 300 259045

signed ranges. This test yielded an asymptotic
significance value of 0.018 ( < 0.05), so that there
are significant differences between the solutions
obtained by both tests.

Therefore, user interaction with the optimization
algorithm may lead to better results. On the other
hand, considering that the number of iterations
for each run of the user-guided ACS algorithm
(300 iterations), was intentionally lower than for
pure ACS runs (500 or 1000 according to the TSP
instance), it is evident that only through interaction
with the user can better solutions be obtained, but
better solutions can be obtained in a shorter time.

We consider it fair to recognize that the measure
of how beneficial the guided search by the user
can be depends on several factors, among them:
familiarization of the user with the problem, size
of the problem and distribution of the nodes in the
plane.

3 Conclusion and Future Work

During the present investigation, the metaheu-
ristics of Optimization with Ant Colonies were
described, identifying the types of interactions that
the user could perform with the visualization of
the ACO algorithms and the contributions of these
to the solution of the optimization problems. In
addition, a model of integration of visualization
techniques was proposed to the algorithms for
optimization of ACO metaheuristics, implementing
a software tool to interact with the visualization of
the ACS algorithm in the TSP solution.

An experimental study with the implemented
tool showed that when the user interacts with the
optimization algorithm at runtime it can achieve
better quality solutions and in acceptable time
periods, always depending on the knowledge,
intuition and insight of the specialist operating the

tool. User-guided search for solving optimization
problems offers considerable advantages, so it is
recommended that you continue your study.
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