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Abstract. This paper introduces a statistical background 

pixel classifier intended for real-time and low-resource 
implementation. The algorithm works within a smart 
video surveillance application aimed to detect 
unattended objects in images with fixed backgrounds. 
The algorithm receives an input image and builds an 
initial background model based on image statistics. 
Using this information, the algorithm identifies new 
objects that do not belong to the original image. The 
algorithm categorizes image pixels in four possible 
classes: shadows, midtones, highlights and foreground 
pixels. The classification stage produces a binary mask 
where only objects of interest are shown. The pixel 
classifier processes Quarter VGA (320 x 240) gray-scale 
images at a nomial processing rate of 30 frames per 
second. Higher resolutions such as VGA (640 x 480) 
have been also tested. We compare results with 
traditional statistical background modeling methods. Our 
experiments demonstrate that our approach achieves 
successful background segmentation at a minimal 
resource consumption while maintaining real-
time execution. 

Keywords. Background modeling, embedded computer 

vision, statistical pixel modeling, image processing, 
object detection. 

1 Introduction 

One key function to be performed in computer 
vision applications is background segmentation. 
Background segmentation is used to build a 
reference model of a background scene in order to 
facilitate higher level computer vision tasks like 
Binary Large OBject (Blob), detection, pattern and 
object recognition [1]. It is essential in applications 
such as video surveillance, automatic event 
monitoring, and object tracking [2]. 

The background segmentation task must be 
able to distinguish foreign objects that do not 
belong to the original scene. Moreover, the 
background model must also offer an accurate 
representation of the scene while being unaffected 
by environmental noise such as illumination and 
weather changes [3]. Different techniques have 
been extensively studied and are widely available 
through literature [4]. However, algorithm 
implementation is not only constrained by the 
application, but also by the underlying hardware 
driving the processing tasks [5]. 

Typically, complex general purpose algorithms 
are computationally heavy and resource 
demanding, while simpler, lighter algorithms are 
very case-specific and not reliable. Known 
background segmentation techniques range from 
basic image subtraction to elaborated 
implementations of fuzzy Mixture of Gaussians. 

The former method involves direct subtraction 
between the current image and the initial 
background model [6], while the latter is used to 
model dynamic composite surfaces with multiple 
textures [7, 8]. Surveys of different algorithms can 
be found in the literature [9, 10, 11]. In essence, 
background modeling can be classified in two 
major categories: Non-statistical Background 
Modeling and Statistical Background Modeling 
[12]. On this work we will focus on statistical 
background modeling. 

Statistical methods involve the classification of 
a pixel based on historical knowledge built through 
time. A probability function of the background 
pixels is first estimated, then, the likelihood of each 
pixel belonging to this function is computed.  
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This information is used to classify each in-
coming pixel according to a prior-defined 
classification rule. Statistical modeling has been 
approached numerous times throughout the 
development of computer vision applications [13], 
as they offer a good compromise between useful 
results and resource consumption. The main 
disadvantage that the method presents is the 
(often large), memory used to store historical data. 
It is possible to minimize memory consumption if 
the image information is semantically compressed, 
stored, classified, and then parsed back to pixel-
level data. This approach should offer us small 
memory footprint while maintaining robustness 
commonly not found on non-statistical 
segmentation techniques. 

In this work we present a statistical method for 
background modeling that prioritizes two factors: 
minimum data storage and robust real-time 
processing. The proposed algorithm is part of a full 
embedded smart surveillance system that is 
deployed in in-door environments. The system’s 
goal is to track a limited number of objects and 
ultimately identify those that are left unattended at 
certain areas of interest.  

The remainder of this paper is organized as 
follows, Section 2 presents related work, Section 3 
discusses the main ideas behind the statistical 
background modeling algorithm, and Section 4 
presents and analyzes results obtained with this 
method. Finally, in Section 5 conclusions 
are presented. 

2 Related Work 

Statistical Background Modeling is a broad topic. It 
spans multiple techniques, commonly 
implemented as software algorithms running on 
personal computers. Some authors systematically 
classify statistical-based methods in three 
categories: the first category includes Single 
Gaussian, Mixture of Gaussians and Kernel 
Density Estimation. A second category mainly 
involves Support Vector techniques; finally, a third 
category features General Gaussian Theory along 
matrix-based approaches [10]. 

Most of these methods offer reliable results, 
however, only a sub-set of these algorithms are 
eligible for real-time implementation on embedded 

platforms. An example of an embedded statistical-
based algorithm is found on [14]. The authors 
introduce a real-time algorithm that maps each 
input pixel value to a histogram built from a number 
of past frames. The histogram serves as an 
approximation of the pixel’s color probability 
distribution through time. The background model is 
obtained from each histogram, and can be 
subtracted from the current input image every 
processing step. A total of five bins are used for 
every histogram constructed. 

Another embedded implementation is 
presented on [15]. The algorithm is proposed with 
two variants: The first one operates on the Red-
Green-Blue (RGB) color space while the second 
one operates at a 255-bit grayscale level. The 
approach is a based on the popular algorithm 
developed by [16], based on Mixture of Gaussians 
(MoG). The basic idea is to model the color values 
of each pixel as a mixture of Gaussian 
distributions. The background model is, thus, built 
with the most persistent intensity values presented 
over time. This allows for composite and dynamic 
surfaces to be modeled, where a pixel can 
describe more than one texture at a given frame. 

The traditional MoG model sets a maximum 
number of Gaussian Distributions; however, 
texture conditions on a complex region of interest 
can vary. Authors in [17] introduce an Adaptive 
MoG algorithm that dynamically creates and 
removes Gaussians distributions on the fly. The 
algorithm is set with an initial number of 
Gaussians. During running time, an update 
procedure checks every Gaussian weight in the 
mixture model. If a weight is smaller than a 
threshold and the current number of distributions is 
below a minimum preset, a new distribution is 
created. Otherwise, the Gaussian has expired and 
must be removed from the model.  

Individual pixel distribution modeling can be 
computationally expensive. One possible method 
that minimizes memory consumption is found on 
[18]. The approach involves describing pixels not 
as distributions but as compressed statistical 
ranges depicted with intensity clusters. Each 
incoming pixel is matched against a list of existing 
clusters. If a positive match is found, the relevant 
cluster self-updates in order to include more 
persistent values, effectively grouping pixels with 
similar intensity data. 
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An alternative statistical model is introduced by 
[19]. In this paper, the background segmentation 
method is presented as a machine learning 
algorithm. The algorithm builds an initial statistical 
model during training. The constructed model is 
consulted by each incoming pixel during the 
classification phase. This approach offers a low 
memory and low latency approach for 
embedded implementations. 

The algorithm works in the RGB color space. 
Each background pixel is modeled using four 
parameters: expected color value, color standard 
deviation, brightness distortion and chromaticity 
distortion. Using these parameters is possible to 
identify a single color under different light 
conditions, making the algorithm robust against 
luminance noise. After parameter computation, 
each pixel can be classified as background or 
foreground according to a simple 
classification rule.  

In this paper we developed a background 
modeling implementation that is part of a full 
embedded surveillance system. We use a 
statistical approach focused on fixed-point 
precision and robust real-time processing. The 
complete system is deployed out-doors and 
monitors areas of interest with low to medium 
traffic. Images are acquired using a fixed-camera. 
Image processing is achieved on a 32-bit Intel Nios 
II Embedded Processor with DSP capabilities.  

Natural light variations such as shadows and 
highlights are present and must be tolerated by the 
background model. The system is focused on real-
time identification of static and moving objects that 
do not belong to the original scene. 

A Standard Definition (SD) frame is preferred 
over High Definition (HD) images. The system 
processes frames of 320 x 240 pixels. This size is 
typically known as Quarter VGA (QVGA) 
resolution. QVGA frames lower storage 
consumption while also offering enough 
information for standard image processing tasks 
(e.g., blob detection and feature extraction based 
on object geometry). 

3 Statistical Algorithm 

3.1 Overview 

The background model has been developed as a 
supervised pixel classifier. As such, the algorithm 
must first run through a training process prior to 
active classification. During training, the classifier 
builds a statistical model based on background 
information. Once training has been completed, 
historical data will be retrieved and used for new 
pixel classification. The model samples pixel data 
from an unknown population in order to build a 
reference model of the real population. The 
reference model will be used to further classify 
pixel color values according to their historical mean 
and standard deviation, final pixel classification will 
be decided using a set of rules defining four 
different pixel classes. 

In this application, the estimated population 
correlates to the pixel grayscale intensity 
distribution gathered over time. The Central Limit 
Theorem (CLT) states that given a large enough 
sample size; it is possible to make inferences 
about the population mean regardless of its shape. 
The distribution of the sample mean must be 
approximated to normal distribution [20, 21].  

The proposed algorithm estimates the 
population distribution for each sample average 
and stores it as the following tuple: N(µ, σ), (pixel 
mean and pixel standard deviation). The sample 
distribution will also show variance equal to the 
variance of the population divided by the sample 
size. The final model will be described with 
imageWidth x imageHeight tuples. For QVGA 
frames that’s a total of 320 x 240 = 76, 800 tuples. 

3.2 Pixel Distribution Model 

Pixel color distribution has been known to follow a 
normal distribution in a static scene that evolves 
over time [16, 22]. Consider an image pixel p 
acquired by a camera and located at coordinates 
(x, y) on the screen. During a fixed time period of n 
frames acquired, pixel p will show variations due to 
illumination effects. Our model defines four specific 
illumination ranges where pixel p moves 
across time. 

The first range is referred to as the midtones 
range.  
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The mean intensity value of pixel p will be 
located in this range most of the time. The range 
below the mean value is named the shadows 
range. The following intensity range in the 
distribution is defined as the highlights range, and 
contains intensity values above the intensity mean 
of pixel p. A final range is defined outside of the 
three main possible ranges. This is the foreground 
range, where pixel intensity values differ drastically 
from previous gathered data.  

Figure 1 shows the pixel normal distribution and 
the three proposed area ranges. Everything falling 
outside the [-3σ, 3 σ], interval will be labeled as a 
foreground object, not belonging to the 
original scene. 

3.3 Sample Distribution with Unknown 
Population Parameters 

For this particular application, both population 
mean and standard deviation are unknown 
quantities. Nevertheless, the algorithm must 
estimate a normal population with unknown mean 
µ and unknown standard deviation σ using the 

sample mean �̅� and sample standard deviation S. 
A typical procedure is to replace σ with the 

sample standard deviation S [21]. However, the 
sampling distribution of the sample mean will no 
longer be normally distributed. Instead of using the 
random variable Z, that is, the standard normal 
distribution, it is possible to use a distribution called 
the t-distribution. The effect of replacing σ by S on 
the distribution of the random variable T is 
negligible if the sample size n is large enough. 
Commonly, a sample size between 30 and 40 is 
considered large enough [23]. The larger the 
sample size, the closer the t-distribution is to the z 
distribution. The shape of the t-distribution is very 
similar to the z-distribution: the contour is bell-
shaped, the mean is zero, but the spread is larger. 

3.4 Sample Size 

Sampling is carried out during the training phase. 
During this stage the classifier gathers a pixel 
sample of a defined size n for parameter 
estimation. The condition of n > 30 is a common 
guideline if population distribution is not too far 
from normal [24]. As mentioned before, having an 
unknown population variance σ2 forces the 
algorithm to model the sample distribution as t-
shaped. Nevertheless, the t-distribution resembles 
a normal distribution as sample size increases. 

The choice of a meaningful sample size not only 
impacts on the classification results, but also 
consumes a fair amount of memory. During the 
training period, a number of frames equal to the 
sample size will be stored in system memory. 
Consider Table 1, where possible values of n are 
examined. It is possible to simplify some 

 

Fig. 1. Normal distribution N(µ, σ) of a pixel p(x,y) 

 

Fig. 2. Pixel Distribution with defining each tone range 

Table 1. Sample size implemented as a fixed-point 

arithmetic shift 

Sample Size Arithmetic Right Shift 

32 >>5 

64 >>6 

128 >>7 
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calculations if a sample size is chosen as a power 
of two (e.g., Sample mean µ computation involves 
a division by n). We have set the training sample 
size n to 32 (25) frames. 

3.5 Pixel Population Mean and Standard 
Deviation Estimation 

After defining a sample size with unknown 
parameters, population computation can be now 
formulated. Population expected value µ is 
estimated using an interval of plausible values.  

The estimator comes in the form of a Confidence 
Interval (CI). This parameter is constructed so it 
offers high confidence that µ lies directly within this 
numeric range. The mean interval is built using a 
confidence level (1 − α) of 95 %.  

The formal definition of a two-sided confidence 
interval on µ is: 

�̅� −
𝑆

√𝑛
𝑡𝛼
2
,𝑛−1 ≤  𝜇 ≤  �̅� +

𝑆

√𝑛
𝑡𝛼
2
,𝑛−1 ,   (1) 

where �̅�  and S correspond to the mean and 
standard deviation of the random sample obtained 
from a normal distribution. Additionally, the 
variance σ2 is unknown and the factor tα=2,n−1 

 

 
 

Fig. 3. Qualitative Results Benchmark No. 1 
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represents the upper percentage point of the t-
distribution with n-1 degrees of freedom [20]. For 
our particular problem, the variables are defined as 
follows: 

1 − 𝛼 = 0.96 →  𝛼 2⁄ = 0.025, (2) 

𝑛 = 32 → 𝑛 − 1 = 31, (3) 

√𝑛 = √32 ~ 5.6568, (4) 

𝑡𝛼
2
,𝑛−1 = 𝑡0.025,31 ~ 2.04. (5) 

Finally, it is possible to estimate the parameter 
σ by relying on the sample data obtained 
previously. The standard deviation of the 
population will be estimated by multiplying the 
square root of the size of the sample n by the 
standard deviation of the sample. 

3.6 Population Distribution Segmentation and 
Classification 

Once each pixel distribution has been estimated, 
the background model should offer reference 
information of both the population mean µ and 

 

Fig. 4. Qualitative Results Benchmark No. 2 
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standard deviation σ. This information is stored in 
a pair of matrices, indexed as the incoming pixels 
require. The next step in the process is to divide up 
the whole population distribution in the delimited 
regions used for pixel identification. 

During classification, each pixel is evaluated 
according to its historical statistics. Each pixel is 
fitted in four possible classes: Shadows, Midtones, 
Highlights and Foreground. Figure 2 depicts the 
segmented pixel distribution. 

We define six values used as thresholds for 
pixel comparison. Note that some threshold values 
in fact overlap, thus, it is possible to compute only 
four values instead of six. Each new pixel is labeled 
according to the following classification rule: 

𝐶𝑙𝑎𝑠𝑠(𝑝) =  

{
 

 
𝑆ℎ𝑎𝑑𝑜𝑤𝑠 ∶ 𝑖𝑓 𝑆𝑙𝑜𝑤𝑒𝑟 ≤ 𝑝 < 𝑆𝑢𝑝𝑝𝑒𝑟,

𝑀𝑖𝑑𝑡𝑜𝑛𝑒𝑠 ∶ 𝑖𝑓 𝑀𝑙𝑜𝑤𝑒𝑟 ≤ 𝑝 ≤ 𝑀𝑢𝑝𝑝𝑒𝑟,

𝐻𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑠 ∶ 𝑖𝑓 𝐻𝑙𝑜𝑤𝑒𝑟 < 𝑝 ≤ 𝐻𝑢𝑝𝑝𝑒𝑟,

𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (6) 

Additionally, each distribution threshold is 
computed using the µ CI previously built.  

The lower mean value (µLower), can be used 
for lower thresholds and the upper mean value 
(µUpper) for upper thresholds. Both values can be 
either positive or negative. Each threshold value is 
computed as follows: 

𝑆𝑙𝑜𝑤𝑒𝑟 = −3𝜎 + 𝜇𝑙𝑜𝑤𝑒𝑟, (7) 

𝑆𝑢𝑝𝑝𝑒𝑟 = 𝑀𝑙𝑜𝑤𝑒𝑟 = −1𝜎 + 𝜇𝑙𝑜𝑤𝑒𝑟, (8) 

𝑀𝑢𝑝𝑝𝑒𝑟 = 𝐻𝑙𝑜𝑤𝑒𝑟 = 1𝜎 + 𝜇𝑢𝑝𝑝𝑒𝑟. (9) 

𝐻𝑢𝑝𝑝𝑒𝑟 = 3𝜎 + 𝜇𝑢𝑝𝑝𝑒𝑟. (10) 

The prior operations are carried out during the 
classifier’s training phase. Resulting data such as 
pixel standard deviation mean and threshold 
information for each image pixel is stored in RAM 
memory. The classification phase is 
straightforward, as the background model is 
queried by each new pixel as the classification rule 
is applied over the whole image. 

4 Results 

The algorithm is first written and debugged as an 
embedded Matlab algorithm. Embedded Matlab is 
a subset of the Matlab computing language that 
generates C code directly from Matlab scripts. It 
can also be used to generate a Hardware 
Description Language (HDL), template through 
Simulink. Further C target-platform optimizations 
are carried out manually. Matlab offers us great 
developing tools and a complete insight of 
background classifier’s complexity running on an 
embedded environment. 

We compare results obtained against two other 
methods often used as reference throughout 
literature: the Gaussian Mixture Model and the 
Horprasert algorithm. The latter has been 
developed by [25] and is used to benchmark of our 
own model. The entire database of test sequences 
includes seven video clips of small indoor and 
outdoor areas focused on low-traffic and varying 
environmental conditions (e.g., light, surfaces and 
objects). We have tested out-door and in-door 
scenes, where backgrounds can be either dynamic 
(i.e., moving objects such as trees are present) or 
static. Variable light is observed throughout all the 
videos, while traffic is labeled as low (1-3 persons) 
or medium (3-5 persons). Some scenes also 
feature reflective surfaces. 

Figure 3 shows the first four scenes under 
testing, while Figure 4 depicts the last three scenes 
evaluated. The database used in the first five 
scenes is available online [26]. The sixth scene has 
been taken from the PETS2001 database [27] and 
presents an out-door surveillance view of a parking 
lot where no clean background of the scene is 
available, thus, the system is trained with cars 
already parked. 

The Gaussian Mixture Model is tested using the 
following parameters: α = 0.005, ρ = 0.05 and three 
Gaussian distributions. The model does not 
include a shadow removal stage. MoG-classified 
pixels are colored white for foreground and black 
for background. The Horprasert decision 
parameters τCD, ταlo, τα1 and τα2 are selected 
threshold values used to determine similarities in 
chromaticity and brightness between the 
background model and the current image [18].  

Parameter selection can be automatic or 
manual. In this application, the thresholds that 
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achieved a better segmentation have been 
manually obtained through experimentation. The 
parameters used are: τCD = 5000, ταlo = −20, τα1 = 
6 and τα2 = −6. Horprasert’s model classes are 
rendered in three colors: red for foreground 
objects, blue for shadows and black for 
background pixels. Our method’s results are 
shown using four different colors: white for 
foreground, gray for shadows, light gray for 
highlights and black for background pixels. All 
results are presented without any post-processing. 
Figure 3 and Figure 4 depicts the complete 
qualitative results of the input test database. 

For quantitative evaluation, all seven video clips 
results are compared using the Percentage of 
Correct Classification (PCC), defined as follows: 

𝑃𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃𝐹
 𝑥 100. (11) 

In Equation (11), TP (true positives), represents 
the number of correctly classified foreground 
pixels; TN (true negatives) represents the number 
of correctly classified background pixels and 
finally, TPF represents the total number of pixels in 
a QVGA image. 

The Ground Truth image is used as reference 
for measuring both the TP and TN values. 

Table 2 depicts all the PCC values obtained for 
the seven tested scenes under the three different 
discussed methods. The maximum value of PCC 
is 100%, which indicates a result identical to the 
ground truth reference image. A lower result 
indicates a deviation from the ground truth.  

All methods are compared based on foreground 
and background classification; this means that 
shadows (or highlights) identified by the Horprasert 
model and our approach are rendered as 
background pixels for evaluation. 

All methods are implemented on a PC with an 
Intel Core i3-2350M CPU running at 2.30 GHz with 

4 GB of RAM running at a minimum of 30 frames 
per second. Estimated profiling using Matlab tools 
show a processing rate of 30 frames per second 
(average) with a system memory consumption of 
maximum 2.07 Mbits for background model 
storing. 

Input is received as a sequence of 62 images 
compromising the video clips used in scenes 1, 6 
and 7. The script has been separated in three main 
blocks: training, background model building and 
classification. The training block computes and 
stores the cumulative sum, minimum and 
maximum values of an incoming grayscale pixel for 
32 frames. The background model building block 
computes the standard deviation and mean of all 
processed pixels. Finally, the classification block 
receives a grayscale pixel and outputs its 
classification label during 30 frames.  

The final output of the full automatic 
surveillance system is shown in Figure 5. The 
system receives an input frame from the fixed-
position camera. The background model 
constructs the Foreground Mask, where objects 
that do not belong to the original background are 
rendered in white. Shadows have been filtered out 
by the pixel classifier; this mask is then processed 
by a blob detection stage. Tracked blobs of 
interested are finally framed with a rectangle.  

4.1 Discussion of the Results 

Although our approach is developed mainly for in-
door surveillance, we also tested performance 
under out-door conditions with reasonable 
reability. In the first scene we can observe the 
presence of dynamic multi-textured pixels (i.e., 
moving trees) among other environmental noises 
that hinder optimal segmentation. MoG achieves 
the best segmentation in the fifth scene, classifying 
correctly the dynamic pixels around the trees while 

Table 2. Quantitative comparison of PCC in % for each Background (BG) scene 

Method BG 1 BG 2 BG3 BG4 BG5 BG6 BG7 

MoG 91.14 98.67 99.45 98.68 99.36 97.37 96.82 

Horprasert 97.61 98.84 99.47 99.35 98.23 98.32 97.53 

Proposed 98.51 99.17 99.71 99.56 99.23 99.17 98.23 
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optimally preserving the shape of the detected 
foreground objects. 

Scene two and four present the noisiest 
environments in the database. Both sequences 
feature reflective surfaces and irregular light 
distorted by moving objects.  

The reflection of the target objects (the persons 
walking through the hall) is identified in all three 
methods as entirely new foreground objects. In the 
second scene, MoG manages to filter out most of 
the noise produced by the composite surfaces 
(such as the building reflective walls and the blue 
moving fabric), while the floor reflections are better 
segmented using both the Horprasert model and 
our model.  

While evaluating the third scene, the three 
techniques achieve a good segmentation with low 
background noise and good shape preservation. 
Enough shadow information is filtered out by 
Horprasert’s model and our approach, with no 
significant differences in both results. The sixth 
scene produces a lot of highlight and shadow noise 
with Horprasert’s model and our method. As 
mentioned before, this sequence has heavy light 
variations throughout the span of the video clip.  

The seventh and final scene presents an 
interesting scenario, with uneven light and 
numerous shadows sources. MoG presents a lot of 
environmental noise; meanwhile most of the 
shadows are correctly identified by the Horprasert 
model. Our model also accurately identifies 
shadows and highlights present in the frame. 

5 Conclusions 

Background modeling is a typical computer vision 
task; however, algorithm implementations aimed 
for real-time embedded applications are limited. In 
this paper we proposed a background modeling 
algorithm with emphasis on real-time processing 
and memory savings. The background modeling 
algorithm relies on statistical information and is 
aimed for a fast implementation. It is developed as 
a supervised pixel classifier, where a background 
reference model is built during a training stage 
using a video sequence of a fixed background 
acquired by a stationary camera. Once trained, the 
system can actively classify the pixels of an input 

image in four different classes: background, 
shadows, highlights and foreground.  

We compared the results obtained with two 
techniques that are often implemented on 
embedded platforms: the Gaussian Mixture Model 
and the Horprasert model. According to the tests 
conducted, the overall performance of our method 
is in-line with results obtained directly from 
software implementations. The impact of fixed-
point operations in the proposed architecture is 
practically negligible while comparing with 
traditional statistical-based techniques. 

Best classification results are obtained when the 
system monitors in-door areas with non-reflective 
surfaces, as reflective surfaces will introduce noise 
that can lead to miss-classified pixels. Under these 
circumstances noise can be minimized with the 
implementation of post-processing filters such as 
Gaussian, median, erosion and dilation. System 
accuracy can be generally boosted up by 
decimating the input stream of images. This will 
cause each N(µ, σ) tuple value to be extended to 
accept broader intensity values, reducing the 
possible noise obtained during certain scenarios.  
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