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Abstract. Active Appearance Model (AAM) is a
computer vision procedure for statistical matching of
object shape and appearance between images. A main
drawback in this technique comes from the construction
of the shape mesh. Since landmarks must be manually
placed when training shapes, AAM is a very time
consuming procedure and it cannot be automatically
applied on new objects observed in the images. An
approach for automatic landmarking of body shapes on
still images for AAM training is introduced in this paper.
Several works exist applying automatic landmarking on
faces or body joints. Here, we explore the possibility
to extend one of these methods to full body contours
and demonstrate it is a plausible approach in terms
of accuracy and speed measures in experimentation.
Our proposal represents a new research line in human
body pose tracking with a single-view camera. Hence,
implementation in real-time would lead to people being
recognized by robots endowed with minimal vision
resources, like a webcam, in human-robot interaction
tasks.

Keywords. Active appearance model, statistical
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1 Introduction

Recognition is one of the core pursuits in
computer vision research [21, 2, 32]. This
task attempts to attach semantics to visual data
such as images or video. Object recognition
is an important and recurring subtopic where
models are built to recognize object categories
or instances [20, 24, 4]. Yet another subtopic
currently getting quite popular is people recognition
[31]. People recognition comprises two major
interests: attaching identities to pictures or video,

and building descriptions from visual data of people
behaviour. These descriptors lead to a variety
of tasks which can be performed based on those
premises, like face recognition [23, 17, 33], pose
estimation [26], activity recognition [7, 28], and
people tracking [1], among others.

Properly identifying humans includes several
difficulties to be overtaken. Images or video
of people can show a high degree of variability
in shape and texture. Appearance variations
are due to differences between individuals,
deformations in facial expression, pose and
illumination changes. One should also take
into account visual perception parameters such
as resolution, contrast, brightness, sharpness,
and color balance [5, 35, 27, 6]. Model-based
techniques represent a very promising approach
where a model representing an identity of interest
is matched with unknown data. This kind of
techniques have shown to be able of entirely
describing facial characteristics in a reduced
model, extracting relevant face information without
background interference [16, 15, 8].

Active Appearance Models (AAMs) [9] are
generative models of a certain visual phenomenon.
Although linear in both shape and appearance,
overall, AAMs are nonlinear parametric models in
terms of pixel intensities. Fitting an AAM to an
image consists of minimizing the error between
the input image and the closest model instance.
Frequent applications of AAMs include medical
image interpretation, face recognition and tracking.
Nevertheless, a major issue lies in the construction
of the 2D shape mesh as landmarks must be
placed by hand on the training images, which is
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a very long and time consuming process to carry
out.

The task of constructing AAMs without hand-
marking the mesh is called Automatic AAM and
the process to automatically localize the vertexes
in that mesh is known as Automatic Landmarking.
Several approaches have been performed to
achieve this task on images of human faces, either
static or dynamic, combining feature descriptors
and predictors [3, 34, 29]. However, state-of-the-
art methods employ upgraded versions of AAMs
combined with decision-tree learning algorithms,
leading to outstanding face alignment results [11,
18, 22]. RGB-Depth sensors technology also
contributes to widen the method’s scope [14], but
the aim in the present work is to cover only 2D data
and analyze the accuracy of less computationally
expensive instances.

Besides, there exists a vast body of work on the
estimation of articulated human pose from images
and video. Recent studies of 2D pose estimation
from still images reveal prominent results using
regressors [12, 30, 25]. Hence, the approach
introduced in [22] for face alignment has been
selected to be implemented in the automatic
landmarking of body contours on still images.
The algorithm employs a cascade of regressors
combined with decision-tree learning, conforming
a very suitable combination for our new specific
target on body contours as it contains the latest
advanced methodologies of automatic AAMs and
human pose estimation.

The main contribution of this article is to
demonstrate that facial automatic landmarking
approaches can be extended to body contours
as well. Hence, the objective for the presented
work is to obtain solid evidences that algorithms
from the current literature can be implemented and
adequate to perform the automatic landmarking
task of still images on body contours with
acceptable accuracy. Moreover, system execution
will be validated for real-time by means of a speed
test. Landmarking of still images is obtained
without any motion capture data [19] or multiple
camera views [13], just by annotating a really small
dataset. In this form, AAMs methods application
will be enlarged in the people recognition and
tracking domain.

Experimentation consists in selecting four repre-
sentative images - from three out of four different
subjects, 12 images in total - from our dataset of
46 images to be manually landmarked, in order
to feed a body shape predictor trainer. We are
not considering our fourth subject in the shape
predictor training. The output of this trainer gives
us a general shape model for human bodies that,
combined with a people detector, will be used to fit
in and automatically landmark the body contours of
any new image presented, either from new frames
of the three trained subjects or the completely
new fourth subject. Results from this experiment
will confirm that, with proper adjustments, face
alignment algorithms can be exported to human
bodies with a very low computational time for
testing, which fosters real-time implementation for
robots equipped with a single camera.

The rest of this paper is organized as follows.
At the first stage of the procedure, the people
detector and its training are detailed in Section 2. In
Section 3 a complete description is depicted about
the training process for the body shape predictor
as the second stage for our system. The third
and last stage is presented in Section 4, where
the automatic landmarking system is ready to go,
experiments are conducted and results analyzed.
Finally, conclusions and future research lines can
be found in Section 5.

2 People Detector

The first phase of the overall proposed system is
people detector training. It will be implemented
using the imglab tool from the dlib C++ Library1.
From a set of images of different subjects obtained
using webcam streaming, a subset of images is
used to train the people detector, and they will not
be used in further stages of the system.

Hence, from a set of 46 images provided by 4
different subjects from a webcam streaming with
a 640× 480 standard size, 26 of them were taken
only to train the people detector. As a matter
of fact, none of the 46 images duplicate in other
subsets. Each dataset has its own share so as
to demonstrate the algorithm is not influenced by

1http://dlib.net/



Computación y Sistemas, Vol. 20, No. 1, 2016, pp. 19–28
doi: 10.13053/CyS-20-1-2365

Single-Camera Automatic Landmarking for People Recognition with an Ensemble of Regression Trees 21

ISSN 2007-9737

preferences for a particular subject. Using these
26 images -from Subject 2, Subject 3, and Subject
4- as an input in the imglab tool we were able to
annotate our dataset with red bounding boxes over
the whole body of each subject and label them as
body detected (see Figure 1). There were no other
subjects or any object with an anthropomorphic
form within the images. Therefore, no crossed
bounding boxes were necessary to indicate false
positives which dlib C++ code should ignore when
performing the detections.

Fig. 1. Annotating images with the imglab tool to train
the people detector system

2.1 Training

Several tests were conducted to obtain suitable
training parameters for the best possible detection
results. Moreover, variables like the number of
training images and tightness of the bounding box
were taken into account.

The most important training parameters for the
people detector system are shown in Table 1
with the selected values. dlib C++ Library goes
through the steps to train a kind of sliding window
object detector as the one published in [10] and
summarized in Figure 2, applying HOG as feature
descriptor and linear SVM as baseline classifier.
Consequently, the trainer has the usual SVM’s C
hyper-parameter (see Table 1). The most favorable
value for C was empirically found by analyzing the
performance of the trained detector on a test set
of new images, all of these images are not used in
the training stage. In general, higher values for C

encourages it to fit the training data better but might
lead to overfitting.

Table 1. Default parameter values set by the example
program versus chosen values after running some tests

Parameter Deafault Value Selected Value

C 1 0.65
epsilon 0.01 0.01
target-size 80×80 100×100
upsample no no
flip no yes

The trainer keeps running until the ‘risk gap’
is small enough (less than the epsilon value in
Table 1). For most problems a value in the range
from 0.1 to 0.01 is plenty accurate. Although
smaller values prompt the trainer to solve the SVM
optimization with a higher accuracy, it will take
longer to train. The term target-size in Table 1
refers to the size in pixels of the sliding window
detector.

For this training data in particular, the upsample
function does not improve the results. Acting as a
pre-processing step, upsample increases the size
of the images by a factor of 2 allowing us to detect
smaller features on the target object. This is not
our case because we are focused just on human
silhouettes, which already are quite large to detect
in any circumstance.

Since human bodies are usually left-right
symmetric we can increase our training dataset by
adding mirrored versions of each image with the
flip option. This step is really useful as it doubles
the size of our training dataset from 26 to 52
images, improving the results significantly. Another
remarkable detail was to train the bounding boxes
a bit loose from the bodies. If trained too
tight, detections tend to be partial. Under
final corrections, our people detector started with
detections like the one shown in Figure 3a, but with
proper adjustments achieved results as in Figure
3b. Bodies with complicated poses are difficult to
entirely include in the detection box (Figure 3c).
Nevertheless, setting the parameters to their final
values in Table 1 led to obtaining better detections
of this particular instance (Figure 3d).
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Fig. 2. An overview on the feature extraction and object detection algorithm by Dalal and Triggs. Histogram of Oriented
Gradients feature vectors is extracted from the detector window tiled with a grid of overlapping blocks. This detection
window is scanned across the image at all positions and scales. Finally, the combined vectors are fed to a linear Support
Vector Machine for object/non-object classification

3 Body Shape Predictor

Functions in the dlib C++ Library implement
methods described in [22], where they show how
an ensemble of regression trees can be used
to estimate face landmark positions directly from
a sparse subset of pixel intensities, achieving
real-time performance with high quality predictions.
Similarly, we have trained a shape model by
estimating body landmark locations to evaluate
and demonstrate whether the algorithm can be
extrapolated to body contours as well.

The directory for the body shape predictor
contains a training dataset and a separate testing
dataset. The training dataset consists of 4 images
from Subject 1, Subject 2, and Subject 3; while
the testing dataset comprises the same images as
before, but mirrored. Every image is annotated
with rectangles that bound a human body along
with 180 landmarks on each body shape. The
objective is to use this training data for learning to
identify the position of landmarks on human bodies
in new images. Once the shape predictor has been

trained, it is tested on previously unseen data, the
testing dataset.

3.1 Training

In this study, we assume to work on a very small
training dataset because (i) there is no available
landmarked datasets of 2D human body contours,
so we built the training dataset ourselves by hand,
and (ii) it is unrealistic to assume large datasets
of hand-made landmarked people. Training data
is loaded from an XML file having a list of the
images in each dataset and also containing the
positions of the body detection boxes and their
landmarks (called parts in the XML file) as shown
in Figure 4. A total of 180 landmarks were
distributed by hand, quite close to each other (10
pixels away, approximately), so that the body shape
predictor trainer could be more efficient generating
the shape model.

The body shape predictor trainer has several
parameters to be tuned. A general overview of
this training is depicted in Figure 5, for a more
detailed explanation we refer to [22]. Default values
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Fig. 3. People Detector results. (a) Natural standing
pose, the detection box is very tight and the subject’s
left hand is missing. (b) Same image as (a) but with
final selection of parameters and variables, although the
detection box is now too loose for this target to complete
the detection. (c) Subject stretches spreading her limbs,
the detection box is not able to contain both arms nor her
left foot. (d) Same image as (c) but with final selection of
parameters and variables, the detection box only misses
the tip of the subject’s right hand

from the dlib C++ Library ’s function are used in our
experimentation, except for higher oversampling
value to effectively boost the training set size,
which is really small in our experiments; smaller
nu value to reduce the capacity of the model by
explicitly increasing the regularization; and smaller
value for the tree-depth, to reduce the model as
well.

With this information, the algorithm generates
the body shape model. The generated model is
validated using a measure of the average distance
(in pixels) between body landmarks obtained from
the shape predictor and where it should be
according to the training set, which is called
mean training error. Yet, the real test lies in
how well the predictor performs on unseen data.
We test the recently created shape model on a
testing set of landmarked mirrored images to avoid
hand-marking all over again, obtaining a mean
testing error which validates in the exact same way
as its ’training error’ counterpart.

Only one parametrized testing for the body
shape predictor has been conducted so far. Setting

Fig. 4. Image from the training dataset with the
target body contained in a detection box and its shape
landmarked by 180 enumerated points

values to 500 for oversampling, nu equal to 0.05,
and a tree-depth value of 2, the shape predictor
takes around three minutes for training obtaining a
mean training error of 9.03275 pixels and a mean
testing error of 68.8172 pixels. As we proceed to
the next stage of the system with this shape model
and its characteristics, the overall method accuracy
lies in the mean testing error value and it will be
reflected on the results shown in Section 4.

4 Automatic Landmark Detection

Once the people detector and the body shape
model have been trained, it is time to combine
them to find frontal human bodies in an image
and estimate their pose. The pose takes the form
of 180 connected landmarks describing the shape
or silhouette of the subject on a given image.
Again, this pose estimator was created by using
the dlib C++ Library ’s implementation of [22]. A
new testing dataset was built with the 12 remaining
images from the initial 46 that were provided for
the experimentation, this time with images from
all 4 subjects. Although Subject 4 appears in
the training stage of the people detector, it was
not included in the training of the shape model.
Hence, Subject 4 is a completely unseen target for
our automatic landmarking process, as the people
detector stage just helps the overall system to
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Fig. 5. Flow chart associated to the cascade of regressors training from the algorithm by Kazemi and Sullivan to
estimate the position of facial landmarks. Regression functions are learned using gradient tree boosting with a sum of
square error loss. The core of each regression function is the tree-based regressors fit to the residual targets during
the gradient boosting algorithm. At each split node in the regression tree, a decision is made based on thresholding the
difference between the intensities of two pixels

narrow the body search to one area of the image
but does not influence the shape fitting procedure.

Now, let’s focus our attention on the automatic
landmark detection results shown in Figure 6.
Throughout the first three frames, the subject
maintains a natural standing pose with little
variations. It is noticeable from the first (Figure 6a)
to the second frame (Figure 6b) how the algorithm
is able to refine the detection and make a better
fit of the actual position of the head and feet. It
keeps improving until the third frame (Figure 6c),
where the algorithm actually manages to obtain a
good estimation of the real location of the arms
and hands of the subject as well. In Figure 6d the
algorithm still tries to catch a pose although the
subject is partially sided while stepping out from
the visible range of the webcam, which is quite
remarkable.

These experiments required regular standing
poses due to the general objectives of the project
which means we do not want to depend on a
particular flashy pose that triggers a response from
the robot, but rather make the robot notice and
identify you just by normally passing by, as in any
human notion of another human presence.

However, it was important for us to have some
images in the dataset with people also displaying
slightly out of the ordinary poses (Figure 7b), so
we could reveal the scope and limitations of the

Fig. 6. Automatic Landmarking. Natural standing case
with a subject at a regular distance from the webcam

algorithm facing this type of cases as well. It is
evident we have a rescaling distance issue as seen
in Figure 7, but at least the algorithm makes an
effort to fit into the spread arms of our subject in
Figure 7b. Probably with more similar frames to
this one, the algorithm would end refining that pose
estimation.

All these automatic landmarking experiments
were performed in about 126 milliseconds in a
laptop with Intel Core i5-480M and 4GB RAM
memory. Depending on the image it could take
more or less than this mean test time. However,
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Fig. 7. Automatic Landmarking. Special pose case with
a subject approximating the webcam

the procedure in general does not overpass
130 milliseconds, where 80 to 90 milliseconds
correspond merely to the people detector stage.

Finally, we present a set of images in Figure
8 from the same subject (the unseen Subject 4).
The images leaded to problems in shape prediction
due to the training stage of the people detector
(Figure 8a). With the final tuning of the parameters
we achieved a better detection. Although the
box does not reach the top of the head (Figure
8b), it is good enough for the next stage, as the
shape predictor starts its landmarking at the top
of the forehead instead. While in the process
of strategically placing the 180 landmarks on the
training data for the shape predictor, we considered
hair as a very unstable feature that we can do
without and have no major consequences about
it. Thus, landmarking starts on the forehead to
encircle just the face of the person, becoming a
constant human body feature implicitly.

Figure 8c and Figure 8d present the most
disappointing outcomes for automatic landmarking.
There is no real improvement with respect to
the first frame but the process grows worse
estimating spread arms instead of spread legs and
shortening them; however, it achieves to fit well
the left leg. This last fact can be regarded to a
significantly slower learning of the unseen body
shape. The subject maintains almost the same
pose throughout the frames, but apparently this

Fig. 8. A difficult case. (a) First test output from the
People Detector. (b) Output with selected values for
People Detector in its last testing session. (c) Worst
automatic landmark detection of the dataset. (d) The
automatic landmark detection does not get any better
after a second frame of the subject as seen in other
cases

does not help the algorithm to work easier on
the image. The problem apparently lies in the
subject’s clothing rather than the unseen target
fact as it is almost completely black and there are
no considerable disparities in color between body
parts, which seems to be difficult to overcome for
the algorithm.

5 Conclusions and Future Work

In this paper we have shown an automatic
landmarking approach for human body shapes to
be carried out on still images from a single camera.
It demonstrated a good performance in terms of
accuracy and computational time.

The presented system could be really prac-
tical and suitable for domestic service robots
equipped with basic technological resources due
to economic reasons or efficiency purposes.
Although there is still much work left to do, these
obtained results are quite promising and somehow
accomplish the established overall objectives. With
the right adjustments it would eventually achieve
the necessary performance to be implemented on
the primary stages of 2D AAM construction, and
subsequently, on people recognition tasks.

Accuracy could be improved with further
experimentation and tuning of the shape predictor
parameters, besides feeding more landmarked



Computación y Sistemas, Vol. 20, No. 1, 2016, pp. 19–28
doi: 10.13053/CyS-20-1-2365

Karla Trejo, Cecilio Angulo26

ISSN 2007-9737

images to the training dataset. A face detector
stage could be also useful to reduce our fitting error
significantly.

Real-time processing with live video streaming
from the webcam certainly is the next imminent
step we are looking forward to, as the algorithm
clearly possesses this capability and will be likely
to have a better chance of success, enabling the
system for people tracking tasks.

Future work also involves an interesting contri-
bution we would like to develop on the algorithm:
inter-shoulder distance. Analogue to what
inter-ocular distance achieves on face alignment
problems, inter-shoulder distance could become
the appropriate solution to rescale distances.
Inter-hip distance may as well reinforce our
body landmarking system and improve upcoming
results.
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