
Bridging the Gap Between Model-Based Design and Reliable
Implementation of Feedback-Based Biocircuits:

A Systems Inverse Problem Approach

Juan Carlos Martinez-Garcia1, Carlos Aguilar-Ibanez2, Alberto Soria-Lopez1

1 Control Department of CINVESTAV-IPN, Mexico City,
Mexico
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Abstract. Our concern is the tuning of mathematical
models describing rationally designed genetic biocir-
cuits. Based on a deterministic lumped continuous-time
approach, we propose a tuning methodology combining
both exact algebraic parameter reconstruction and
nonlinear parameter estimation of a given model
supporting the design of a specific genetic biocircuit,
i.e., we bridge the gap between model-based design
and implementation as the solution of a systems inverse
problem. As a proof of concept, our proposal is
constrained to cyclic feedback systems characterizing
synthesized transcriptional networks conditioned to
display sustained oscillatory behavior. Our proposed
methodology is illustrated via computer–based simu-
lations involving the tuning of a state–based model
describing a well–know cyclic feedback biocircuit: the
celebrated repressilator. Tuning in our case is conceived
as a procedure to adjust the parameter values of
the mathematical model taking into account for this
the actual behavior observed from the corresponding
synthesized biocircuit.
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1 Motivation

This paper extends the discussion first presented
in [16], following for this an approach focused
on methodological issues. Our purpose is then

to enlighten the limitations that are imposed by
the unavoidable uncertainty on the value of the
involved parameters, as far as synthetic biology
designs are concerned.

The simple illustrative example that we use
here in order to present our ideas leads us to
conclude that no realistic synthetic biology design
are possible at all, if not parameter estimation
is included in the physical realization of the
designed system. Synthetic biology asks then
for hybrid designs, i.e., designs involving not
only the biological designed system but also a
computer-based parameter estimation module.

2 Introduction

Systems biology, the integrative systems–based
contemporary post-genomic vision of biology,
promotes the understanding of living organisms
through the tinkerer’s approach, which is to say
building life to understand it (and also to optimally
profit from it), see for instance [7]. Recent
scientific and technological progress in molecular
cell biology, genetic engineering, as well as
in mathematical and computational modeling of
biological systems and in biological engineering
methodologies, offers the opportunity to rationally
design and build genetic circuits as a way to
understand existing biological functionalities, and
even better: as a rational way to add new
prescribed functionalities to existing biological
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organisms (see for instance [3, 19, 18, 9] and the
references therein).

As is done in modern engineering, the current
design approach followed by synthetic biology
practitioners has mathematical modeling as the
first step of the rational design procedure for the
intended biocircuit (see for instance [17]). Going
from a mathematical model to the realization of its
corresponding physical system is a standard engi-
neering approach ruling design on well–developed
technological domains like electronic engineering,
mechanical engineering, aerospace engineering,
and computer engineering. It is then common to
build highly consumed products (like cars or mobile
phones) directly from computer-based design and
computer-based simulation. However, as far as the
physical realization of a mathematically modeled
biocircuit is concerned, several factors challenge
the approach followed by modern engineering.
Inherent stochasticity of cellular bio–molecular
systems, as well as many others factors (like
technological limitations of the involved measure-
ment processes), result in mismatch between the
parameter values of the mathematically modeled
system and the actual parameter values of the
corresponding synthesized biological system. This
mismatch moves the behavior of the synthesized
system far away from the designed behavior
coded by the guiding mathematical model, which
reduces then the utility of mathematical modeling in
biological engineering (particularly if the concerned
model is constrained to be simple enough in order
to be useful in terms of design and simulation).

Tuning of the mathematical model is an obvious
tool when considering the minimization of the
mismatch between the designed behavior and
the displayed behavior. It is then necessary to
reconstruct the actual parameter values of the
designed system through measuring of the actual
system’s behavior. In this paper we propose
an approach based on exact algebraic parameter
reconstruction combined with nonlinear algebraic
parameter estimation to find the parameter values
of cyclic feedback systems describing synthesized
biocircuits. As the solution of an inverse
problem, the tuning procedure finds the parameter
values processing available information provided
by the synthesized system. We conceive

our methodology as a proof of concept and
we constraint our exposition to the case of
transcriptional networks conditioned to display
measurement available for sustained oscillatory
behavior, described in mathematical terms by
cyclic feedback systems. We follow a deter-
ministic lumped continuous–time approach, and
we support our conclusions via computer-based
simulations involving the well-known illustrative
synthetic biocircuit: the repressilator.

The paper is organized as follows: Section
3 discusses the problem formulation. We
briefly recall what is characteristic for the cyclic
feedback nonlinear dynamical systems, and its
application as a modeling tool for the description
of a particular class of synthesized transcriptional
networks. Moreover, we formulate the inverse
problem in terms of the determination of a set
of real parameters tuning a ordinary differential
equations based mathematical model to force it
to describe the sustained oscillatory behavior of
the synthesized transcriptional network. As an
illustration of our proposal we limit our exposition
to the tuning of a mathematical model of the
well–know synthetic cyclic feedback bio–oscillator
known as the repressilator.

We expose our tuning procedure in Section 4
and in Section 5 we illustrate it via computer–
based based simulations involving the well–known
synthetic biocircuit called the repressilator. We
conclude the paper with some final remarks in
Section 6.

3 Problem Formulation

In this section we recall the definition of cyclic
feedback systems, and we restrict our exposition
to the deterministic lumped continuous-time in-
variant framework. Then, we discuss how this
particular class of coupled ordinary differential
equations is applied to describe cyclic synthesized
transcriptional networks with a designed modular
structure. Then, we introduce our systems
inverse problem, which is to say the tuning of the
mathematical model which guides the conception
of a modularly structured cyclic feedback synthet-
ical transcriptional network designed to display
sustained oscillations.
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3.1 Cyclic Feedback Systems

A set of n coupled ordinary-differential-equations:
ẋ1 = f1 (x1,xn) ,
ẋ2 = f2 (x2,x1) ,

...
ẋn = fn (xn,xn−1) ,

 (1)

where:

ẋi :=
dxi
dt

,

is called a n–th order cyclic feedback system (see
for instance [11] and the references therein) if there
exist real constants δi ∈ {±1}, i = 1, 2, . . . ,n, such
that:

δifi (0, v) v > 0, if < 3 v 6= 0

δi
∂fi (a, b)

∂b

∣∣∣∣
(0,0)

> 0.

Remark 1: As is obvious from the description (1),
the state variable xi−1 drives the state variable
xi. This regulatory characteristic fixes the cyclic
feedback defining property of the system.

Fig. 1. A particular class of cyclic feedback systems. In
this case, the rate of change of each state in the chain
results from the addition of a function which depends
on the state itself plus a function which depends on the
contiguous downstream state

Cyclic biochemical reactions

Figure 1 shows the particular case of cyclic feed-
back systems described by (see for instance [2]):

ẋ1 = −a1 (x1)− bn (xn) ,
ẋ2 = −a2 (x2)− b1 (x1) ,

...
ẋn = −an (xn)− bn−1 (xn−1) ,

 , (2)

where ai (·) and bi (·) are continuous functions (if
these functions are real constants the correspond-
ing system is obviously linear).

Remark 2: The cyclic feedback modular structure
shown in (2) has been frequently considered
to describe cyclic biochemical reactions, where
the end product drives the first reaction, and
with the functions ai (·) and bi (·) usually related
to enzymatic processes. The cyclic feedback
modular structure (2) is particularly suited for both
the description and the design of biosynthetic
oscillatory systems. Notice that for biochemical
reactions each state takes positive values, i.e., xi ∈
<+.

3.2 Synthesized Cyclic Feedback
Transcriptional Networks

Biosynthetic oscillators based on transcriptional
regulation are frequently built following the cyclic
structure given by (2), with inhibition of gene
expression as the basic regulatory mechanism
(see for instance [13]). We must point out that
common natural cell biochemical oscillators (e.g.
circadian oscillators in animals and fungus), involve
both transcriptional regulation and translational
regulation (see for instance [14]).

Since the cell transcriptional machinery is
easy to manipulate via standard recombinant
DNA technologies, feedback-based transcriptional
oscillators are preferred in cell biosynthetical
constructs. We describe here the particular
class of cyclic feedback systems that concerns
our proposal. We focus our attention in cyclic
feedback biosynthetic networks resulting from the
chaining of transcriptional modules. Therefore,
we first introduce the basic representation of a
transcriptional module in input-output terms.

Consider x to be a gene, and let us assume
that it codes the transcription factor1 [x], where [∗]
stands for the concentration of the protein coded by
∗. We can now recall the following (see for instance
[6]):

Definition 1: In input–output terms, a transcrip-
tional module maps an excitatory input signal

1A transcription factor is a sequence-specific DNA-binding
protein.
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consisted of the concentration of a transcription
factor into an output–signal consisted also of the
concentration of a expressed transcription factor.
If we denote z and x the genes coding the input
signal and the output signal, respectively, the
dynamical behavior of the transcriptional module is
described in lumped time-invariant terms by the set
of coupled ordinary–differential-equations given by
(see Figure 2):{

˙[x] = γrx [rx]− αx [x] , ˙[rx] = f ([z])− αrx [rx]
}
,

where:

— [rx] stands for the concentration of rx,
the mRNA–molecules resulting from the
transcription of gene x.

— f ([z]) denotes the excitatory signaling pro-
cess promoted by the transcription factor [z].

— γrx is the constant translation rate from
mRNA to the transcription factor coded by x.

— αx and αrx are the decay constant rates of [x]
and [rx], respectively.

Fig. 2. Schematic representation of a transcriptional
module. The excitatory signal [z] binds to the promoter
of gene x, which promotes changes in the expression of
the corresponding transcription factor [x]

Remark 3: The function f ([z]) captures the
specificity of the regulatory role played by the
transcription factor [z], and in general is nonlinear
in nature. The regulatory function comes as

a result of the interaction between [z] and the
DNA–sequence which characterizes the promoter
of the regulated gene x. Depending on the design,
the regulatory process can involve inhibition or
promotion through enzymatic dynamics.

We introduce now the class of cyclic feedback
network of synthesized transcriptional modules
that concerns us.

Definition 2: Cyclic feedback network of syn-
thesized transcriptional modules] We define the
class of n–th order cyclic feedback networks of
synthesized transcriptional modules as the closed
chains of transcriptional modules described as:

˙[x1] = γrx1 [rx1 ]− αx1 [x1] ,
˙[rx1 ] = f1 ([xn])− αrx1 [rx1 ] ,
˙[x2] = γrx2 [rx2

]− αx2
[x2] ,

˙[rx2
] = f2 ([x1])− αrx2 [rx2

] ,
...

˙[xn] = γrxn [rxn ]− αxn [xn] ,
˙[rxn ] = fn ([xn−1])− αrxn [rxn ] ,

(3)

with:{
˙[xi] = γxi [rxi ]− αxi [xi] , ˙[rxi ] = fi ([xi−1])− αrxi [rxi ]

}
corresponding to the i–th transcriptional module,
and with:

— [rxi ] is the concentration of rxi , the mRNA
molecules transcripted from the gene that
codes xi.

— αxi and αrxi are the decay rates of [rxi ] and
[xi], respectively.

— γxi is the constant translation rate from [rxi ] to
[xi].

— fi ([·]) is the i–th transcription regulatory
function.

The simple transcriptional modular structure
given by (3) has been successfully applied in
the construction of actual biosynthetic oscillators,
with the transcription factors xi, i = 1, . . . ,n,
required to display sustained oscillations through
the appropriate choice of the nonlinear regulatory
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functions fi, i = 1, . . . ,n, and the right tuning of the
parameters γxi , αxi , and αrxi (i.e. the nonlinear
regulatory functions as well as the parameters,
including the order of the system, are chosen
in order to guarantee that system (3) has a
stable limit cycle). The celebrated repressilator
(see for instance [8]) is a well–known example
of this family of oscillatory modular transcriptional
networks governed by negative feedback, see [6]
and [5].

In the sequel we describe our inverse problem,
which concerns the tuning of the mathematical
model consisting of a cyclic feedback modular
transcription network from information provided by
a synthesized system derived from the model.

3.3 Finding the Parameter Values

In the previous subsection we presented the class
of modularly structured cyclic feedback systems
intended to guide the conception and construction
of biosynthetic oscillators based on transcriptional
regulation.

Problem 1. Consider a synthesized transcriptional
network to be given and resulting from a
mathematical description given by system (3)
(i.e. we conceive the synthesized transcriptional
network to be a designed cyclic feedback system).
Assume that the synthesized transcriptional net-
work displays sustained oscillatory behavior. From
the knowledge of the state variables {[x1], [rx1

],
[x2], [rx2

], . . ., [xn], [rxn ]}, of the synthesized
transcriptional network (i.e. the concentration of
the transcription factors with their corresponding
concentration of the mRNA transcripts), find
a set of parameters {γxi ,α1xi

,α2xi
}, for i =

1, 2, . . . ,n, and the parameter values of the
nonlinear transcription regulatory functions fi (·),
for i = 1, 2, . . . ,n, making a corresponding
tuned mathematical model to closely describe
the behavior of the synthesized transcriptional
network.

Remark 4: We propose in the sequel a solution
for Problem 1. We conceive our proposal as
a proof–of–concept and because of that, and in
order to simplify our exposition, we only consider

here the case concerning the well-known synthetic
bio-oscillator known as the repressilator.

The repressilator

In the case corresponding to the repressilator
(see [8, 6]) n = 3 in (3), and the regulatory
functions f1 (·), f2 (·) and f3 (·), correspond to
inhibition actions. In the named symmetrical case
it is assumed that the transcriptional regulatory
functions (all of them with negative slope) satisfy:

f1 (p) = f2 (p) = f2 (p) =
α

1 + pm
,

with the real parameter α and m defining the
inhibitory regulatory functions. Moreover, in order
to simplify all γxi are assumed to be equal to 1,
and it is also assumed that the decay rates α1xi
and α2xi

are equal to a real constant δ. Thus, the
simplified symmetrical repressilator is described as
follows:

ẋ1 = rx1
− δx1, ṙx1

=
α

1 + xm3
− δrx1

, (4)

ẋ2 = rx2
− δx2, ṙx2

=
α

1 + xm1
− δrx2

, (5)

ẋ3 = rx3
− δx3, ṙx3

=
α

1 + xm2
− δrx3

. (6)

Applying the Mallet–Paret and Smith theorems
(see [15]), it is proved in [6] that this cyclic
system has only one unstable equilibrium point
and displays stable oscillatory behavior when the
following inequality holds:

α2

δ2
> m

√
4
3

m− 4
3

(
1 +

4
3

m− 4
3

)
. (7)

Let us now introduce our proposed tuning
procedure.

4 Tuning Procedure

We consider here the symmetrical case for the
repressilator (4)–(6), and we define the terms:

X =


rx1

x1
rx2

x2
rx3

x3

 , Y = X, P =

 δ
m
α

 . (8)
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Our goal is to build a procedure to determine as
precisely as possible the parameter vector P which
tune the mathematical model (4)–(6) in order to
make it to display the oscillatory behavior observed
from the known state vector X.

In order to manage the algebraic manipulations
of the system equations (4)–(6) we define:

f1(y) = f(y3); f2(y) = f(y1); f3(y) = f(y2);
(9)

where
f(x) =

α

1 + xm
. (10)

Evidently, from the system equations (4)–(6)
we have that the parameter δ is algebraically
identifiable (see for instance [10]) with respect to
the output vector, Y , because:

ẏi = y
i+3
− δyi, i = {1, 2, 3}. (11)

That is, δ can be reconstructed with high
precision. On the other hand, once the parameter
δ is available, the time-variable regulatory signals
fi(y) are algebraically observable, because:

fi(y) = ẏi+3 + δy
i+3

, i = {1, 2, 3}. (12)

It should be noticed that, if fi(y) is recovered,
then α fulfills:

α = f(y3)(1+y
m
3 ) = f(y1)(1+y

m
1 ) = f(y2)(1+y

m
2 ).

(13)
Therefore, the parameter m can be estimated by

solving the following algebraic nonlinear equation:

zy(m̂) = f̂(y3)(1 + ym̂3 )− f̂(y1)(1 + ym̂1 ), (14)

where, f̂(yi) and m̂ are estimates of f(yi) and m,
respectively.

Remark 5: From the previous analysis we
conclude that the repressilator parameters can
be recovered. Parameter δ can be then
algebraically reconstructed with high precision,
whereas parameters α and m can be estimated. It
must be pointed out that our conclusion is related
to the structural identifiability property introduced in
[12], and is derived from theoretical developments
first exposed in [10]. Moreover, in the context of
systems biology nonlinear identifiability (required

for parameter reconstruction) has also been
explored in [1].

We show now the procedure recovering the
parameter vector P with respect to the known
output vector Y .

4.1 Model-based On-line Parameters
Estimation

Let us introduce the following assumptions (that
we require in order to ensure the solvability of our
systems inverse problem):

A1 The cyclic feedback system (4)–(6) is initialized
to be strictly positive.
A2 The parameter vector P belongs to some
neighborhood in the parameter space, such that,
the system (4)–(6) exhibits sustained oscillatory
behavior.
A3 The output vector Y is fully measurable.

We proceed now to expose our parameter
recovering procedure.

On–line algebraic recovering of δ

This procedure consist of multiplying both sides of
(11) by the time variable t, and then, integrating by
parts the resulting expression. Thus, we have the
expression:∫ t

0

σẏi(σ)dσ =

∫ t

0

σyi+3(σ)dσ − δi
∫ t

0

σyi(σ)dσ.

(15)
By integrating once the left-hand side of the

above equation we obtain the following linear
expression in terms of the unknown parameter δ:

δ =

∫ t
0
σyi+3(σ)dσ − qi(t)∫ t

0
σyi(σ)dσ

, (16)

where

qi(t) =
∫
tẏi(t) = tyi −

∫
yi(t). (17)

For sake of simplicity, we introduce the following
notation:
(m)∫

tjx(t) =

∫ t

0

∫ σ1

0
...

∫ σm−1

0
(σm)jx(σm)dσmdσm−1....dσ1.

(18)
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Remark 6: Note that the system equation (16) is
not well defined at time t = 0. But, for any time
t after a small open time interval of the form (0, ε)
with ε > 0, the denominator of the equation (16) is
strictly positive by assumptions A1 and A2. That
is: ∫ t

0

σyi(σ)dσ > 0; t > 0.

We focus our attention now on the computational
procedure to recover the non-available regulatory
signals fi, as well as the related parameters.

Reconstructing the time variable signals fi(y)
and the unknown parameters α and m

As can be seen, the implementation of the relations
in (12) needs the time derivative of the signals
yi+3 to be recovered. To overcome this issue, we
introduce the following simple high–gain observer
(see [4]). Assuming that the signals yi are
available, we can propose the following filter:

˙̂yi = ẑi − 2k
ξ (ŷi − yi);

˙̂zi = −k
2

ξ2 (ŷi − yi);
(19)

where ξ is a small positive parameter and k is a
strictly positive parameter.

Proposition 1: Let yi(t) be a scalar continuous
smooth function with its corresponding time
derivatives satisfying |ẏ| ≤ ni. Then, the high–gain
observer recovers the time derivative of ẏ, with
bounded error given by:

|ẑi − ẏi| ≤
2ρiξ

k
; for some t∗ > t. (20)

Then, the states ẏi converge to ˙̂zi, when time
elapses.

Proof: see Appendix A. �

Consequently, the time variant regulatory signal
fi can be reconstructed by:

f̂i(y) = ˙̂yi+3 + δiyi+3 ,

where ˙̂yi+3 are directly obtained from the filter
(19). Since all the output signals, y

i+3
, present

oscillatory behavior (which is one of our initial
assumptions), this signals and their respective time
derivatives are all bounded.

Now we are able to numerically solve the one
variable nonlinear algebraic equation (14) and then
be able to reconstruct the parameter m. To solve
this equation we can apply the standard iterative
Newton-Raphson method as follows:

m̂k+1 = m̂k −
zy(m̂k)

z′y(m̂k)
, (21)

where zy(m) is as defined in (14) and

z′y(m) =
∂zy(m)

∂m
.

Note that if m̂ → m, then α̂ can be computed
using the formula in (13). That is:

α̂ = f(y)(1 + ym̂). (22)

Remark 7: Note that (21) requires to sample the
outputs yi = xi, for i = {1, 2, 3}, since zy (m̂k) =

f̂(y3)(1+y
m̂k
3 )− f̂(y1)(1+ym̂k1 ) (see (14)). For this

we define the indexed variables xik = xi(tk), where
tk+1 − tk = T , with the sampling time T > 0 fixed.
We compute m̂k, as long as x1k 6= x2k 6= x3k.

We proceed now to illustrate our proposal with a
numerical example.

5 Numerical Simulations

In this section, we test the effectivity of our
proposed methodology via computer–based sim-
ulations involving our chosen cyclic feedback
system, the repressilator.

5.1 The Simulated Repressilator

We simulate the repressilator’s behavior choosing
the parameter values: m = 1.5, δ = 1, and
α =

√
40 (this selection guarantees sustained

oscillatory behavior). As far as the initial conditions
are arbitrary, we select them as:

(x1,x2,x3, rx1
, rx2

, rx3
) = (1, 2, 3, 0.4, 0.6, 0.8).
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5.2 Algebraic Reconstruction of the
Parameter δ

The numerical implementation of our reconstructor
is done by using the MatlabTM numerical
computing environment. We use the Runge–Kutta
method with an integration step of 0.5× 10−3. The
high-gain observer gains are fixed as ξ = 0.5×10−2
and k = 1. As already established, we need to
recover the parameter δ first. In Figure 3, the
reconstruction of parameter δ is shown.

As we can see, the parameter δ can be satis-
factorily recovered regardless of the availability of
measurements of rx1 , rx2 , and rx3 (in fact, notice
that for the current illustrative example a set of
measurements is at disposal for identification).

Fig. 3. Reconstruction error for the parameter δ

5.3 Estimation of the Non-available Regulatory
Signals f1, f2 and f3

Now, since we effectively recover δ we are able
to reconstruct the non–available regulatory signals
f1, f2 and f3. Figure 4 shows the corresponding
estimation errors for these three estimated signals.
As we can see, the convergence time is very
short because the high–gain observer gains were
selected to be large enough.

Fig. 4. Estimation errors corresponding to the estimated
signals f1, f2, and f3

5.4 Recovering Parameters m and α

Finally, having effectively estimated the regulatory
signals f̂i, the parameters m and α are effectively
recovered, in that order, by solving the expression
in (21) and (22) applying the Newton–Raphson
method using samples of the regulatory signals f̂i
and xi every 0.5 seconds. As we can see, these
parameters are in fact recovered with a very high
accuracy (see Figure 5).

Fig. 5. Reconstruction parameters m and α

6 Conclusions

We proposed a methodology combining exact
algebraic parameter reconstruction with nonlinear
observed-based parameter estimation, intended to
tune mathematical models guiding the design of
synthetic biological circuits. We constrained our
exposition to a class of cyclic modularly structured
synthetic transcriptional networks which design is
based on cyclic feedback systems described by
deterministic lumped ordinary differential equa-
tions, and we illustrated our tuning procedure
via computer–based simulations involving a low-
dimensional cyclic feedback system correspond-
ing to the celebrated synthetical transcriptional
network called the repressilator. We focused
our proposal to the minimization of the mismatch
between the behavior of a synthesized biological
circuit and the designed behavior coded by the
mathematical model guiding the design process.
The monitoring of the simulated synthesized
biocircuit fed the information required to estimate
the parameter values of the mathematical model.
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We strongly believe that both exact algebraic
parameter reconstruction and nonlinear observed-
based parameter estimation are useful as a design
tool for synthetic biology, since the solution of
the systems inverse problem can be useful to
close the gap between model–based designed
biocircuits and implementations. As simple as
it is, our methodology has been conceived as a
proof-of-concept to illustrate how parameter tuning
can be applied when considering the design of
synthetic biocircuits when simple mathematical
models are considered. It is quite obvious that
realistic biocircuit design will involve the resolution
of more complex systems inverse problems,
particularly when phenomena like stochastically or
retroactivity play a dominant role in the behavior of
the involved systems.

To conclude, we must point out that the addition
of identifiability properties to biocircuits may open
the door to the inclusion of operational monitoring
in biosynthetic networks, as a mechanism to
promote functional reliability.
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Appendix A: Proof of Proposition 1

We define the vector error as:

ξi =
[
yi − ŷi zi − ẑi

]T
,

where zi = ẏi. Therefore, the dynamic errors can
be expressed after using (19), as follows:

ξ̇i = Aεξ + δ(t) (23)

with

Aε =

[
− 2k

ε 1

−k
2

ε2 0

]
; δ(t) =

[
0
żi

]
. (24)

As can be seen, Aε is a Hurwitz matrix, for all
k > 0 and ε > 0. Thus, error ξi satisfies:

ξi(t) =

(
eAεtξ(0) +

∫ t

0

eAε(t−s)δ(t)ds

)
. (25)

Since Aε is exponentially stable and the signal
żi = ÿiis bounded, then the following inequality
holds

‖ξi‖ ≤ βe−
kt
ε ‖ξ(0)‖+ kβni

ε
(1− e− ktε )→ kβni

ε
,

where the constant β is as previously defined. This
concludes the proof. �
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Cabello-Sánchez, U., & Soria-López, A. (2012).
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