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Abstract. An alternative method for the design of type
I Halfband FIR filters with flat magnitude and narrow
transition bands is presented. The methodology shown
is based on the derivation of a quadratic programming
problem with inequality constraints, which represents
a set of linear equations obtained from flat and ripple
restrictions imposed over the frequency response of the
filter. The design is based on maximally flat constraints.
The obtained filters have narrow transition bands as
compared to those presented in other maximally flat
based designs. The proposed method is not ripple
free as it does not take into account all the maximally
flat restrictions. Then, control of side lobes and
transition band is performed using a weighting matrix
and inequality constraints as side lobes bounds. The
design of type IV FIR digital differentiators through
the proposed method is also shown. Examples of
design, which compare the proposed method with others
presented in the literature, are provided to verify the
effectiveness of the proposed method.

Keywords. Halfband filters, digital differentiators,
MAXFLAT constraints, weighted least square filter
design.

1 Introduction

The use of halfband filters (HBF) and digital
differentiators (DD) is key to perform several signal
processing tasks. For example, HBF are used
to perform the decimation and interpolation of
signals [33, 36]; while DD are typically used when
information about signal rate of change is required
[21, 18].

Furthermore, maximally flat halfband filters
(MFHB) and maximally lineal differentiators (MLD)
have been widely studied [27, 39, 12, 29, 4, 20].

They present the maximum flatness/linearity of its
frequency response around a particular frequency
called flatness center.

In general, maximally flat (MAXFLAT) filters are
of particular interest in applications that require
smooth frequency responses or high attenuation
in the stop-band [2, 24]. They are ripple-free and
are of particular importance for the analysis of
polynomial signals. Several designs have been
proposed for the design of MAXFLAT filters since
they emerged in [5]. They include FIR linear
phase filters [26, 19], generalized filters [28, 40]
and fractional delay filters [13, 38]. The main
drawback of using MAXFLAT filters is the width
of its transition band, which is superior to that
presented in other designs which allow ripple, e.g.,
[22]. Additionally, in a MAXFLAT design, the
bandwidth can only be decreased by increasing the
filter length.

Several methodologies have been proposed to
decrease the transition band in MAXFLAT designs
preserving as much as possible the flatness of
the frequency response. Some algorithms use a
frequency different from zero as the flatness center
to produce narrower filters [14, 15] while others
increase the design flexibility by not taking into
account all the MAXFLAT constraints [10, 31].

Recently, [7] presents a method for impose a
prescribed cutoff frequency in a MAXFLAT design,
but it was not applied to the design of halfband
filters. With respect to MFHB filters, [8] presented
a method for the design of MFHB filters with
narrow transition bands. This method consists in
convert the MLD presented in [11] into a MFHB
filter using the transformation method described in
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[23]. The filters obtained in [8] are designed with
MAXFLAT constraints around ω = π/4 rad. They
have narrower transition bands than conventional
methods. On the other hand, they are not ripple
free and present the maximum ripple at ω = 0.

The main purpose of this work is to obtain
type 1 FIR flat HBF with linear phase and narrow
transition bands, persevering as far as possible the
passband flatness. The filters will be obtained by
imposing a set of MAXFLAT constraints around
a variable flatness center and the formulation of
a convex quadratic programming problem (CQP)
with inequality constraints. The application of
this procedure for the design of type 4 FIR
differentiators is also shown. The main differences
with respect to previous work based on linear
programming or CQP filter design [17, 6, 30, 16, 1,
31, 20, 34] are: (a) Design flexibility is enhanced
due to a larger number of parameters. (b) It is
possible to increase the accuracy of the frequency
response at a particular frequency by introducing a
weighting matrix. (c) The same algorithm can be
used (with minor modifications) to design halfband
filters or differentiators. We used QP instead
of the more general convex optimization [35, 3]
in order to obtain a straightforward formulation.
Despite the fact that a simple and well-known
optimization technique was used, it will be shown
that the proposed method generates filters with
better frequency characteristics than other designs
which are also based on subsets of MAXFLAT
constraints.

The rest of this document is structured as
follows: As a brief summary Section 2 presents
the conventional design of MFHB and MLD.
Subsequently, in Sections 3 and 4 are presented
the proposed designs for type 1 HBF and type
4 DD. Finally two design examples are shown in
Section 5.

2 Summary on MAXFLAT Filter Design

In what follows we present the classical design
of HBF and DD using MAXFLAT constraints. We
consider type I FIR filters for the HBF and type
IV FIR filters for the DD. Form more information,
please refer to [32, 9].

2.1 Type I FIR MAXFLAT Halfband Filters

In the general case, a low-pass type I Halfband FIR
filter of length 4N − 1 has a frequency response
given by:

H(ω) = 0.5 + 2F (ω), −π < ω ≤ π, (1)

with

F (ω) =

N∑
k=1

h[2k − 1] cos ((2k − 1)ω). (2)

The function H(ω) is such that H(ω) + H(ω −
π) = 1. The impulse response h[k] of H(ω)
depends only on the odd coefficients, as the even
coefficients of h[k] are fixed and given by:

h[0] = 0.5,

h[2k] = 0, for: k = 1, 2, . . . . (3)

In order to simplify the nomenclature, from here
odd coefficients of h[k] are represented by f [k] =
h[2k − 1].

An example of the aspect of the frequency
response of a low-pass H(ω) and a high-pass
H(ω − π) HBF is given in the Fig. 1. The filters
presented in Fig. 1 are MAXFLAT, i.e. their
passband and stop-band fulfill a set of maximally
flat constraints. Maximally flat constraints eliminate
the maximum amount of derivates of H(ω) around
a particular frequency ω = p called the flatness
center:

diH(ω)

diω

∣∣∣∣
ω=p

=

{
1 i = 0,
0 i = 1, . . . ,L,

(4)

as we will consider halfband filters, eq. (4) also
implies

diH(ω)

diω

∣∣∣∣
ω=π−p

= 0, i = 0, 1, . . . ,L. (5)

The conventional design of MFHB filters involves
solving a system of (N × N) linear equations
derived from the MAXFLAT constraints (4). This
set is obtained by applying the constraints (4) to
(1) with L = N − 1, and is given by
N∑
k=1

(2k − 1)iCi+1((2k − 1)p)f [k] =

{
0.25, i = 0,
0, i = 1, 2, . . . ,L,

(6)
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Fig. 1. Filter bank with low-pass and high-pass MFHB
filters

where Cn(ω) = cos(ω) for odd values of n and
Cn(ω) = sin(ω) for even values.

Usually the flatness center is p = 0. In this
case all the odd order derivates in (6) are canceled
automatically due to symmetry of H(ω). Then
L = 2(N−1) is chosen to obtain a (N×N) system
of linear equations similar to (6), and given by

N∑
k=1

(2k − 1)if [k] =

{
0.25, i = 0,
0, i = 2, 4, . . . ,L.

(7)

Note that (7) is a Vandermonde system; then
Vandermonde determinant can be used to solve (7)
and find the following closed forms for the impulse
response coefficients

f [k] =
(−1)k−1(2N − 1)!!2

22N (N + k − 1)!(N − k)!(2k − 1)
. (8)

Fig. 1 shows the frequency response of a bank of
MFHB filters designed through this approach. The
filters presented in Fig. 1 were obtained using (8)
with N = 5.

2.2 Type IV FIR Maximally Linear Digital
Differentiators

A type 4 maximally linear (MAXLIN) differentiator
of length 2N has a frequency response given by

H(ω) = 2F (ω), with

F (ω) =

N∑
k=1

h[k − 1/2] sin ((k − 1/2)ω). (9)

As for the MAXFLAT halfband case, from here
we will denote f [k] = h[k − 1/2] as the impulse
response coefficients. In this work type IV filters
were preferred over type III as type IV filters are
not restricted to H(ω) = 0 at ω = π. Then they are
more appropriate to design full-band DDs.

If L MAXLIN constraints are imposed over H(ω)
at ω = p

diH(ω)

diω

∣∣∣∣
ω=p

=

 p i = 0,
1 i = 1,
0 i = 2, 3, . . . ,L.

(10)

Then, the following linear system of equations:

N∑
k=1

(k − 1/2)iCi+2((k − 1/2)p)f [k] = (11)
p
2 , i = 0,
0.5, i = 1,
0, i = 2, 3, . . . ,L,

is obtained.

Considering p = 0, and L = 2N − 1, (11) can be
simplified to the (N ×N) Vandermonde system:

N∑
k=1

(k − 1/2)if [k] =

{
0.5, i = 1,
0, i = 3, 5, . . . , 2N − 1;

(12)
with the solution expressed by

f [k] =
(−1)k+1(2N − 1)!!2

22N (k − 1/2)2(N − k)!(N + k − 1)!
. (13)

3 Proposed Design for Type I FIR
Half-band Filters

Next, we present the proposed methodology for
the design of type I FIR flat halfband filters with
narrow transition bands by means of quadratic
programming optimization.
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We consider L ≤ N − 1 MAXFLAT constraints
around the flatness center ω = p, where 0 ≤ p ≤ π

2 .
An overdetermined system of linear equations

Af = c, (14)

is imposed over f [k] in order to meet (4), where the
r-th element of the c-th column of A ∈ RN×(L+1) is

ar,c = (2c− 1)r−1Cr((2c− 1)p), (15)

where c ∈ RL+1 and f ∈ RN are given by:

c =
(

0.25 0 0 . . . 0
)T

, (16)

and

f =
(
h[1] h[3] h[5] . . . h[2N − 1]

)T
. (17)

A vector with M samples of H(ω) uniformly
distributed over ω ∈ [0, π2 ] can be obtained using
H = 0.5u + Who, where u ∈ RM represents an
unitary vector, andW ∈ CM×N has elements given
by:

wr,c = 2 cos ((2r − 1)(c− 1)∆ω),
r = 1, 2, . . . ,M ,
c = 1, 2, . . . ,N .

(18)
with ∆ω = π/2M.

On the other hand, If M samples of an uniform
sampled version of a desired frequency response
Hd(ω) over ω ∈ [0, π2 ] are defined as a vector
Hd; then, the design of the halfband filter can be
stated as the optimization problem: Find the set
of coefficients f that minimize the energy of the
difference between the ideal Hd and the proposed
H = 0.5u + Wf frequency responses. The
problem can be stated as the following quadratic
programming optimization problem with equality
constraints.

Find the best f for

Minimize: J = (Fd −Wf)TR(Fd −Wf),
(19a)

subject to: Af = c, (19b)

where Fd = Hd − 0.5u, R ∈ <M×M is a
weighting matrix, and the pair (R,W ) is restricted
to WTRW > 0 to ensure the convexity of the
problem.

The solution of the QP problem presented in (19)
is

f̂ = (WTRW )−1[
WTRHd −AT (A(WTRW )AT )−1

][
A(WTRW )−1WTRHd − c

]
(20)

and its derivation through Lagrange multipliers is
shown in the appendix.

3.1 Selection of the Weighting Matrix R

The matrix R in (19) and (20) could be used to
weight certain frequencies. It is possible to use this
matrix to highlight frequencies which are located
far from the flatness center p. The frequencies
close to ω = p could receive less weight through
R because the flat constraints (4) ensure a good
approximation of H(ω) to Hd(ω) around ω = p and
ω = π − p.

In Fig. 2 are shown the results obtained through
the use of (20), with N = 10, L = 3, p = 0 and
R being a diagonal matrix, with the elements of its
diagonal given by the Kaiser window. Specifically,
the k-th element of the diagonal of R is given by:

rk,k =

I0

(
πα

√
1−

(
2k
M−1 − 1

)2)
I0(πα)

+ δr,

0 ≤ k ≤M − 1, (21)

with I0 being the zeroth order modified Bessel
function of the first kind, α a non-negative real
number that define the shape of the window, and
δr ≪ 1 being an arbitrary positive real number
which ensures the existence of R−1. The effect of
R over H(ω) is shown in Fig. 2 for different values
of α.

Note from Fig. 2 that, for the window used,
a greater α gives more weight to the frequencies
near ω = π/4 and located outside the flat bands.
Then, a better approximation to Hd(ω) around ω =
π/4 is obtained.
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Fig. 2. The parameter R and its effect over the
frequency response. (a) Frequency response and (b)
The weighting function used

3.2 Side Lobe Control

The designed filters are susceptible to the
presence of ripple in their bands as the design
does not take into account the maximum number
of flat constraints. If it is desired to minimize this
ripple in certain frequency band ω ∈ [0,ωp], it is
possible to add the linear box constraint

(0.5 + δl)u ≤Wpf ≤ (0.5− δl)u (22)

on F (ω), where δl represents the desired level
of ripple in the band ω ∈ [0,ωp] and Wpf the
frequency response of the filter in the same band.
The matrix Wp represents a subset of the rows of
the matrix W related to the frequencies within the
band ω ∈ [0,ωp]. The design problem is then given
by the following quadratic programming problem
with inequality constraints:

Find f for

Minimize: J = (Fd −Wf)TR(Fd −Wf),
(23a)

subject to: Af = c, (23b)
(0.5 + δl)u ≤Wpf ≤ (0.5− δl)u. (23c)

The solution of (23) can be obtained using a
variety of iterative algorithms found in the literature
(e.g. Interior point [25, page 537] or active set
[37, page 455]). In addition, there are numerous

software packets available to solve such problems
(e.g. Optimization toolbox for MATLAB, IBM ILOG
CPLEX Optimization Studio, Gurobi, etc.).

Design approaches similar to that proposed
in (23) can be consulted in [17, 6, 30, 31].
In contrast to these, the main differences of
the proposed method are: Design flexibility is
increased due to a larger number of design
parameters (N ,L,P ,R,Hd, δl,ωp). Furthermore,
using a criterion in the sense of weighted least
squares enables a particular emphasis on specific
frequencies. We also take into account inequality
constraints (23c) to constrain the ripple on the
passband and stop-band. Finally, note that as the
desired frequency response Hd is not fixed to the
ideal frequency response, any desired Hd can be
used.

4 Proposed Design for Type IV FIR
Digital Differentiators

The QP optimization problems shown in (19) and
(23) can be used to design a type 4 DD instead of
a type I HBF if the elements in (19) and (23) are
redefined as follows:

— Fd ∈ RM represents M uniformly distributed
samples of the DD frequency response in ω ∈
[0,π]. And, for the ideal case, it has elements
fr given by:

fr = (r − 1)∆ω r = 1, 2, . . . ,M , (24)

with ∆ω = π/M.

— W ∈ RM×N represents a linear transformation
from time to frequency domain and its
elements are given by:

wr,c = sin (c(r − 1)∆ω),
r = 1, 2, . . . ,M ,
c = 1, 2, . . . ,N .

(25)

— A ∈ RN×(L+1) and c ∈ RL+1 represent the flat
constraints over the DD frequency response.
A has elements:

ar,c = cr−1Cr+1(cp) (26)
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for p 6= 0, or
ar,c = c2r−1 (27)

for p = 0.

Where c is given by

c =
(

p
2

1
2 0 . . . 0

)
(28)

for p 6= 0, or

c =
(

1
2 0 0 . . . 0

)
(29)

for p = 0.

5 Design Examples

Next, we present two design examples. The first
of them deals with the design of a flat HBF with
narrow transition bands, while the second one
shows the design of a full-band DD with a flatness
band around ω = 0. In both cases, results obtained
are compared with different conventional designs.

5.1 Example 1 - Halfband Filter Design

In this example we design a HBF subject to a
maximum ripple of δr = 0.005 in the band ω ∈
[0, 0.32π]. For this case, we use a length of
13 samples (N = 5). The rest of the used
parameters are: (L = 2, p = 0, α = 0, Hd = u).
Under these conditions, the QP problem expressed
in (23) was solved using the active set method.
Specifically, we use the quadprog function of the
Matlab optimization toolbox. It takes 9 iterations to
find the local minimum solution for the algorithm;
which, in view of the fact that the optimization
problem is convex, is also a global solution.

Results obtained for the conventional MFHB
method (obtained from eq. (8) and labeled M1),
the proposed method in [8] (labeled as M2) and
the proposed method of this work (solution of (23)
and labeled as M3) are shown in the Table 1 and
the Fig. 3. The Fig. 4 shows a zoom to the ripple in
the passband of the filter. Note from Figs. 3 and 4
that the bandpass of the filter M3 was increased
with respect to the classical design M1 and it is
similar to M2. Furthermore, note from Fig. 4 that
M3 satisfy the design bounds; the ripple of M3 was
decreased by a factor of 5 with respect to the one
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Fig. 3. Frequency responses of the halfband filters
obtained from eq. (8) (labeled as M1), the design
presented in [8] (labeled as M2) and the proposed
method (labeled as M3)
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Fig. 4. Zoom to the frequency responses of the Fig. 3

obtained using M2. In addition, the ripple in M3
can be decreased if a lower δr is imposed and
bandwidth is reduced.

5.1.1 Designs for Different Values of N

We also compare M1, M2 and M3 for different
lengths. The filters obtained with N =
{5, 10, 15, 20, 25, 30} for each case (M1, M2, or M3)
are shown in Fig. 5. For each filter in the M3 group
we use (L = N − 3, p = π/8, α = 0, Hd = u,
δr = 1× 10−4).
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Table 1. Impulse responses for the different HBF used. Where M1 stands for the conventional MFHB method (obtained
from eq. (8), M2 for the filter obtained by applying the method shown in [8], and M3 for the approach of this work
(solution of eq. (23))

Coefficients M1 M2 M3
h0 0.5 0.5 0.5
h±1 0.302810668945312 0.310119240690946 0.310443505472700
h±3 -0.067291259765625 -0.083278105260414 -0.084024873191551
h±5 0.017303466796875 0.032731601028004 0.032517775894448
h±7 -0.003089904785156 -0.010461516825066 -0.011146406816043
h±9 0.000267028808594 0.003349162494984 0.002209998640447
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Fig. 5. Frequency responses of halfband filters obtained
for different lengths from a) M1, b) M2 and c) M3. The
length of each filter is related to N by the relation 4N − 1

We compare the performance of each group
using the maximum ripple and the 3-dB bandwidth,
this comparison is shown in Fig. 6. Note from
Figs. 5 and 6.b that, under the same filter length,
the bandwidth of the M3 group is in general bigger
(with exception of N=5) that the one of the groups
M1 and M2.

Also note form Fig. 6.a that the maximum ripple
of M3 is always lower than that of M2 and within
the imposed bound.

5.2 Example 2 - Full-band Digital Differentiator
Design

We present the design of one full-band DD of a
length equal to 34 samples (N = 17). The design
was made through the solution of (23), using the
following modified constraint (23c):

(1− δl)Fd ≤Wpf ≤ (1 + δl)Fd (30)

N=5 N=10 N=15 N=20 N=25 N=30
0

1

2

3
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5
x 10
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M1
M2
M3

N=5 N=10 N=15 N=20 N=25 N=30
0.42

0.44
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0.48

0.5

b)

Fig. 6. Characteristics of the frequency responses of
M1, M2 and M3 for different lengths. a) Maximum ripple
in the pass-band and b) 3-db Bandwidth in normalized
frequency. The maximum ripple of M1 is omitted
because it is ripple free. The length of each filter is is
related to N by the relation 4N − 1

with δl = π/100.
The Fig. 7.a shows the frequency response

obtained for p = π/4 and L = 2; the error
between the desired frequency response and the
one obtained is shown in Fig. 7.b. Note from Fig.
7.b that the frequency response obtained meets
the imposed constraints.

The absolute value of the error |H(ω)−Hd(ω)| is
shown in Fig. 8 for different values of p. Note that
in all the cases, the error is such that (30) holds. In
addition; it is possible to note from Fig. 8 that the
bandwidth increases at higher p.

The comparison of the DD obtained with a DD
designed from Parks & Mcmillan algorithm and a
MAXLIN DD designed from (13) is presented in
Figs. 9 and 10. All of the differentiators used
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Fig. 7. Results obtained for the design of a FIR
type 4 full-band differentiator. (a) Obtained frequency
response, (b) Error obtained with respect to Hd
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Fig. 8. Absolute value of the error H − Hd obtained for
several values of p for a DD design

have the same length, their impulse responses are
shown in Table 3.

Note from Fig. 10 that we obtain a trade-off
between the equiripable and the MAXLIN designs.
The magnitude of the error in the proposed design
is lower than that obtained by the equiripable
differentiator at low frequencies around the flatness
center.

Also, the magnitude of the error for the proposed
design is lower than the one presented by the
classical MAXLIN design at high frequencies due
to the imposed bounds. Finally, the impulse

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized frequency (x π rad/sample)

N
or

m
al

iz
ed

 a
m

pl
itu

de
 (

x 
π)

 

 

p=π/4
P&M
MAXFLAT Eq. (20)

Fig. 9. Comparison of the DD obtained with p = π/4
(solid line) with other designs
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Fig. 10. Error with respect to Hd of the DD obtained with
p = π/4 (solid line) and other designs

responses related to the filters used in this section
are shown in Tables 2 and 3.

6 Conclusions

A design method for flat halfband filters with narrow
bands via constrained optimization was presented.
This method is based on the generation of one or
more degrees of freedom in a MAXFLAT design.
The reduced set of MAXFLAT constraints is added
as a set of equality constraints to the QP problem.
The ripple in the passband is bounded by linear
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Table 2. Impulse responses computed via the proposed approach with p = {0, π
8
, π
4
, 3π

8
}

p = 0 p = π/8 p = π/4 p = 3π/8
h1/2 1.272703838491763 1.274348013359160 1.273528031915931 1.273461449991782
h3/2 -0.142287195016303 -0.141924979204911 -0.142462524577607 -0.142079586040318
h5/2 0.052423087839161 0.051284304032111 0.052388868323852 0.051992995508109
h7/2 -0.026567069329830 -0.026994098090403 -0.027053722669176 -0.026873618815548
h9/2 0.015354474001657 0.016967452128100 0.016044337311130 0.016250530090752
h11/2 -0.010855600973637 -0.011140934198855 -0.010715801464035 -0.010560657963380
h13/2 0.009698337795099 0.007688726157109 0.008437720054165 0.007797913925409
h15/2 -0.008903873670370 -0.006305971304445 -0.007382522927876 -0.006342132805407
h17/2 0.007010927210138 0.005838034604622 0.006215821019625 0.005645067912685
h19/2 -0.004427265439342 -0.004955317932812 -0.004546053985099 -0.004697654194456
h21/2 0.002197601711841 0.003393757921387 0.002753457699602 0.003580453593496
h23/2 -0.000847346480109 -0.001788995561542 -0.001347479576037 -0.002282728435341
h25/2 0.000249327969264 0.000708517283698 0.000521000323205 0.001247359342972
h27/2 -0.000054251412312 -0.000204605386659 -0.000154118617243 -0.000537509605368
h29/2 0.000008248148484 0.000040839335181 0.000033009418432 0.000188854663848
h31/2 -0.000000783915838 -0.000005056684141 -0.000004595746280 -0.000044818425536
h33/2 0.000000035119372 0.000000293670706 0.000000315545323 0.000007571855422

Table 3. Impulse responses for classical MAXLIN and the Parks & Mcmillan digital differentiators used
Eq (13) P&M

h1/2 1.254655096049274 1.273366106881952
h3/2 -0.123916552696225 -0.141600103038003
h5/2 0.035218388661032 0.051060812829298
h7/2 -0.012577995950369 -0.026118720110096
h9/2 0.004710278318862 0.015856075357254
h11/2 -0.001719906283221 -0.010665535760282
h13/2 0.000588936265235 0.007683784426866
h15/2 -0.000184315238564 -0.005814373497556
h17/2 0.000051659288317 0.004569866554243
h19/2 -0.000012724938695 -0.003703666198424
h21/2 0.000002700589576 0.003090684240953
h23/2 -0.000000482430463 -0.002646361955415
h25/2 0.000000070401577 0.002332418442918
h27/2 -0.000000008047734 -0.002176306513232
h29/2 0.000000000675095 0.002370421782109
h31/2 -0.000000000036925 -0.004961109469135
h33/2 0.000000000000987 0.003665265031042

inequality constraints added to the optimization
problem. The proposed methodology was applied
to the design of type I FIR halfband filters and
full-band type IV FIR differentiators.

With respect to the designed differentiators,
only full-band differentiators were considered
but in general the proposed approach can be
used to design band-pass type IV and type
III differentiators with some minor modifications.
Design examples were presented to demonstrate
the effectiveness of the proposed method to design
halfband filters and full-band differentiators.

As it can be seen in the results section,
it was shown that the proposed method has
the advantage of producing flat halfband filters
with narrower transition bands in comparison
with classical MAXFLAT designs. Finally, it is
important to highlight that as this method is based

on quadratic programming it has some inherent
limitations. For example, there are not closed
expressions for the coefficients of the impulse
response; and if design specifications are more
demanding the feasible space will be reduced.
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