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Abstract. This paper presents an extension to the
theory on the analysis of stability of complex systems
with time delay of fractional order, the previous study is
based on the theory of functions of Lyapunov-Krasovski
and the Fractional Order PID control law. The analytical
results are illustrated by the simulation of fractional
nonlinear systems interconnected with time delay which
are forced to follow complex trajectories as chaotic
systems.

Fractional complex dynamical systems, trajectory
tracking, Fractional Order Lyapunov-Krasovskii theory,
Fractional Order PID control law.

1 Introduction

This paper analyzes the path not for a non-linear
system but for a network of nonlinear systems
coupled with delay, which are forced to follow a
reference signal generated by a non-linear chaotic
system. The control law that guarantees trajectory
tracking is obtained using the Lyapunoc-Krasovskii
methodology and the PID control law. The
control law that guarantees trajectory tracking
is obtained by using the Lyapunov methodology
and the Fractional Order PID Control Law. It
is interesting to note that more than half of
the industrial controllers in use today are PID

controllers or modified PID controllers. The
proportional action tends to stabilize the system,
while the integral control action tends to eliminate
or reduce steady-state error in response to various
inputs.

Derivative control action, when added to a
proportional controller, provides a means of
obtaining a controller with high sensitivity. An
advantage of using derivative control action is
that it responds to the rate of change of the
actuating error and can produce a significant
correction before the magnitude of the actuating
error becomes too large.

Derivative control thus anticipates the actuating
error, initiates an early corrective action, and
tends to increase the stability of the system.
The combination of proportional control action,
integral control action, and derivative control action
is termed proportional-plus-integral-plus-derivative
control action. It has the advantages of each of the
three individual control actions.

A Fractional Order PID controller, also known as
a
[
PIλDα

]
controller, takes on the form [1]:

u(t) = Kpe(t) +KiaD
−λ
t e(t) +KdaD

α
t e(t),

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1583–1591
doi: 10.13053/CyS-23-4-2754

ISSN 2007-9737



where λ and α are the fractional orders of the
controller and e(t) is the system error. Note
that the system error e(t) replaces the general
function f(t).

The analysis and control of complex behavior
in complex networks, which consist of dynamical
nodes, has become a point of great interest
in recent studies [2, 3, 4]. The complexity in
networks comes from their structure and dynamics
but also from their topology, which often affects
their function.

Recurrent neural networks have been widely
used in the fields of optimization, pattern
recognition, signal processing and control systems,
among others. They have to be designed in such
a way that there is one equilibrium point that is
globally asymptotically stable.

Trajectory tracking is a very interesting problem
in the field of theory of systems control; it
allows the implementation of important tasks
for automatic control such as: high speed
target recognition and tracking, real-time visual
inspection, and recognition of context sensitive
and moving scenes, among others. We present
the results of the design of a control law that
guarantees the tracking of general fractional order
complex dynamical networks.

2 Mathematical Models

2.1 Fractional General Complex Dynamical
Network

In this work we use Caputo’s fractional operator
which is defined, for 0 <α<1, by:

x(α)(t) =c
0 D

α
t x(t) =

1

Γ(1− α)

∫ t

0

x’(τ)(t− τ)−αdτ .

If x(t) ∈ Rn, we consider that x(α)(t) is the
Caputo fractional operator applied to each entry:

x(α)(t) = (c0D
α
t xi1(t), ...,c0D

α
t xin(t))T .

Consider a network consisting of N linearly and
diffusively coupled nodes, with each node being an
n-dimensional dynamical system, described by:

x
(α)
i = fi(xi)+

N∑
j=1
j 6=i

cijaijΓ(xj−xi), i = 1, 2, . . . ,N ,

(1)
where xi = (xi1,xi2, . . . ,xin)T ∈ Rn are the state
vectors of node i, fi : Rn 7−→ Rn represents the
self-dynamics of node i, constants cij > 0 are
the coupling strengths between node i and node
j, with i, j = 1, 2, . . . ,N .

Γ = (τij) ∈ Rn×n is a constant internal matrix
that describes the way of linking the components in
each pair of connected node vectors (xj −xi): that
is to say for some pairs (i, j) with 1 ≤ i, j ≤ n and
τij 6= 0 the two coupled nodes are linked through
their ith and jth sub-state variables, respectively.

While the coupling matrix A = (aij) ∈ RN×N
denotes the coupling configuration of the entire
network: that is to say if there is a connection
between node i and node j(i 6= j), then aij = aji =
1; otherwise aij = aji = 0.

2.2 Fractional Time-Delay Recurrent Neural
Network

Consider a fractional delayed recurrent neural
network in the following form:

x(α)ni = Anixni +Wniσ(xin(t− τ) + uin +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin),

i = 1, 2, . . . ,N , (2)

where xin = (xin1 ,xin2 , . . . ,xinn)T ∈ Rn is the
state vector of neural network i, uin ∈ Rn is
the input of neural network i, Ain = −λinIn×n,
i = 1, 2, . . . ,N , is the state feedback matrix, with
λin being a positive constant, Win ∈ Rn×n is the
connection weight matrix with i = 1, 2, . . . ,N , and
σ(·) ∈ Rn is a Lipschitz sigmoid vector function
[5, 6], such that σ(xin) = 0 only at xin = 0, with
Lipschitz constant Lσi , i = 1, 2, . . . ,N and neuron
activation functions σi(·) = tanh(·), i = 1, 2, . . . ,N
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where xi = (xi1,xi2, . . . ,xin)T ∈ Rn are the state
vectors of node i, fi : Rn 7−→ Rn represents the
self-dynamics of node i, constants cij > 0 are
the coupling strengths between node i and node
j, with i, j = 1, 2, . . . ,N . Γ = (τij) ∈ Rn×n is a
constant internal matrix that describes the way of
linking the components in each pair of connected
node vectors (xj−xi): that is to say for some pairs
(i, j) with 1 ≤ i, j ≤ n and τij 6= 0 the two coupled
nodes are linked through their ith and jth sub-state
variables, respectively.

While the coupling matrix A = (aij) ∈ RN×N
denotes the coupling configuration of the entire
network: that is to say if there is a connection
between node i and node j(i 6= j), then aij = aji =
1; otherwise aij = aji = 0.

3 Trajectory Tracking

The objective is to develop a control law such that
the ith fractional delayed neural network (2) tracks
the trajectory of the ith fractional dynamical system
(1). We define the tracking error as ei = xin − xi,
i = 1, 2, . . . ,N whose time derivative is:

e
(α)
i = x

(α)
ini
− x(α)i , i = 1, 2, . . . ,N . (3)

From (1, 2, 3), we obtain:

e
(α)
i = Ainxin +Winσ(xin(t− τ)) + uin − fi(xi) +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin) −

N∑
j=1
j 6=i

cijaijΓ(xj − xi), i = 1, 2, . . . ,N . (4)

Adding and subtracting, Winσ(xi(t − τ)), αi(t),
i = 1, 2, . . . ,N , to (4), where αi is defined below,
and considering that xin = ei + xi, i = 1, 2, . . . ,N ,
then:

e
(α)
i =Ainei +Win(σ(ei + xi(t− τ)) − σ(xi(t− τ)))+

(uin − αi) + (Ainxi +Winσ(xi(t− τ)) + αi) −

fi(xi) +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin), (5)

N∑
j=1
j 6=i

cijaijΓ(xj − xi), i = 1, 2, . . . ,N .

In order to guarantee that the ith neural network
(2) tracks the ith reference trajectory (1), the
following assumption has to be satisfed:

Assumption 1. There exist functions ρi(t) and
αi(t), i = 1, 2, . . . ,N , such that:

ρ
(α)
i (t) = Ainρi(t) +Winσ(ρi(t)) + αi(t)

ρi(t) = xi(t), i = 1, 2, . . . ,N . (6)

Let’s us define:

ũin = (uin − αi)

φσ(ei,xi(t− τ)) = σ(ei + xi(t− τ)) − σ(xi(t− τ)),

i = 1, 2, . . . ,N . (7)

From (6, 7), equation (5) is reduced to:

e
(α)
i = Ainei +Winφσ(ei,xi(t− τ)) + ũin +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)−

N∑
j=1
j 6=i

cijaijΓ(xj − xi), (8)

i = 1, 2, ...,N .

We can also write:

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)

= Γ(

N∑
j=1
j 6=i

cinjnjainjnxjn − xin
N∑
j=1
j 6=i

cinjnainjn)

N∑
j=1
j 6=i

cijaijΓ(xj − xi), (9)

= Γ(

N∑
j=1
j 6=i

cijaijxj − xi
N∑
j=1
j 6=i

cijaij),

i = 1, 2, . . . ,N ,
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where we used that cinjn = cij and ainjn = aij .
Then, with the above equation, equation (8)

becomes:

e
(α)
i = Ainei +Winφσ(ei,xi(t− τ)) + ũin +

Γ(

N∑
j=1
j 6=i

cijaijej − ei
N∑
j=1
j 6=i

cijaij), (10)

= Aniei +Winφσ(ei,xi(t− τ)) + ũin +
N∑
j=1
j 6=i

cijaijΓ(ej − ei),

i = 1, 2, . . . ,N .

It is clear that ei = 0, i = 1, 2, . . . ,N is an
equilibrium point of (10), when ũin = 0,

i = 1, 2, . . . ,N . Therefore, the tracking problem
can be restated as a global asymptotic

stabilization problem for the system (10).

4 Tracking Error Stabilization and
Control Design

In order to establish the convergence of (10) to
ei = 0, i = 1, 2, . . . ,N , which ensures the desired
tracking, first, we propose the following candidate
Lyapunov-Krasovskii function [7]:

VN (e) =

N∑
i=1

V (ei) =

N∑
i=1

1
2 [(eTi ,wTi )(ei,wi)

T ] + (11)∫ t

t−τ
(φTσ (s)WT

niWniφσ(s))ds.

In fractional calculus, the product rule for the
derivative is no longer valid. However, we still have
an upper bound for the product that appears in
(11). Specifically, from Lemma 1 in [8] the time
derivative of (11), along the trajectories of (10), and
adding the Derivative ”D”:

aDα
t V =eTi aD

α
t ei + wTi aD

α
t wi+

φTσ (t)WT
niWniφσ(t)−

φTσ (t− τ)WT
niWniφσ(t− τ),

aDα
t V =eT [aDα

t ei +KdaD
α
t ei(t)] + wTi aD

α
t wi+

φTσ (t)WT
niWniφσ(t)−

φTσ (t− τ)WT
niWniφσ(t− τ),

aDα
t V =eTi [1 +Kd]aD

α
t ei(t) + wTi aD

α
t wi+

φTσ (t)WT
niWniφσ(t)− (12)

φTσ (t− τ)WT
niWniφσ(t− τ),

If a = [1 + Kd],α = λ, and wi = KiaD
−α
t ei(t),

then aDα
t wi = Kie(t), [9]

aDα
t V =

N∑
j=1

aeTi (Ainei +Winφσ(ei,xi(t− τ))+

ũin +

N∑
j=1

j 6=i

cijaijΓ(ej − ej)) + wTi Kie(t)+

φTσ (t)WT
niWniφσ(t)−

φTσ (t− τ)WT
niWniφσ(t− τ).

We can then write:

aDα
t V =

N∑
i=1

(
−aλin ‖ei‖

2
+

æᵀ
iWinφσ(ei,xi) + aeᵀi

∼
uin+

a

 N∑
j=1

j 6=i

cijaije
ᵀ
i Γ(ej − ej)

+ wTi Kie(t)

φTσ (t)WT
niWniφσ(t)−

φTσ (t− τ)WT
niWniφσ(t− τ). (13)

Next, let’s consider the following inequality,
proved in [10, 11]:

X>Y + Y >X ≤ X>ΛX + Y >Λ−1Y , (14)

which holds for all matrices X,Y ∈ Rn×k and
Λ ∈ Rn×n with Λ = Λ> > 0. Applying (14) with Λ =
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In×n to the term eᵀiWinφσ(ei,xi), i = 1, 2, ...,N ,
we get:

eᵀiWinφσ(ei,xi(t− τ)) ≤ 1

2
eᵀi ei+

1

2
φ>σ (ei,xi(t− τ))W>inWinφσ(ei,xi(t− τ)) (15)

=
1

2
‖ei‖2 +

1

2
φ>σ (ei,xi(t− τ))×

W>inWinφσ(ei,xi(t− τ)),
i = 1, 2, . . . ,N .

Since φσ is Lipschitz, then:

‖φσ(ei,xi)‖ ≤ Lφσ1 ‖ ei ‖, i = 1, 2, . . . ,N , (16)

with Lipschitz constant Lφσi . Applying (16) to
1
2φ
>
σ (ei,xi)W

>
in
Winφσ(ei,xi) we obtain:

1

2
φ>σ (ei,xi)W

>
inWinφσ(ei,xi),

≤ 1

2

∥∥φ>σ (ei,xi)W
>
inWinφσ(ei,xi)

∥∥ , (17)

≤ 1

2

(
Lφσi

)2 ‖Win‖
2 ‖ei‖2 , i = 1, 2, ...,N .

Next, (15) is reduced to:

eᵀiWinφσ(ei,xi)

≤1

2
‖ei‖2 +

1

2

(
Lφσi

)2 ‖Win‖
2 ‖ei‖2 (18)

=
1

2

(
1 + L2

φσi
‖Win‖

2
)
‖ei‖2 , i = 1, 2, ...,N .

Then, we have that:

V
(α)
N (e) ≤

N∑
i=1

eT (−aλinei − a
N∑
j=1
j 6=i

cijaijΓei+

a

2

(
1 + L2

φσi
‖Win‖

2
)
ei+ (19)

wTi Kie(t) + a
N∑
j=1
j 6=i

cijaije
ᵀ
i Γej + aeTi

∼
uni .

We define
∼
uni =

≈
ui +

≈
uij + Kpiei + wi −

γ
2

(
1 + L2

φσi
‖Win‖

2
)

, i = 1, 2, ...,N , and from (19)
we get:

V
(α)
N (e) ≤

N∑
i=1

[−a( λni −Kp)e
T
i ei +

a(γ − 1)

2

(
1 + L2

φσi
‖Win‖

2
)
eTi ei +

(a+Ki)e
Twi − a

N∑
j=1
j 6=i

cijaijΓe
ᵀ
i ei (20)

+a
N∑
j=1
j 6=i

cijaijΓe
ᵀ
i ej + aeT

≈
ui + aeT

≈
uij .

Here we select (a + Ki) = 0, so, Kd = −Ki −
1;Kd ≥ 0,then Ki ≥ −1. With this selection of
parameters (20) is reduced to:

aDα
t V = V

(α)
N (e) ≤

N∑
i=1

[−a( λni −Kp)e
T
i ei +

a(γ − 1)

2

(
1 + L2

φσi
‖Win‖

2
)
eTi ei −

a
N∑
j=1
j 6=i

cijaijΓe
ᵀ
i ei +

a
N∑
j=1
j 6=i

cijaijΓe
ᵀ
i ej + aeT

≈
ui + aeT

≈
uij .

In this part, if λni −Kp > 0, a > 0, then aDα
t V <

0,∀ei,wi,Wni ,the traking error is asymptotically
stable and it converges to zero for every ei 6=
0; i.e. the Neural Network will follow the plant
asymptotically.

Now, we propose to use the following control law:

∼
uni = −

(
1 + L2

φσi
‖Win‖

2
)
e

−
N∑
j=1
j 6=i

cijaijΓej , (21)

i = 1, 2, ...,N .

In this case, V (α)
N (e) < 0, ∀ e 6= 0. This means

that the proposed control law (21) can globally and
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asymptotically stabilize the ith error system (10),
therefore ensuring the tracking of (1 by 2).

Finally, the control action of the recurrent neural
networks is given by:

uin = fi(xi) + λnixi −Wniσ (xi(t− τ)) +

1

2

(
1 + L2

φσi
‖Win‖

2
)
ei + (22)

Kpe(t) +KiaD
−λ
t e(t) +KdaD

α
t e(t)−

N∑
j=1
j 6=i

cijaijΓej ,

i = 1, 2, ...,N .

5 Simulations

In order to illustrate the applicability of the
discussed results, we consider a fractional order
dynamical network with just one fractional order
Lorenz’s node and three identical fractional order
Chen’s nodes. The single fractional order Lorenz
system is described by:

Fig. 1. Sub-State of Lorenz’s attractor with initial
condition X1 (0) = (10; 0; 10)ˆT

Fig. 2. Sub-States of Chen’s attractor with initial
condition X2,3,4(0) = (-10; 0; 37)ˆT

Fig. 3. Sub-State of Lorenz’s attractor with initial
condition X1 (0) = (10; 0; 10)ˆT

aDα
t xp1 = 10x2 − 10x1,

aDα
t xp2 = −x2 − x1x2 + 28x1, (23)

aDα
t xp3 = x1x2 −

8

3
x3,

xi(0) = (10, 0, 10)T , i = 1,

and the Chen’s oscillator is described by:
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Fig. 4. Sub-States of Chen’s attractor with initial
condition X2,3,4(0) = (-10; 0; 37)ˆT

Fig. 5. Structure of the network with each node being a
Lorentz and Chen’s system

aDα
t xi1 =p1(xi2 − xi1) +

4∑
j=1,j 6=i

cijaij(xj1 − xi1),

aDα
t xi2 =(p3 − p2)xi1 − xi1xi3 + p3xi2+

4∑
j=1,j 6=i

cijaij(xj2 − xi2), (24)

aDα
t xi13 =xi1xi2 − p2xi3 +

4∑
j=1,j 6=i

cijaij(xj3 − xi3),

xi(0) =(−10, 0, 37)T , i = 2, 3, 4.

If the system parameters are selected as p1 =
35, p2 = 3, p3 = 28, then the fractional order
Lorenz’s system and the fractional order Chen’s
system are shown in Fig. 1 and Fig.2, with α =
λ = 1, Fig. 3 and Fig.4, with α = λ = 0.0005

respectively. In this set of system parameters, one
unstable equilibrium point of the oscillator (25) is x
= (7:9373; 7:9373; 21)T [12].

Fig. 6. Time evolution for sub-states 1 with initial state
Xn1(0) = (10; 0; 10)ˆT

Fig. 7. Time evolution for sub-states 1 with initial state
Xn1(0) = (10; 0; 10)ˆT

Suppose that each pair of two connected
fractional order Lorenz and the fractional order
Chen’s oscillators are linked together through their
identical sub-state variables, i.e.,Γ = diag(1, 1, 1),
and the coupling strengths are c12 = c21 = π,
c23 = c32 = π, c13 = c31 = π, c14 = c41 = 2π,
c24 = c42 = 2π, c34 = c43 = 2π. Fig. 5 visualizes
this entire fractional order dynamical network.

The neural network was selected as:
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Fig. 8. Time evolution for sub-states 2 with initial state
Xn1(0) = (10; 0; 10)ˆT

Fig. 9. Time evolution for sub-states 4 with initial state
Xn4(0) = (20,20,-10)ˆT

Ani =

 −1 0 0
0 −1 0
0 0 −1

 ,

Wni =

 1 2 0
−3 4 0
0 2 3

 ,

σ(xni) =

 tanhn1
(x(t− τ))

tanhn2(x(t− τ))
tanhn3(x(t− τ))

 ,

Fig. 10. Time evolution for sub-states 4 with initial state
Xn4(0) = (20,20,-10)ˆT

Fig. 11. Time evolution for sub-states 4 with initial state
Xn4(0) = (20,20,-10)ˆT

xni = (20, 20,−10)T ,

Lφσi
M
= ni = 3, i = 1, 2, 3, 4. (25)

The experiment is performed as follows. Both
systems, the recurrent neural network (2) and
the dynamical networks (24) and (25), evolve
independently; at that time t = 10 Seconds, the
proposed control law (22) is incepted. Simulation
results are presented in Figs. 6-8, with α = λ = 1,
for sub-sates of node 1. As can be seen, tracking
is successfully achieved and error is asymptotically

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1583–1591
doi: 10.13053/CyS-23-4-2754

Joel Perez P. , Jose P. Perez, Ruben Perez P., Angel Flores H.1590

ISSN 2007-9737



stable, as it is shown in Figs. 9-11, with α = λ =
0.0005 for sub-states of node.

6 Conclusions

We have presented a controller design for
trajectory tracking of a fractional general complex
dynamical networks. This framework is based
on controlling dynamic neural networks using
Lyapunov-Krasovskii theory in the fractional case.
We obtained a control law in a purely theoretical
way, and can be therefore to a wide range of
problems in trajectory tracking.

The proposed control law guarantees the
stability of the tracking error between plant
and reference signals. The analytical results
obtained that predict the stability of the tracking
error between plant and reference signals are
satisfactory, which can be seen through simulation,
these clearly show the desired tracking.

As an example, the proposed control is applied
to a simple network with four different nodes and
five non-uniform links. In future work, we will
consider the stochastic case in fractional systems.
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