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Abstract. Belief merging aims at combining information
from multiple sources while belief revision studies
strategies for retracting information in order to maintain
consistency when the addition of new evidence to a
belief base makes it inconsistent. An ordering of the
sentences in the belief base is used to determine
priorities among sentences so that those with lower
priority can be identified and retracted. This ordering
can be difficult to generate and maintain. To address
this difficulty, in this paper we show how to generate
automatically an ordering of the belief base sentences
through the implementation of a belief merging operator.
We extend the ∆ps (PS-Merge) belief merging operator
in order to consider constraints, then we use this
extension, called ∆psµ (∆ps under constraints), as a
strategy for belief revision. We treat new evidence as
a constraint and apply the extended merging operator
to obtain the revised belief base. We propose several
properties of this operator when compared to other two
belief revision operators solving four examples described
as real-life scenarios. Finally we show a software
prototype based on this approach, called Belief Reviser,
freely accessible online.

Keywords. Belief revision, belief merging under
constraints, knowledge modeling, decision support
systems, ∆ps (PS-Merge operator).

1 Introduction

Belief change can be characterized in two ways:
in terms of postulates, which are the properties
that a changing process must follow in order to

produce rational results, and in terms of processes,
which consists of a set of predefined steps in
order to generate the results. The latter process
indeed defines an operator that is also expected to
satisfy a set of postulates previously defined in the
literature [15].

Belief revision is a framework that characterizes
the process of belief change in which an agent
revises its beliefs when new evidence is received.
Revision always considers new evidence as a
better belief [11]. Such new evidence is usually
represented in the form of a propositional formula
which must be preserved after the revision.

Logic-based belief revision has been extensively
studied [1, 3, 10, 11, 19, 28]. An agent’s beliefs are
usually represented as a belief base and with the
help of some order-based strategy the new piece of
information is integrated to the belief base to reach
a new coherent revised belief base.

Classical belief revision always prefers the new
information and thus revises the current beliefs
to accommodate new evidence. Most studies of
belief revision are based on the AGM (Alchourron,
Gardenfors & Makinson) postulates [1] which
capture this notion of priority and describe the
minimal properties a revision process should
have. The AGM postulates formulated in the
propositional setting in [19], denoted as R1-R6

(see section 3.1), characterize the behavior that a
revision operator should comply with. For example,
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R1, called the success postulate, captures the
priority of new evidence over the belief base, which
requires that the revision result of a belief base K
by a proposition µ (new information) should always
maintain µ being believed.

Another belief change approach, belief merg-
ing, studies strategies for combining information
contained in a set of, possibly inconsistent, belief
bases (profile) obtained from different sources in
order to produce a single consistent belief base.

In this case, the better belief is taken as the
collective one, i.e. the result of merging the bases,
which according with the approach can be a set of
formulae or a single formula.

Several merging operators have been defined
and characterized in a logical way. Among them,
model-based merging operators [22, 25, 26, 27,
36] obtain a belief base from a set of worlds with
the help of a distance measure on worlds and an
aggregation function over distances. The closest
worlds to the input belief profile are the result of
the operator. This framework has a good level of
generality, due to the variety of distance functions
that may be chosen, however, in the literature
almost every proposed operator uses the classical
Dalal distance [10]. Implementation of Dalal based
frameworks faces a big issue: the computation of
the models of every base in the profile, which could
be very expensive. Interested readers can refer to
[16] for approaches to deal with the implementation
of such operators.

An alternative distance between possible worlds
has been defined in [5]. This distance is based on
the notion of Partial Satisfiability (PS). A merging
operator based on PS-distance is also proposed
in [5]. The PS-operator has been implemented
avoiding the computation of the models of the
belief profile. Moreover, this operator can deal with
inconsistent bases which have no models, which
is an advantage over Dalal based operators that
operate only over the profile’s models and hence
cannot handle inconsistent bases.

In the literature, we found that belief merging
can be extended to support integrity constraints,
which are typically represented as a set of formulae
or a single formula that must be respected by

the merging result1. In [5], however, the support
of integrity constraints is not considered by the
proposed operator. Note that as showed in [22],
a model-based merging operator can be naturally
extended to support integrity constraints. That is,
to make the result of the merging fulfil a formula
representing the integrity constraints2 µ, we only
need to restrain the search of worlds to the ones
that satisfy µ and choose the closest to the input
belief profile.

In a previous work [34], we proposed an
extension of the ∆ps (PS-Merge) belief merging
operator and provided a preliminary analysis of its
properties. In this paper we (i) further elaborate
its characterization, (ii) discuss the properties of
our extension, called ∆psµ (∆ps under constraints),
(iii) describe corresponding test examples in
practical scenarios, and (iv) develop a software
prototype, called Belief Reviser, to implementing
our proposed operators.

We made a comparison of ∆psµ against two
belief revision operators: Dalal and BHQ operators.
Dalal operator is a well known, model-based
strategy for belief revision, thus, it is a semantic
operator. On the other hand, BHQ operator
is a less well-known approach but, unlike Dalal
operator, it is a syntax-based strategy based on
prime implicates. Namely, it is a syntactic operator.
In addition, it can deal with inconsistent belief
bases, whilst Dalal operator cannot. This pair
of operators are based on different strategies
but satisfy the basic postulates, so it is worth a
comparison.

This paper is organized as follows. In section 2
we give some definitions and notations on logic and
knowledge bases. In section 3 we introduce belief
revision and we define BHQ and Dalal operators.
In section 4 we introduce belief merging. We
describe partial satisfiability and define ∆psµ . In
section 5 we propose revision through merging via
concrete test scenarios which are also described
in colloquial language; we compare ∆psµ against

1Here we can see that the integrity constraints being
respected in belief merging is similar to the new evidence being
respected in belief revision, which has motivated this paper.

2For convenience we use the same symbol µ for
representing the new evidence in belief revision and the integrity
constraints in belief merging contexts.
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the other two operators and discuss the results.
In section 6 we describe the software prototype
developed. Finally in section 7 we give some
conclusions and discuss future work.

2 Preliminaries

We consider a language L of propositional logic
using a finite set of atoms or variables P := {p1,
p2, . . . , pn}. The logic connectives ρ = {¬,∧,∨}
are defined as usual.

A Well Formed Formula (WFF), also called
formula or sentence, is a propositional formula ψ
containing a subset of variables from P and a
subset of operators from ρ. Parentheses are used
in the traditional way [13]. We can define a formula
as follows:

— Each propositional variable is a formula.

— If ψ is a formula, then ¬ψ is a formula.

— If ψ and φ are formulae, then ψ ∧ φ and ψ ∨ φ
are formulae.

Unnecessary parentheses may be eliminated in
the traditional way.

A belief base or belief theory K is a finite set
of formulae of L representing the beliefs from a
source. In this paper we sometimes identify K
with the conjunction of its elements, for example
if K = {ψ1,ψ2, . . . ,ψn} then K = ψ1 ∧ψ2 ∧ · · · ∧ψn

A literal l is an atom or the negation of an atom.
A term D is a conjunction of literals such that D =
l1 ∧ · · · ∧ lk, with li = pj or li = ¬pj . Every formula
ψ ∈ L(P ) can be transformed into a Disjunctive
Normal Form (DNFψ), such that ψ ≡ DNFψ, where
DNFψ is a disjunction of terms such that DNFψ
=D1 ∨ · · · ∨Dm.

A termD is an implicant of a formula ψ iffD |= ψ,
and it is a prime implicant iff for all implicants D′

of ψ, we have D′ |= D. The set of all the prime
implicants of a formula ψ is denoted by Ξ(ψ).

Similarly, a clause C is a disjunction of literals
C = l1 ∨ · · · ∨ lk, with li = pj or li = ¬pj .
Every formula ψ ∈ L(P ) can be transformed into a
Conjunctive Normal Form (CNFψ), such that ψ ≡
CNFψ, where CNFψ is a conjunction of clauses
such that CNFψ =C1 ∧ · · · ∧ Cm.

A clause C is an implicate of a formula ψ iff ψ |=
C, and it is a prime implicate iff for all implicates
C ′ of ψ, we have C |= C ′. The set of all the prime
implicates of a formula ψ is denoted by Π(ψ).

The set of worlds or models of the language
is denoted by W, its elements will be denoted
by vectors of the form (w(p1), . . . ,w(pn)), where
w(pi) = 1 or w(pi) = 0 for i = 1, . . . ,n and
the set of models of a formula ψ is denoted by
mod(ψ). K is satisfiable (consistent) iff there is
a model of K. If ψ is a propositional formula or
a set of propositional formulae then P(ψ) denotes
the set of atoms appearing in ψ. |P| denotes the
cardinality of set P.

A belief profile E = {K1, . . . ,Km} is a multiset
(bag) of m belief bases.

Let ≤ψ a pre-order relation over worlds; x =ψ y
is a notation for x ≤ψ y and y ≤ψ x, and x <ψ y is
a notation for x ≤ψ y and y 6≤ψ x.

3 Belief Revision

Belief revision is a central topic in knowledge
representation and reasoning. Belief revision
consists in incorporating a new belief, changing as
few as possible the original beliefs while preserving
consistency [9].

3.1 Belief Revision Characterization

In [1] eight postulates have been proposed to
characterize the process of belief revision, which
are known as the AGM postulates. Assuming a
propositional setting, in [19] this characterization is
rephrased yielding the following R1-R6 postulates,
where K, K1 and K2 are belief theories to be
revised and µ, µ1 and µ2 are pieces of new
evidence and ◦ is a belief revision operator:

R1. K ◦ µ implies µ.

R2. If K ∧ µ is satisfiable, then K ◦ µ ≡ K ∧ µ.

R3. If µ is satisfiable, then K ◦ µ is also satisfiable.

R4. IfK1 ≡ K2 and µ1 ≡ µ2, thenK1◦µ1 ≡ K2◦µ2.

R5. (K ◦ µ1) ∧ µ2 implies K ◦ (µ1 ∧ µ2).
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R6. If (K ◦µ1)∧µ2 is satisfiable, then K ◦ (µ1∧µ2)
implies (K ◦ µ1) ∧ µ2.

[33] introduced the notion of faithful assignment
and provided a representation theorem which
shows an equivalence between the six postulates
and a revision strategy based on total pre-orders,
the formal definitions are as follows [18]:

Definition 1 Let W be the set of all worlds
(interpretations) of a propositional language L. A
function that maps each sentence ψ in L to a
total pre-order ≤ψ on worlds W is called a faithful
assignment if and only if:

1. w1,w2 |= ψ only if w1 =ψ w2;

2. w1 |= ψ and w2 6|= ψ only if w1 <ψ w2; and

3. ψ ≡ φ only if ≤ψ=≤φ.

Theorem 1 (Representation Theorem)
A revision operator ◦ satisfies postulates R1-R6, iff
there exists a faithful assignment that maps each
sentence ψ into a total pre-order ≤ψ such that:

mod(ψ ◦ µ) = min(mod(µ),≤ψ).

A belief revision operator can be seen as a
function where inputs are a set of beliefs K and a
formula µ, and outputs a new set of revised beliefs
K ◦ µ. In the literature, a number of concrete belief
revision operators have been proposed, deploying
either semantic or syntactic approaches.

3.2 Dalal Operator

The most prominent belief revision operator, Dalal
operator [10] performs a model-based revision
measuring minimal change by the cardinality of
model change, i.e. it uses a “distance” metric
which operates over two worlds w1, w2 by counting
the number of atoms whose values differ from
each other, known as the Hamming distance
dist(w1,w2). Then this distance helps to define a
distance between a belief base K and any possible
world w as follows:

dist(w,K) = min
w′∈mod(K)

dist(w,w′).

Then a total pre-order ≤K over possible worlds
can be defined as: w1 ≤K w2 iff

dist(w1,K) ≤ dist(w2,K).

Definition 2 The revision operator ◦Dalal is de-
fined as:

mod(K ◦Dalal µ) = min(mod(µ),≤K). (1)

3.3 BHQ Operator

BHQ operator is a prime implicate-based belief
revision operator, formula-based yet syntax-
insensitive, and do not rely on background
information [3]. The operator is defined by first
compiling the belief base in its set of prime
implicates and then applying the revision operator.

Definition 3 Let K be a belief base and µ be a
formula, Π(K) the set of prime implicates of K and
K⊥µ the set of maximal subsets of K consistent
with ¬µ. Then the prime implicate-based revision
operator, written ◦BHQ , is defined as follows:

K ◦BHQ µ = µ ∧
∨

(Π(K)⊥¬µ). (2)

The operator conjoins the input µ and the
disjunction of the maximal subsets of Π(K)
consistent with µ. Instead of dealing directly with
the formulae in the belief base, it deals with the
prime implicates of the belief base.

4 Belief Merging

Belief merging aims at combining several pieces
of (possibly inconsistent) information coming from
different sources [24]. The goal is to produce a
single consistent set of information, trying to keep
the most of the information.

Belief merging addresses important issues
in artificial intelligence and databases, as its
applications are many and diverse [4]. For
example, a belief merging operator in a multiagent
system may reach an agreement on the inputs
of a group of agents based on the contradictory
beliefs of each member in the group. When agents
have conflicting beliefs about the “true” state of the
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world, belief merging can be used to determine the
“true” state of the world for the group [33].

Several merging operators have been defined
and characterized in a logical way. Among them,
∆ps (PS-Merge) is a versatile operator which can
be used to solve real-world problems, with the ad-
vantage of having an efficient implementation [31].

4.1 Partial Satisfiability Merging

Without loss of generality the operator considers
only normalized languages so that each belief
base is taken as the disjunctive normal form
(DNF) of the conjunction of its elements or the
conjunctive normal form (CNF) of the disjunction
of its elements.

In [5] the notion of Partial Satisfiability (PS) is
introduced which is a generalization of satisfiability,
in which the valuation function w : L → {0, 1}
is extended to wps : L → [0, 1], i.e. the
range in a PS-valuation could be any number
between 0 and 1. Instead of indicating satisfaction
with a Boolean value, partial satisfaction yields
a number representing the degree of satisfaction
of a formula. If a formula is unsatisfied,
its partial satisfiability is 0. If a formula is
satisfiable completely (Boolean satisfiable), its
partial satisfiability is 1. The partial satisfiability of
any other case is between these two values. The
authors have proposed two definitions of partial
satisfiability: one considers only formulae in DNF
and the other, called normal partial satisfiability,
considers both forms DNF and CNF. Even when
there is a small difference in the valuation of
conjunctions, in this paper we consider only
normal partial satisfiability, so when we refer partial
satisfiability we refer the case of normal partial
satisfiability. The difference in the valuation of
conjunctions considers a degree of satisfiability
when the formula K is unsatisfied and does not
contain all the atoms of the language (|P(K)| <
|P|), i.e. when the agent is not satisfied at all in
its own beliefs, the partial satisfiability considers
a small degree of satisfaction for the atoms not
appearing in the formula representing its beliefs
[31].

Definition 4 (Normal Partial Satisfiability) Let
K ∈ L(P ) in DNF or CNF, w ∈ W, the Normal
Partial Satisfiability of K for w, denoted as wps(K),
is defined as follows:

— If K is a literal

wps(K) = w(K),

— If K := D1 ∨ · · · ∨Dn

wps(K) = max {wps(D1), . . . ,wps(Dn)} ,

— If K := C1 ∧ · · · ∧ Cn

wps(K) =

n∑
i=1

wps(Ci)

n
.

Example 1 The Partial Satisfiability of the belief
base K = (¬a ∧ ¬c) ∨ (b ∧ ¬c) given P = {a, b, c}
and w = (1, 1, 1) is

wps(K) = max
{
w(¬a)+w(¬c)

2 , w(b)+w(¬c)
2

}
= 1

2 .

Example 2 Notice that we can find the Partial
Satisfiability of inconsistent belief bases such as
K = a ∧ (¬a ∨ b) ∧ ¬b, given P = {a, b} and
w = (1, 0), it is

wps(K) = w(a)+max(w(¬a),w(b))+w(¬b)
3 = 2

3 .

This intuitively means that two out of three
conjuncts are satisfied.

4.2 ∆ps Operator

In classical model-based belief merging, the
process of merging a profile ∆(E) defines three
distances: a distance from a world to another
one dist(w1,w2), a distance from a world to a
belief base dist(w,K) based on dist(w1,w2) and a
distance from a world to a profile dist(w,E) based
on dist(w,K). The latter distance allows us to
define a pre-order between possible worlds with
regards to the profile (≤E). The closest worlds to
the profile are the models of the merging result.
Partial satisfiability merging is quite similar. The
only difference is that we define a distance from a
world w to a base K directly without the help of
distances between worlds. More precisely, we first
define:

dist(w,K) = wps(K),
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then a distance from a world w to a profile E is
defined as follows:

dist(w,E) =
∑
K∈E

dist(w,K),

i.e. the distance from a world to a profile is the
sum over all the partial satisfiability of every belief
base. Finally, a pre-order between possible worlds
w.r.t. a profile E is defined as follows:

w1 ≤E w2 iff dist(w1,E) ≥ dist(w2,E).

The models of the merging result are the worlds
that are closest to the profile.

mod(∆ps(E)) = min(W,≤
E

). (3)

4.3 ∆ps under Constraints

The merging process can be extended straightfor-
wardly when an integrity constraint µ is imposed.
To assure that the result of the merging will satisfy
the integrity constraints, we can restrict the search
to the constraint’s models mod(µ) as follows:

mod(∆psµ(E)) = min(mod(µ),≤
E

). (4)

We suppose that the integrity constraint is self-
consistent. Moreover, without loss of generality we
only consider constraints represented by a single
formula µ. If there are n constraints µ1, µ2, . . . ,
µn we will represent them by the conjunction of the
constraints, i.e. we shall consider only the belief
merging case under one constraint µ = µ1 ∧ µ2 ∧
· · · ∧ µn.

Example 3 (Konieczny & Pino-Pérez, 2002 [23])
At a meeting of co-owners of a block of flats, the
chairman proposes for the coming year the
construction of a swimming-pool, a tennis-court
and a private-car-park. But if two of these three
items are built, the rent will increase significantly.
We will denote by s, t and p the construction
of the swimming-pool, the tennis-court and the
private car-park respectively and i will denote
the increase of the rent. Two co-owners want to
build the three items, and they do not care about
the rent increase, K1 = K2 = s ∧ t ∧ p, the third

thinks that building any item will cause at some
time an increase of the rent and wants to pay the
lowest rent so he is opposed to any construction,
so K3 = ¬s ∧ ¬t ∧ ¬p ∧ ¬i and finally the last
one thinks that the flat really needs a tennis-court
and a private car-park but does not want a rent
increase i.e. K4 = t ∧ p ∧ ¬i.

The chairman outlines that building two or more
items will increase the rent significantly, this fact
can not be ignored and worlds in which this fact is
falsified must be ignored. These kind of facts are
known as integrity constraints.

Let µ be the set of the integrity constraints of
the example, it is represented by the single formula
((s ∧ t) ∨ (s ∧ p) ∨ (t ∧ p)) → i. If we consider P
the ordered set {s, t, p, i} then the worlds (1, 1, 1, 0),
(1, 1, 0, 0), (1, 0, 1, 0) and (0, 1, 1, 0) can not be
considered as a possible ∆ps(E) model since
these worlds falsify the integrity constraint. It is
enough to calculate the Partial-Satisfiability of the
bases for worlds in mod(µ).

The answer given by ∆ps of Example 3 (see table
1) is the world (1, 1, 1, 1), i.e. the decision that
satisfies the majority of the group is to build the
three items no matter if the rent increases. This
decision is also the one obtained using the integrity
constraint majority merging operator based on the
Σ aggregation function in [23].

5 Revision through Merging

Now, for adapting PS-based framework to a belief
revision context it is enough to consider revision
as a particular case of merging under constraints,
where the profile E is a singleton3 E = K
and constraints µ represents the new information.
Thus, revising a belief base K by the new
information µ can be defined through merging as
follows:

Definition 5 Let K be a knowledge base and µ be
a formula, then the PS-Merge revision of K by µ is
defined as:

mod(K ◦ps µ) = mod(∆psµ(K)). (5)
3If the profile is a singleton, we will omit bracketsE = {K} =

K.
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Table 1. Merging of Example 3 with ∆psµ

w wps(K1) wps(K2) wps(K3) wps(K4)

4∑
i=1

wps(Ki)

(1, 1, 1, 1) 1 1 0 2/3 8/3 ∗
(1, 1, 1, 0)† 1 1 1/4 1 13/4
(1, 1, 0, 1) 2/3 2/3 1/4 1/3 23/12
(1, 1, 0, 0)† 2/3 2/3 1/2 2/3 15/6
(1, 0, 1, 1) 2/3 2/3 1/4 1/3 23/12
(1, 0, 1, 0)† 2/3 2/3 1/2 2/3 15/6
(1, 0, 0, 1) 1/3 1/3 1/2 1/8 31/24
(1, 0, 0, 0) 1/3 1/8 3/4 1/3 37/24
(0, 1, 1, 1) 2/3 2/3 1/4 2/3 27/12
(0, 1, 1, 0)† 2/3 2/3 1/2 1 17/6
(0, 1, 0, 1) 1/3 1/3 1/2 1/3 3/2
(0, 1, 0, 0) 1/3 1/3 3/4 2/3 25/12
(0, 0, 1, 1) 1/3 1/3 1/2 1/3 3/2
(0, 0, 1, 0) 1/3 1/3 3/4 2/3 25/12
(0, 0, 0, 1) 1/8 1/8 3/4 1/8 9/8
(0, 0, 0, 0) 1/8 1/8 1 1/3 19/12

(∗) Indicates the best partial satisfiability of the group, (†) integrity constraint violation

Given the profile is a singleton, the sum of partial
satisfiability of the belief base is not necessary,
i.e.

∑
K′∈E dist(w,K ′) = dist(w,K), so we can

redefine the pre-order in terms of distance from a
world to a base as follows:

w1 ≤K w2 iff dist(w1,K) ≥ dist(w2,K), (6)

which in terms of implementation will reduce the
complexity.

5.1 Satisfaction of Postulates

We show now that the operator satisfies, under
certain restrictions, postulates R1-R6. To prove
that we use the representation theorem showed in
Theorem 1.

Note that in the settings in Definition 1 and
Theorem 1, we only need to consider ≤ψ instead
of considering ≤K for a general belief base K.
Clearly the ≤ψ is a total pre-order on the possible
worlds given that Equation (6) is defined based on
a relation over real numbers.

To show that the mapping from ψ to≤ψ is faithful,
we need to prove the three conditions required in

Definition 1. For the first condition, i.e. w1,w2 |= ψ
only if w1 =ψ w2, suppose that w1,w2 |= ψ holds,
then the partial satisfiability values of ψ for both w1

and w2 are 1, i.e. dist(w1,ψ) = 1 and dist(w2,ψ) =
1 which means w1 =ψ w2.

For the second condition suppose that w1 |= ψ
and w2 6|= ψ hold, then the partial satisfiability of ψ
for w1 is 1 and the partial satisfiability of ψ for w2

is less that 1 by the definition of partial satisfiability,
i.e. dist(w1,ψ) > dist(w2,ψ), which means that
w1 <ψ w2.

However, we must note that the third condition
does not hold in general because partial satisfia-
bility is syntax sensitive while condition 3 imposes
syntax independence. Nevertheless, for ease
of computation, formulae are usually compiled
into the disjunction of all its prime implicants (a
particular case of DNF) or the conjunction of all
its prime implicates (a particular case of CNF) for
practical implementation. In this setting we can
prove the third condition.

Indeed, in the literature prime implicants
decomposition is often used to decide whether two
formulae are equivalent or not. The main property
satisfied by prime implicants of ψ (denoted by
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Ξ(ψ)) and prime implicates of ψ (denoted by Π(ψ))
is shown as follows [30]:

Proposition 1 φ ≡ ψ iff Ξ(φ) = Ξ(ψ) iff Π(φ) =
Π(ψ).

The representation in prime implicants is unique
in the sense that, given a set P of propositional
symbols, every proposition built up with symbols
of P has exactly one representation in prime
implicants that represents a whole family of
congruent propositions [30], a similar result can be
found using conjunctions of prime implicates.

Therefore, if φ ≡ ψ, let φ′ and ψ′ be the
the disjunction of prime implicants of ψ and ψ,
respectively, then due to the uniqueness of the
prime forms (up to the order of the terms and
of the literals that occur within them), we should
have φ′ and ψ′ are essentially the same, hence we
have ≤φ′=≤ψ′ because by definition the order of
the terms and literals does not affect the partial
satisfiability values. Similar results hold for prime
implicates.

Given the above analysis, we have the following
theorem:

Theorem 2 If every formula considered have been
compiled into the disjunction of all its prime
implicants or the conjunction of all its prime
implicates, then ◦ps satisfies R1-R6.

While the approach requires compilation to CNF
or DNF, it can deal with inconsistent belief bases,
which is a significant issue rarely addressed in
the literature [21]. Moreover, compilation to DNF
or CNF is a problem widely studied and well
implemented, so compilation is not a bottleneck in
the whole problem. Interested readers can refer to
[17, 20] for the compilation problem from a formula
to its prime implicants.

5.2 Test Scenarios Adapted to Revision

In order to validate the ◦ps operator and demon-
strate some advantages over other operators, we
use the following four examples shown in the
frames below. The first two examples were
borrowed from [3]. The third example shows how
our operator can deal with contradictory bases that
rarely can any belief merging operator deal with
them [21]. The fourth example is taken from [30].

Scenario 1 (Bienvenu, Herzig & Qi, 2008) [3].
A person is dead. An initial review indicates
the death is caused by asphyxiation or
by suffocation. A latest review indicates
the death is caused by asphyxiation or by
cardiopulmonary arrest.

K = {a ∨ b, a ∨ c}
a = death by asphyxiation.
b = death by suffocation.
c = death by cardiopulmonary arrest.

Then, a forensic analysis excludes the
possibilities of death by asphyxiation and
death by suffocation.

µ = ¬a ∧ ¬b

Scenario 2 (Bienvenu, Herzig & Qi, 2008)
[3]. A family wants to go on vacation and they
are planning their journey. The child wants to
swim in a beach or taking a flight during the
journey. The mother will not go to a colonial
city unless she goes shopping in the journey.
The father will not go to a beach unless he
goes to a colonial city.

K = {a ∨ c, ¬b ∨ d, ¬a ∨ b}
a = Beach.
b = Colonial city.
c = Flight.
d = Shopping.

After checking the listed preferences and
revising the budget, the family finds that
neither taking a flight nor shopping is
affordable.

µ = ¬c ∧ ¬d

We have taken examples from the literature to
make a fair comparison and not to bias the results,
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also, given the interesting results of BHQ operator
which differ from results of the classical Dalal
operator.

For ease of understanding, we translate these
examples, originally in propositional notations, to
real-life situations/scenarios expressed in natural
language.

Scenario 3 In an accident, a witness claims
that the car starts normally. But the owner
argues that the car cannot start or the car has
been turned off. Later, the owner’s partner
remembers that the car is not turned off.

K = {a, ¬a ∨ b, ¬b}
a = Car starts.
b = Car turned off.

A technical revision by a mechanic indicates
that the car has been turned off.

µ = b

Scenario 4 (Marchi, Bittencourt & Perrussel,
2010) [30]. A patient visits a nutritionist for
diet advice, and exposes his tastes/dietary
habits in the breakfast for a typical day: no
watermelon and citrics at all, or no watermelon
and no plain water and milk, or no citrics and
milk.
K = {(¬p3∧¬p2)∨(¬p3∧¬p1∧p4)∨(¬p2∧p4)}
p1 = Plain water.
p2 = Citrics.
p3 = Watermelon.
p4 = Milk.

The nutritionist then issues his recommenda-
tion: no milk and watermelon, or plain water
and citrics.

µ = (¬p4 ∧ p3) ∨ (p1 ∧ p2)

Results of ◦ps are compared with existing
techniques such as ◦BHQ [3] and the well known
Dalal [10] approach.

Table 2 shows the results of each operator. We
will expose the use of the three belief revision
operators in scenario 1. They apply similarly in the
other three scenarios.

Example 4 The BHQ operator applied to scenario
1 involves the computation of prime implicantes of
K, say Π(K). In this case Π(K) = K. Then,
the maximal subsets of Π(K) consistent with µ are
{{a ∨ c}}. Finally, K ◦

BHQ
µ is ¬a ∧ ¬b ∧ (a ∨ c) ≡

¬a ∧ ¬b ∧ c.

Example 5 The Dalal’s operator returns the set of
worlds with minimum distance of the models of µ
with respect to K. So K ◦

Dalal
µ from scenario 1 is

{(¬a, ¬b, c), (¬a, ¬b, ¬c)} despite the models of
K, So K ◦

Dalal
µ is ¬a ∧ ¬b ≡ µ.

Example 6 ◦ps over scenario 1 considers comput-
ing the models of µ: (0, 0, 1) and (0, 0, 0), on the
assumption that atoms are ordered alphabetically.
We can easily verify that the model of K ◦ps µ is
(0, 0, 1), as shown in Table 3. Then, K ◦ps µ is
¬a ∧ ¬b ∧ c.

In scenario 1, Dalal’s revision result ¬a∧¬b loses
information concerning c. Instead, results of BHQ
and PS operators ¬a ∧ ¬b ∧ c preserve information
on c. This result means that K ◦

BHQ
µ and K ◦ps

µ conclude no death by asphyxiation nor death by
suffocation but death by cardiopulmonary arrest.

In scenario 2, BHQ revision result is the same
as the constraint µ, instead the result of the
Dalal operator is (a ↔ b) ∧ ¬c ∧ ¬d, which
considers an equivalence between a and b. Result
of PS-operator (a ∨ ¬b) ∧ ¬c ∧ ¬d considers
a disjunction between a and ¬b which assures
satisfaction of two conjunctions of input K = (a ∨
c) ∧ (¬b ∨ d) ∧ (¬a ∨ b), i.e. we assure that two
members of the family are satisfy on their holidays.
The advice of K ◦psµ is that the family should travel
to a beach or not to a colonial city, and avoid taking
a flight and shopping. Dalal results also assure the
satisfaction of two members but give priority to the
father.

Scenario 3 considers the revision of an
inconsistent belief base, so Dalal’s revision does
not apply in this case. Results of BHQ and
PS operators retract ¬b in order to produce the
consistent belief base a ∧ (¬a ∨ b) ∧ b ≡ a ∧ b. In
this case both operators result in both the car starts
normally and the car has been turned off.

Scenario 4 is an interesting case since it is
a more complex example in terms of number of
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Table 2. Comparison of approaches

Scenario K and µ K ◦BHQ µ K ◦Dalal µ K ◦ps µ
1 K = {a ∨ b, a ∨ c} ¬a ∧ ¬b ∧ c ¬a ∧ ¬b ¬a ∧ ¬b ∧ c

µ = ¬a ∧ ¬b
2 K = {a ∨ c, ¬b ∨ d,

¬a ∨ b}
¬c ∧ ¬d (a↔ b) ∧ ¬c ∧ ¬d (a ∨ ¬b) ∧ ¬c ∧ ¬d

µ = ¬c ∧ ¬d
3 K = {a, ¬a ∨ b, ¬b} a ∧ b N/A a ∧ b

µ = b
4 K = {(¬p3 ∧ ¬p2) ∨

(¬p3 ∧ ¬p1 ∧ p4) ∨
(¬p2 ∧ p4)}

µ = (¬p4 ∧ p3) ∨ (p1 ∧ p2)

(¬p1 ∧ ¬p2) ∨ (¬p3 ∧ p4) (¬p2 ∧ p3 ∧ ¬p4) ∨
(p1 ∧ p2 ∧ p4) ∨
(p1 ∧ p2 ∧ ¬p3)

p1 ∧ p2 ∧ ¬p3 ∧ p4

Table 3. K ◦ps µ

w ∈ mod(µ) dist(w,K)
(0, 0, 1) 1/2 ∗
(0, 0, 0) 0

(*) Indicates better values

atoms and formulae. Dalal’s approach yields a
complex recommendation intake for the patient
(p1∧¬p2∧p3∧¬p4)∨(¬p1∧¬p2∧p3∧¬p4)∨(p1∧p2∧
p3∧p4)∨(p1∧p2∧¬p3∧p4)∨(p1∧p2∧¬p3∧¬p4) ≡
(¬p2 ∧ p3 ∧ ¬p4) ∨ (p1 ∧ p2 ∧ p4) ∨ (p1 ∧ p2 ∧ ¬p3)
Although simplied, it is still a complex formula. ◦BHQ

results in (¬p1∧¬p2)∨(¬p3∧p4), a simpler breakfast
menu, but PS approach results in the most elegant
solution: p1 ∧ p2 ∧ ¬p3 ∧ p4: plain water and citrics
and no watermelon and milk.

6 ∆psµ Implementation

6.1 Algorithm ∆psµ

We modified the algorithms proposed in [6, 32]
to consider constraints and then formalized the
Algorithm 1 mentioned in [34]. The inputs of the
algorithm are shown below:

— V : Number of variables of profile E,

— B : Number of bases of E,

— C : Vector of number of conjuncts of each base
in E,

— L : Matrix of occurrences of literals by each
conjunct of each base in E,

— M : Number of conjuncts of constraints µ,

— LM : Matrix of occurrences of literals by each
conjunct of constraints µ.

Example 7 Consider the base of scenario 1, with
E = {K} = {(a ∨ b) ∧ (a ∨ c)}, and µ = ¬a ∧ ¬b
then the input data accepted by Algorithm 1 are as
follows:

— V = 3

— B = 1

— C = (2)

a ¬a b ¬b c ¬c

— L =

(
1 0 1 0 0 0
1 0 0 0 1 0

)
— M = 2

a ¬a b ¬b c ¬c

— LM =

(
0 1 0 0 0 0
0 0 0 1 0 0

)
Complexity of Algorithm 1 is polynomial in V, B

and M inputs.
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Algorithm 1: ∆psµ

Data:
V : Number of variables of E
B : Number of bases of E
C : Vector of number of conjuncts of each

base in E
L : Matrix of occurrences of literals by each

conjunct of each base of E
M : Number of conjuncts of constraints µ
LM : Matrix of occurrences of literals by each

conjunct of constraints µ
Result:
Solution Set : The set of models in ∆psµ(E)

begin
Solution← ∅;
Max-Sum← 0;
W ← Matrix whose rows are the models of
µ;
for s = 1 . . . B do

ICs ←
s−1∑
k=1

Ck + 1;

for i = 1 . . . rows(W ) do
Sum← 0;
for s = 1 . . . B do

ps-conjunct← 0;
for c = ICs . . . ICs + Cs do

satisfied← 0;
for j = 1 . . . V do

if Wi,j = 1 then
satisfied← Lc,2j−1;

if Wi,j = 0 then
satisfied← Lc,2j ;

ps-conjunct←ps-
conjunct+satisfied;

PS ← ps− conjunct
Cs

;

Sum← Sum+ PS;

if Sum > MaxSum then
Solution← {i};
MaxSum← Sum;

else if Sum = MaxSum then
Solution← Solution ∪ {i};

Solution Set = {ith-row of
W |i ∈ Solution};

Fig. 1. Belief Reviser UML diagram

6.2 Software Prototype

For users’ convenience, we have also developed a
software prototype implementing ∆psµ . We call it
Belief Reviser prototype. The prototype considers
the operators in ρ and considers the two missing
classical operators→ and↔, i.e ρ = ρ ∪ {→,↔}.

Algorithm 1 is implemented in language M
using GNU Octave 3.6.2, as it is an open
alternative to Matlab R© with similar characteristics
and performance [14]. We based on existing
source code4, and we design a User Interface (UI)
based on the Belief Merger prototype5 described
in [7].

Figure 1 outlines the UML diagram of the Belief
Reviser where main classes and its relations are
depicted. The prototype was developed under the
Open Java Development Kit (OpenJDK) 7 since it
is a relatively easy to learn development platform
and its object-oriented design. It has multithreaded
and platform-independent capabilities, and it is
active and robust. Moreover, the platform is
free [37].

PSMerge class handles all the revision process,
instantiating all classes involved while verifying the
correct configuration of the running environment.
The classes shown in Figure 1 perform different
functionalities of the prototype.

4http://www.utm.mx/~vero0304/PSMerge/PSMerge.htm
5http://www.sourceforge.net/p/beliefmerger
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6.2.1 Data Preprocessing

Preprocessor class parses the belief base and the
constraints to build a pair of lists with formulae
in Reverse Polish Notation (RPN) notation (postfix
notation). Postfix notation, while less common
than infix notation in written mathematics, is more
explicit in the sense that the operands belonging
to a particular operation can be expressed without
the need for brackets or operator precedence
[12]. Class RPNConverter implements Algorithm 2
which shows the implementation of the Dijkstra’s
Shunting-yard algorithm [41] applied to logical
operators in ρ. Operator precedence is shown in
Table 4.

Algorithm 2: Shunting-yard algorithm adapted
for logical operators
Function: convert (wff): rpn wff
begin

rpn = ∅;
foreach c ∈ wff do

if c ∈ P(K) then
rpn += c

else if c ≡ ‘(’ then
push(‘(’)

else if c ∈ ρ then
while there is an operator p of higher or
equal precedence than c at the top of
the stack do

pop(p);
rpn += p

push(c)
else if c ≡ ‘)’ then

repeat
pop(p);
if p ∈ ρ then

rpn += p

until p ≡ ‘(’ ;

while ¬ emptyStack() do
pop(p);
rpn += p

return rpn

6.2.2 Logic Formulae Evaluation

LogicEvaluator class performs the evaluation of
logic formulae in RPN notation with the help of

Table 4. Operator precedence

Priority Operator Symbol Associativity
1 Negation ~ Right to left
2 Conjunction ^ Left to right
3 Disjunction v Left to right
4 Implication > Left to right
5 Bi-implication = Left to right

TruthTable class, which contains the matrix of size
n × m where n = |P(K)| and m = 2n. Algorithm
3 sets up the truth table as follows: column under
the first variable should alternate 2n−1 true’s with
with 2n−1 false’s; column under the second variable
should alternate 2n−2 true’s with with 2n−2 false’s;
continuing until we reach the last column variable.

Algorithm 3: Truth table set up
i = 0;
tt[n][m] = 0;
for i=0; i< n; i++ do

j = 0;
for a=0; a<2i; a++ do

for c=0; c< m
2i+1 ; c++ do

tt[i][j++] = 1;

for c=0; c< m
2i+1 ; c++ do

tt[i][j++] = 0;

return tt;

The explicitness of the RPN formulae obtained
by Algorithm 4 allows us to implement the
algorithm for evaluating postfix notation in a
straightforward manner. Algorithm 4 shows the
RPN evaluator developed using a stack as a helper
data structure.

6.2.3 DNF Conversion

DNFConverter class performs the process of
conversion in two steps. In the first step, an
algorithm parses the formula and creates a binary
tree according to the operator’s precedence (Table
4). In the second step, another algorithm converts
the formula to DNF by building the DNF binary
tree while walking through the formula binary tree
built in the first step. Each node of the tree is an
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Algorithm 4: RPN evaluator
Function: evaluate (interpretation[i], rpn): Boolean
for c ∈ rpn do

if c ∈ P(K) then
push (interpretacion[c])

else if c ∈ ρ then
if c ≡ ¬ then

pop (b);
push (¬b)

else
pop (b1);
pop (b2);
b3 = operation(b1,b2,c);
push (b3)

return pop();

Fig. 2. Belief Reviser component diagram

instance of TreeNode class. The conversion of a
formula to its DNF is based on the JavaScript code
from the Theorem Proving in Propositional Logic
(WFFs) web site [2].

6.2.4 PS-Merge Interface

FileManager class is the interface between the
Java code and the language M implementation of
∆psµ . We use JavaOctave 0.6.4 bridging from
Java to Octave to run ∆psµ in PSMerge.m file.
As ∆psµ implementation requires an input file with
the precise structure (see subsection 6.1), this
class builds the input file (problem.txt) and runs
∆psµ and the solution is obtained via an output file
(solution.txt). Figure 2 illustrates this process.

6.2.5 User Interface (UI)

Figure 3 shows the main elements of the prototype
UI. A belief base K is introduced into the top

left input box. Constraint µ is introduced into the
bottom left input box. Variables are represented
by the alphabetical letters (except the ‘v’ letter),
with uppercase and lowercase letters being treated
differently. Logical operators are represented by
the symbols shown in Table 4. Each belief
is separated by commas. An output panel is
presented on the right side of the UI where
results and debug information are displayed. When
needed, formulae is converted to DNF as required
by ∆ps.

All the scenarios presented in this paper were
solved in this prototype, loaded via text files
for each scenario. For example, file format of
scenario 1 shown in Figure 3 consists of a first line
representing K and a second line representing µ:

a v b, a v c

~a ^ ~b

Average case performance running the four
scenarios is 0.3 seconds. Table 5 shows the test
cases executed in the Belief Reviser running on an
Alienware M17x laptop with Intel Core i7@2GHz
processor, 8 GB RAM, Ubuntu Linux 14.10 OS.

First four test cases correspond to the scenarios,
respectively, considering a minimum number of
variables. The following four test cases are
generated within the prototype and consider a
larger number of variables which are unlikely to
be solved manually. The performance results of
these tests indicate that they can be handled in
a reasonable computational time with common
hardware.

Table 5. Test cases

Variables Time (aprox.)
Small test cases

3 (Scenario 1) 0.37 s
4 (Scenario 2) 0.34 s
2 (Scenario 3) 0.35 s
4 (Scenario 4) 0.34 s

Medium test cases
8 9 s

10 50 s
12 1 m 20 s
15 13 m 10 s
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Fig. 3. Belief Reviser prototype

Time employed by the prototype is much lower
than the time (in minutes) that a human being
would spend in solving these scenarios, assuming
that the user is familiarized with belief revision
concepts. Moreover, examples with greater
number of variables and size of K may be
unmanageable and error-prone for human beings.

7 Conclusion

Classical belief revision always results in trusting
the new evidence. Some approaches need extra
information, such as priorities between formulae,
in order to process the revision. However, in many
cases this extra information is not available. We
propose a new revision method considering “flat”
belief bases without extra information.

We adapt belief merging in order to carry
out belief revision by using belief merging under
constraints, which always results in holding the
constraints. Instead of creating a new belief
revision operator, we consider revision as a
particular case of belief merging under constraints
where only one a priori base is to be merged.

We have taken into account of the revision
postulates that must be satisfied and proved that

under certain syntactical restriction our approach
satisfies the AGM postulates. Also, the PS
approach is elegant and simple in computation.

We present a comparison of our proposal, ∆ps

under constraints, ∆psµ , against the well-known
Dalal operator, which is a model-based operator,
and the BHQ operator, which is formula-based
and considers inconsistent formulae; describing
in natural language a set of examples with
different characteristics. Results are explained and
interpreted demonstrating the potential of the PS
approach. The three operators shown present
dissimilar features, and ◦ps was proved to be
easier to implement and more appropriate to some
scenarios. For example, ◦ps in scenario 1 retains
properly the information of c, in scenario 2 shows
to be fair given no preference to the father desires,
for scenario 3 handles an inconsistent K and
for scenario 4 provides a clear and unambiguous
nutritional advice.

It is worth noticing that many revision ap-
proaches in the literature use models of operations
and hence cannot apply to situations involving
an inconsistent belief base. However, PS-based
revision can deal with the inconsistency (see
scenario 3).
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A Belief Reviser software prototype was de-
veloped. It automates the process of belief
revision given that it is a user-friendly interface
implementing ∆psµ . We tested the prototype with a
set of test cases in different sizes, namely small
and medium test cases. Results indicate that
problems of medium sizes can be handled by the
prototype. The Belief Reviser is free software
available online at http://www.sourceforge.net/
p/beliefreviser.

Future work considers a deep analysis of PS
definition in order to propose a new definition that
avoids the restriction concerning prime implicant
forms, since formulae expressed in prime implicant
form satisfy the principle of independence of the
syntax. Also, we plan to compare the PS operator
against classical operators [38, 40] as well as
against more recent proposals [30, 29].

problems, from frameworks for identifying quality
knowledge in the Web [39] to model multi-agent
systems [35]. Belief revision is one of the most
important concepts in studying human reasoning.
mathematics are the basis that hold for many
other sciences, we believe that many problems
could be solved using logic, and belief revision
is a promissory technique with a number of
applications to real life scenarios.

Finally, we propose to model real-life scenarios,
taking examples from different areas such as
decision-making from strategic planning [7], or
menu planning from nutrition sciences [8]. By this,
real scenarios will be validated by experts of each
field and comparison of operators will be more
interesting and valuable.
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Logic of Merging. Proceedings of KR ’98, Morgan
Kaufmann, pp. 488–498.

23. Konieczny, S. & Pino-Pérez, R. (2002). Merging
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