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Abstract. The paper presents a differential evolution 
(DE)-based hyper-heuristic algorithm suitable for the 
optimization of mixed-integer non-linear programming 
(MINLP) problems. The hyper-heuristic framework 
includes self-adaptive parameters, an ε-constrained 
method for handling constraints, and 18 DE variants as 
low-level heuristics. Using the proposed approach, we 
solved a set of classical test problems on process 
synthesis and design and compared the results with 
those of several state-of-the-art evolutionary algorithms. 
To verify the consistency of the proposed approach, the 
above-mentioned comparison was made with respect to 
the percentage of convergences to the global optimum 
(NRC) and the average number of objective function 
evaluations (NFE) over several trials. Thus, we found 
that the proposed methodology significantly improves 
performance in terms of NRC and NFE. 

Keywords. Processes synthesis, mixed-integer non-
linear programming (MINLP) problems, differential 
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1 Introduction 

A constrained optimization problem is usually 
written as a non-linear programming problem 
(NLP) [34] of the following form: 

Minimize ( ),f X  

Subject to: ( ) 0 ,
i

g X ≤  1, .., ,i p=

( ) 0 ,jh X =   1, .., ,j p m= +

( ) ( )L U
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In the above NLP problem, the function f  is 

the objective function, where ( ) : Df X R R→

there are D variables, 
1

( , .. , )
D

X x x= is a vector of 

size D, D
X R∈ , where DR  represents the entire 

search space, 
ig  are the inequality constraints, 

j
h are the equality constraints, and 

( )L

K
x ,  

( )U

K
x are 

the lower-bound constraints and upper-bound 
constraints, respectively. Further, p is the number 

of inequality constraints and m p−  is the number 

of equality constraints. 
The equality constraints can be transformed 

into the inequality form, and then, they can be 
combined with the other inequality constraints as 
follows:  

{ }max ( ), 0 1, .., ,
( )

( ) 1, .., .

i

i

j

g X i p
G X

h X i p m

 =
= 

= +

 
(2) 

Thus, the optimization goal is to find a feasible 

vector X to minimize the objective function. 

When the vector X contains a subset of µ   

and  ν  vectors of continuous real variables and 
integer variables, respectively, v X Dµ + = = , 

the NLP problem becomes a mixed-integer non-
linear programming problem  (MINLP). 

Non-convex NLPs and MINLPs are commonly 
found in real-world situations. Therefore, the 
scientific community continues to develop new 
approaches for obtaining optimal solutions with 
acceptable computational time in various 
engineering and industrial fields. For example, in 
design optimization, the design objective could be 
simply to minimize the cost or maximize the 
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efficiency of production; on the other hand, the 
objective could be more complex, e.g., controlling 
the highly non-linear behavior of pH neutralization 
processes in a chemical plant. The need to solve 
practical NLP/MINLP problems has led to the 
development of a large number of heuristics and 
metaheuristics over the last two decades 
[27,33,36]. Metaheuristics, which are emerging as 
effective alternatives for solving NP-hard 
optimization problems, are strategies for designing 
or improving very general heuristic procedures with 
high performance in order to find (near-)optimal 
solutions; the goal is efficient exploration 
(diversification) and exploitation (intensification) of 
the search space. For example, we can take 
advantage of the search experience to guide 
search engines by applying learning strategies or 
incorporating probabilistic decisions. 

Strategies such as differential evolution (DE), 
ant and bee algorithms, particle swarm 
optimization (PSO), and cuckoo search have been 
effectively applied to many research areas, 
including process design [2,3]. Nevertheless, these 
approaches have a drawback in that they require 
the setting of several parameters and components, 
e.g., population size, number of generations, 
recombination probability, mutation operator, and 
selection function, as well as the handling of 
constraints. Therefore, selecting the best 
combination of these parameters/components 
leads to complexity of the metaheuristic 
algorithms. In other words, the various possible 
combinations of the parameters drastically affect 
the performance of the algorithms. 

Nowadays, methodologies such as hyper-
heuristics minimize human interference in the 
tuning and design of heuristics or metaheuristics 
adapted for solving a problem in a particular 
domain [3]. In this paper, an approach for solving 
non-convex MINLP problems is presented. Our 
analysis is based on a DE hyper-heuristic 
methodology, which is able to choose from among 
18 DE models for low-level heuristics and tune the 
most important parameters through a self-
adaptation mechanism. 

The remainder of this paper is organized as 
follows. Section 2 describes the DE algorithm. 
Section 3 outlines the hyper-heuristic algorithm. 
Section 4 reviews some related studies. Section 5 
describes the proposed approach. Section 6 

presents an illustrative example to show how a 
population evolves through generations before 
reaching the global optimum. Section 7 describes 
a set of problems on process synthesis and design 
for an experimental setup to show the applicability 
and efficiency of our approach in the case of non-
convex MINLP problems. Section 8 presents the 
corresponding results. Finally, Section 9 
summarizes our findings and concludes the paper 
with a brief discussion on the scope for future work. 

2 Differential Evolution (DE) Algorithm 

Since its implementation in 1995 by Storn and 
Price [37,38], DE has gained wide acceptance 
because it is particularly easy to work with, having 
only a few control variables that remain fixed 
throughout the entire optimization procedure. DE is 

a search method that uses a set of vectors ,i G
x  as 

the population in each generation. The algorithm 
starts from a randomly generated initial population 
until a satisfactory one is obtained. The population 
size does not change during the evolutionary 
process; thus, the algorithm is a population-based 
stochastic search technique classified as floating-
point encoded. A DE pseudo-code is shown in 
Figure 1. 

The main concept underlying DE is a new 
schema to generate vectors. The mechanism is as 
follows. A new vector is generated by adding the 
weighted difference between two member vectors 
of the population to a third member (see Figure 1 
and focus on line 11). 

Both vectors, i.e., the newly generated vector 
and the original vector, are rated by an evaluation 
method. The vector with the best fitness is chosen, 
and it replaces the losing vector in this comparison 

(see Figure 1: the If statement in line 16 and the 

corresponding Else  starting in line 18). There are 
several variants of the mutation scheme of DE. The 

notation used in the literature is / / /DE φ ϕ ψ , 

where φ  denotes the base vector to be disturbed, 

i.e., the mechanism for constructing the mutant 
vector, ϕ  denotes the number of pairs of vectors 

to be disturbed, and ψ  denotes the crossover type 

(exp: exponential; bin: binomial). Several DE 
schemes are presented in Appendix A. 
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Line 11 contains the mutation operator, where 

1 2 3
r r r≠ ≠  are randomly generated vectors [ ]1, NP∈  

and NP is the population size. F is a scaling factor 
that typically (0,1]∈ ; it controls the amplification of 

the difference vector. Lines 10 to 14 contain the 
crossover operator, which is represented by the 

If Else−  statement, where the crossover constant is 

denoted by CR [0,1]∈  and 
randj  is a randomly 

chosen index { }1,2,.., D∈ ; D is the number of 

variables in the problem. CR and F are user-
defined parameters. CR is highly sensitive to the 
property and complexity of the problem, while F is 
related to the convergence speed. The DE model 
described above is known as DE/rand/1/bin, where 
rand denotes the base vector to be disturbed, 1 
denotes the number of pairs of vectors to be 
disturbed, and bin denotes the 
recombination adopted. 

3 Hyper-Heuristics 

A hyper-heuristic is a search method or learning 
mechanism for selecting or generating simpler 
heuristics to solve computational search problems. 
The hyper-heuristic framework consists of two 
main parts:  a high-level methodology and a 
number of low-level heuristics. Given a particular 
problem instance or class of instances, the high-
level method provides the means to exploit the 
strength of multiple low-level heuristics, where 
each heuristic can be useful at different stages of 
the search. The solution is either accepted or 
rejected based on an acceptance criterion. The 
heuristic selection and acceptance methods are 
the most important components of a hyper-
heuristic. The main feature of the hyper-heuristic 
approach is that the high-level heuristic performs a 
search over the space of the low-level heuristics 
rather than a direct solution space. A domain 
barrier between the levels prevents any problem-
specific information from being passed to the 
hyper-heuristic level, thereby allowing for selection 
from among the low-level heuristics without the 
need for domain knowledge. The development of 
hyper-heuristics is mainly motivated by the need 
for algorithms that are more generally applicable 
than most current implementations of search 

methods. The low-level heuristics can be designed 
in advance or created simultaneously during 
runtime from a set of potential components. Thus, 
the hyper-heuristic approach aims to reuse the 
heuristics over unseen instances and raise the 
level of generality at which an optimization system 
can operate. 

In the hyper-heuristic framework, the high-level 
heuristic has no knowledge of the problem-domain 
concealed in the low-level one. In turn, the low-
level heuristic is not aware of the learning 
mechanism used to choose its heuristic (DE 
models) in the high level. This process introduces 
the concept of plug-and-play of heuristics (DE 
models). 

In recent years, hyper-heuristics have been 
employed in several applications such as the bin 
packing problem [29], 2D strip packing [8], 
production scheduling [30], constraint satisfaction 
problems [28], and the vehicle routing problem 
[25]. In addition, some hyper-heuristics use a 
metaheuristic as a high-level methodology or 
mechanism to select or generate low-level 

 

Fig. 1. Differential evolution algorithm 
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heuristics, with effective and encouraging results. 
A survey of hyper-heuristics can be found in [7]. 

4 Related Work 

In the existing literature, it is possible to find several 
DE-based approaches for solving constrained 
optimization problems.  

In [23], Lampinen proposed an extension of DE. 
The method consists of a modification to the 
selection operator with a new selection criterion for 
handling the constraint functions. The selection is 
based on Pareto dominance in the effective 
constraint function space, and the approach does 
not introduce any extra search parameters to be 
set by the user. A DE/rand/1/bin strategy was used.  

In [21], a penalty function is designed to handle 
the constraints and a co-evolution model is 
incorporated into a DE algorithm to perform 
evolutionary search in spaces of solutions and 
penalty factors. Both evolve interactively and self-
adaptively; thus, a satisfactory solution and 
suitable penalty factors can be obtained 
simultaneously. A DE/best-rand/1/bin strategy was 
used.  

The aim of the approach proposed by Mezura 
et al. in [26] is to increase the probability that each 
parent generate a better offspring by allowing each 
generation to generate more than one offspring 
using a different mutation operator that uses 
information of the best solution and the current 
parent to find new search directions. A 
DE/rand/1/bin strategy was used.  

In [24], Mallipeddi et al. showed how a 
compendium of constraint-handling techniques 
used with evolutionary algorithms can be 
effectively applied to differential evolution. These 
include the superiority of feasible solutions, self-

adaptive penalty, ε-constraint, and stochastic 
ranking. The authors showed that the effectiveness 
of conventional DE in solving a numerical 
optimization problem depends on the selected 
mutation strategy and its associated parameter 
values. Thus, different optimization problems 
require different mutation strategies with different 
parameter values. The DE/rand/2/bin and 
DE/current-to-rand/1/bin strategies were used.  

A DE variant considered as a state-of-the-art 
algorithm, namely, SaDE  [32], incorporates a 

learning strategy in the mutation phase, which 
probabilistically selects one out of two available 
learning strategies, DE/rand/1/bin or DE/current-
to-best/2/bin, and applies it to the current 
population. Furthermore, the control parameter CR 
is self-adapted based on the previous learning 
experience, and a quasi-Newton method is used 
as a local search method.  

In [31], the SaDE algorithm was compared with 
several parameter-adaptive DE variants. It was 
found that the SaDE algorithm could evolve 
suitable strategies and parameter values as the 
evolution progressed and that the learning period 
parameter had an insignificant impact on the 
performance. In addition, the algorithm was more 
effective in obtaining high-quality solutions over a 
suite of 26 bound-constrained numerical 
optimization problems.  

In [20], the original search method in the SaDE 
algorithm was substituted by a sequential 
quadratic programming method.  

A comparison between a neighborhood search 
strategy and the SADE algorithm can be found in 
[45].  This strategy affects the F parameter, which 
is related to the convergence speed. Thus, it is 
effective in escaping from local optima when 
searching environments without prior knowledge 
about what kind of search step size is preferred. A 
hybridization of SaDE with the neighborhood 
search algorithm led to the following approach: the 
neighborhood search strategy, the learning 
strategy in the mutation phase, and three self-
adaptive mechanisms for the three parameters, 
namely, the scale factor F, the crossover rate CR, 
and the mutation strategy. The authors reported 
that such a hybridization is significantly superior to 
both neighborhood search algorithm and SaDE 
individually. 

In [4], a self-adaptive mechanism for changing 
two DE control parameters, F and CR, during the 
optimization process with a small and varying 
population size was presented. A DE/rand/1/bin 
strategy was used.  

In [42], a success-history-based adaptive DE 
was proposed. The strategy uses historical 
memory in order to adapt the control parameters F 
and CR.  

The use of eigenvectors of the covariance 
matrix of individual solutions, which makes the 
crossover rotationally invariant in DE, was 
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proposed by Guo et.al in [18]. The incorporation of 
eigenvector-based crossover in six state-of-the art 
DE variants showed either solid performance gains 
or statistically identical behavior. The concept of 
opposition-based learning has been applied to 
improve the performance of metaheuristic 

algorithms and machine-learning algorithms. The 
method tries to find a better candidate solution by 
simultaneously considering an estimate point and 
its corresponding opposite estimate.  

In [19], a partial opposition-based learning 
methodology was applied to an adaptive DE 
algorithm.  

In [6], an adaptive DE based on competition 
among several strategies was used.  The approach 
uses a rotation-invariant current-to-best mutation 
in the algorithm. The aim is to increase the 
efficiency of DE on rotated or composite functions.  

In [43], a hyper-heuristic based on DE was 
proposed. The approach consists of two phases. 
The first phase is responsible for selecting the type 
of recombination to be adopted (either bin or exp). 
At the beginning of the search process, a training 
stage based on the maximum number of 
generations and a random descent selection 
mechanism is required to initialize the expected 
values for each of the DE variants. The second 
phase is responsible for selecting the specific 
model to be applied for generating the next 
generation. Random selection and roulette wheel 
selection mechanisms are used. Stochastic 
ranking is incorporated for handling the 
constraints. Twelve crossover model strategies are 
used as low-level heuristics in the hyper-heuristic 
framework.  

Further details about recent research on hyper-
heuristics based on DE can be found in [16].  

In spite of the above-mentioned efforts, there 
remains a considerable scope for improving DE 
performance, e.g., by using strategies or proposing 
new strategies of self-adaptation for parameter 
control, mutation, or constraint handling, or by 
applying learning mechanisms that have not been 
used previously in DE frameworks. 

5 Proposed Approach 

The motivation of our approach is to solve non-
convex MINLP problems with applications in 
process design by using a DE-based hyper-
heuristic algorithm. Our framework includes self-

adaptive parameters, an ε-constrained method for 
handling constraints, 9 mutation model strategies, 
and a binomial and exponential crossover model; 
the combination mutation-crossover allows to have 

Table 1. Design comparison of DE-HH & SADE 

 SADE DE-HH 

Mutation 
Operation 

Max 4 Strategies: 

DE/rand/1 

De/current to 
best/2 

DE/rand/2 

DE/current-to-
rand/1 

Max 9 Strategies 
over a Hyper-
heuristic 
framework. 

See Appendix B. 

Crossover 
Operation 

Binomial  
Binomial or 
Exponential 
(Self-Adaptive)   

Selection 
Operation 

The fitness value 
of each trial 
vector is 
compared to that 
of its 
corresponding 
target vector in 
the current 
population. 
(traditional DE, 
Figure 1) 

ε-level 
comparison 
defined by a 
lexicographical 
order, eqs.11 
and 12. 

Handling 
Constraints 

Method based on 
superiority of 
feasible solutions. 

Epsilon-
Constrained 
Method 

Parameter 
Adaptation 

 

NP: User-
specified value  

CR: Self-adaptive 
(learning 
experience) 

F: random values 
in the range  (0, 2] 
normal 
distribution of 
mean 0.5 and 
standard 
deviation 0.3 

NP: User-
specified value  

CR: Self-
adaptive 
(learning 
experience) 

F: Self-adapted 
according to 
eq.6 

Local 
Search 
Method 

Sequential 
Quadratic 
Programming 
(SQP) 

Neighborhood 
Search 
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a maximum of 18 Differential Evolution models. 
The overall flow of our approach is shown in Figure 
2 and the pseudo-code is shown in Figure 3. 

Our framework includes the strategies 
described in subsections 5.1 to 5.5.  

 5.1 Self-Adaptive Parameters 

The use of the DE self-adaptive mechanism to 
make a DE solver more robust and efficient is 
reported in [5]; in addition, its advantages and 
disadvantages are discussed there.  

Our self-adaptation scheme focuses on the 
three main components of the DE algorithm that 
directly affect the performance and the quality of 
the solution, namely, the mutation, the crossover, 
and the scale factor F. Lines 9 to 15 in Figure 1 
show the use of these components without a self-
adaptation mechanism. In order to achieve auto-
tuning of these parameters, a learning period was 
incorporated. The basic idea is to define a 
specified number of generations to collect data and 
a counter of iterations. When the counter exceeds 
the number of generations proposed, it will be reset 
once the variable is updated with a new value.  

5.2 Self-Adaptation of Crossover Rate CR 

Our crossover strategy is based on SaDE [32,45], 
where the CRm variable is set to 0.5 initially; after 
a determined number of generations, CRm will be 
updated according to equation 3. Thus, CRm is 
used as the mean value in the Gaussian function 
given by equation 4 in order to compute the 
crossover rate (CR) that will be used in the 
recombination method: 

1

1
( ),

recCR

rec

Krec

CRm CR k
CR =

= ∑  (3) 

( , 0.1).i i mCR N CR=  (4) 

The proposed crossover includes a strategy of 
selection to choose between a binomial or 
exponential method, in contrast to the SaDE 
algorithm that only uses binomial crossover. 

5.3 Self-Adaptation of the Scale Factor F 

Because the scale factor F is related to the 
convergence speed, its self-adaptation strategy 
incorporates a move-generation mechanism as a 
neighborhood search operator in the DE algorithm. 
This can be observed in [45, 46], where the scale 
factor F is replaced by equation 5: 

(0.5,0.3), . (0,1) ,

, ,

i i

i

i

N if U Fp
F

otherwise

<
= 

∂
 (5) 

where (0.5,0.3)iN  denotes a Gaussian random 

number with mean 0.5 and standard deviation 0.3, 
and 

i∂  denotes a Cauchy random variable with 

scale parameter t=1. In our approach, Fp in 
equation 5 will be self-adapted according to 
equation 6: 

,
( )

TSGRN
Fp

TSGRN CRN
=

+

∑
∑

 (6) 

 

Fig. 2. Overall flow of our approach 
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Fig. 3. Differential Evolution (DE)-based hyper-heuristic pseudo-code 
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where TSGRN  denotes the success Gaussian 

random number  and CRN is the success Cauchy 
random number. 

5.4 Self-Adaptation of Mutation Strategies 

The impact of the various DE search operators on 
the exploration/exploitation of the search space is 
not the same. Certain mutation operators are more 
oriented toward exploitation, e.g., DE/best/1, 
whereas others are more oriented toward 
exploration, e.g., DE/rand/1 [13]. Thus, it can be 
difficult to choose the most efficient mutation 
operator, and a problem-dependent parameter 
may affect the performance of the algorithm. A 
determined combination of DE parameters can be 
suitable for one problem but unsuitable for another 
[44]. In order to raise the level of generality, our 
approach incorporates in the hyper-heuristic 
framework a selection method for choosing the 
type of recombination to be applied for generating 
the next population, either exponential or binomial, 
by a random process. The method includes a 
variable, CrSel, which is set to 0.5 initially; after a 
determined number of generations, CrSel will be 
self-adapted according to equation 7 (see Figure 3: 
lines 17 to 23). 

This set of heuristics consists of nine promising 
mutation strategies reported in the literature, each 
for the binomial and exponential models; a roulette 
wheel method is used to choose the mutation 
variant to be adopted, see Figure 4. 

The maximum number of possible crossover-
mutation combinations are 18. These 18 DE-
models are used as low-level heuristics shown in 
Appendix B. For example, if the type of 
recombination selected is exponential, the roulette 
wheel method will choose from among the nine 
mutation strategies for exponential recombination, 
starting with a probability of 1/9 for each strategy to 
be selected; the probabilities will be updated when 
CrSel is updated (see line 19 in Figure 3). The 
complete mutation strategies used in our approach 
are presented in Appendix B. 

,
( )

TSVER
CrSel

TSVER BR
=

+

∑
∑

 (7) 

where TSVER  denotes the success variant 
exponential recombination and BR  is the success 
binomial recombination. 

5.5 Constraint Handling  

The ε-constrained method was proposed by 
Takahama [40]. It is based on the definition of a 

constraint violation ( )xφ  that is obtained from 

equation 8 or equation 9, which are adopted as a 
penalty in penalty function methods. 

{ }{ }( ) max max 0, ( ) , max ( )j j
j j

x g x h xφ =  (8) 

{ }( ) max ( ), 0 ( )
pp

i j

j j

x g x h xφ = +∑ ∑  
(9) 

where p Z
+∈  and ( )xφ  is the maximum of all 

constraints or the sum of all constraints. Thus, 
( )xφ  indicates by how much a search point x 

violates the constraints and the membership in the 

feasible region F . Feasible solutions exist in S, 

where F S⊆  and S is the search space. The 

values of ( )xφ  that can be obtained are given by 

equation 10. 

( ) 0 ( ),

( ) 0 ( ),

x x F

x x F

φ

φ

= ∈


> ∉

 (10) 

An order relation on the set ( ( ), ( ))f x xφ  is 

known as an ε level comparison and defined by a 
lexicographic order in which ( )xφ  precedes ( ),f x  

favoring the feasibility of x over the minimization of 
( )f x . The comparisons are made according to the 

rules given by equations 11 and 12: 

1 2 1 2

1 1 2 2 1 2 1 2

1 2

( ) ( ), ( ), ( )

( ( ), ( )) ( ( , ( )) ( ) ( ), ( ) ( )

( ) ( )

f x f x if x x

f x x f x x f x f x if x x

x x otherwise

ε

φ φ ε

φ φ φ φ

φ φ

< <


< ⇔ < =
 <

 

(11) 

1 2 1 2

1 1 2 2 1 2 1 2

1 2

( ) ( ), ( ), ( )

( ( ), ( )) ( ( , ( )) ( ) ( ), ( ) ( )

( ) ( )

f x f x if x x

f x x f x x f x f x if x x

x x otherwise

ε

φ φ ε

φ φ φ φ

φ φ

≤ <


≤ ⇔ ≤ =
 ≤

 

(12) 

The opposite cases where 
0 00( )andε = < ≤ and 

( )andε ∞ ∞= ∞ < ≤  are equivalent to the 



Computación y Sistemas, Vol. 20, No. 2, 2016, pp. 173–193
doi: 10.13053/CyS-20-2-2334

Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design 181

ISSN 2007-9737

lexicographic order in which the constraint violation 

( )xφ  precedes the function value ( )f x  on the one 

hand and to the ordinal comparison < and ≤  
between function values on the other hand, 
respectively. In order to obtain high-quality 

solutions, the ε level is statically controlled by 
equation 13. It is updated until the generation 
counter k reaches the control generation 

cT . When 

the generation counter exceeds 
cT , the ε level is 

reset to zero in order to obtain solutions without 
constraint violation. Note that cp is a user-defined 
parameter for controlling the reduction speed of the 

ε tolerance. 

(0) ( ),

(0)(1 ) , 0 ,
( )

0, .

s

cp

s c

cs

c

x

k
k T

Tk

k T

θε φ

ε
ε

=


− < <

= 
 ≥

 
(13) 

The ε-constrained method with static control 
was incorporated into our approach. We assume 
that p=1 in equation 9 for a simple sum of 
constraints.  

For the function evaluation, in order to handle 
integer variables, real values are converted into 
integer values by truncation. The handling of binary 
variables is given by equation 14. 

0, 0.5

1, ,

i

i

if x
y

otherwise

≤
= 


 (14) 

where 
ix  is a continuous variable, 0 1ix≤ ≤ . For 

the boundary constraint, the same handling 
mechanism that is used for continuous variables is 
applied (0 is assigned to the lower bound and 1 is 
assigned to the upper bound). 

5.6 Our Approach versus SaDe: A Comparison 
between Designs 

The SaDE algorithm uses only a binomial 
crossover operator and 2 mutation strategies 
selected by a random process [32]. In the last 
version, it incorporates 4 mutation strategies 
selected by the roulette method improving the 
performance [20]. 

The comparative analysis of binomial and 
exponential crossover variants provides 
information about the influence of the crossover 
parameter on the behavior of DE. The dependence 
between the mutation probability and the crossover 
parameter is linear in the binomial case and 
nonlinear in the exponential one. The use of both 
types of crossover together makes the algorithms 
more robust [49]. Nevertheless, it is not possible to 
generalize, since a combination of parameters can 
be effective for a problem or instance of one 
problem and ineffective for another. In order to 
combat these weaknesses, our approach 
encapsulates a set of predefined heuristics (DE 
models as low-level heuristic) for the given 
problem, a fitness evaluation function, and a 
specific search space. The high-level heuristic 
decides which low-level heuristic (DE model) will 
be chosen. This can be achieved with a learning 
mechanism that evaluates the quality of the 
heuristic (DE model) solutions, so that they can 
become general enough to solve unseen instances 
of a given problem. In the hyper-heuristic 
framework, it is possible to add or remove low-level 
heuristics without the need to code the entire 
algorithm again. The main design differences 
between SaDE and our approach are presented in 
Table 6 (Illustrative example). 

Consider the following quadratically 
constrained linear program taken from [34]: 

1 2

2 2

1

2 2

1

1 2

2 1

m in

. . 4 ,

1,

1,

1,

2 2 ,

x

x

x x

s t x x

x x

x x

x x

x

+

+ ≤

+ ≥

− ≤

− ≤

− ≤ ≤

 

(15) 

 

Fig. 4. Crossover and mutation over a hyper-heuristic 
framework 
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Table 2. Comparison between DE-HH and SADE algorithm 

 SADE DE-HH 

Problem 
Best 

Reported 
Best Worst Mean Std. Best Worst Mean Std. 

1 2.0000 2.0000 1.8269 1.9711 5.91E-02 2.0000 1.9237 1.9865 2.63E-02 

2 2.1240 2.1236 2.0786 2.1093 1.91E-02 2.1240 2.0936 2.1171 1.06E-02 

3 1.0765 1.0693 1.0438 1.0695 1.02E-02 1.0762 1.0534 1.0719 6.98E-03 

4 99.2452 99.2450 99.1184 99.2202 4.14E-02 99.2451 99.1963 99.2318 1.83E-02 

5 3.5574 3.5461 3.0530 3.4649 1.52E-01 3.5574 3.4384 3.5294 3.62E-02 

6 32217.4 
32216.96

57 

32214.96

18 

32216.14

82 
6.50E-01 

32217.43

50 

32215.36

81 
32216.6453 8.52E-01 

7 38499.8 
38498.21

7 

38495.32

8 
38497.03 1.33E+00 

38499.76

19 

38496.53

2 
38498.9411 1.29E+00 

 

Fig. 5. Evolution of the population from the initial generation (a) to the end generation (d) and the full trace of the 
convergence plot (e) 
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where the global optimum reported in the literature 
is x=(-1.414214, -1.414214) with f= -2.828427. 
Two local solutions are at x=(-1,0) with f= -1 and 
x=(1,0) with f=1. Thus, the solution is required to 
be in the region bounded by all the constraints. 
Figure 5 shows how this problem is solved by 
applying the proposed approach. 

In order to have sufficient data and show their 
behavior, the parameters used are the population 
size 200Np =  and the maximum number of 

generations MaxGen=50; each of the self-adaptive 
variables, namely, CRsel, fp, and CRm, starts with 
a value of 0.5. After 20, 20, and 5 generations, 
respectively, the variables are updated (“learning 
period”). The algorithm was able to find the global 
optimum in 0.018 s, with 10200 evaluations of the 
objective function.  

In an experimental test with a population size of 
25Np =  and the maximum number of generations 

MaxGen=30, the global optimum was found in 
0.00343 s, with 775 evaluations of the 
objective function. 

7 Case Studies 

Seven problems from the field of chemical 
engineering, which involves complex non-convex 
optimization problems with continuous and 
discrete variables, were considered in the present 
study.  Definitions of these Benchmark Problems 
are presented in Appendix A. 

8 Results 

Our approach, namely, the DE-HH algorithm, is 
implemented in C and compiled using GCC version 
4.8.2. All computations were carried out on a 
standard PC (Linux Kubuntu 14.04 LTS, Intel core 
i5, 2.20 GHz, 4 GB).   

The reliability and efficiency of our approach 
were compared with those of several state-of-the-
art algorithms reported in the literature. The 
comparison involves the mean values of ten 
experiments for each problem; it includes two parts 
as follows. 

In the first part, a comparison is made against 
the SaDE algorithm [20] measuring convergence 
speed and quality of results.  The results are based 

on the best, the worst, mean, and standard 
deviation; these are listed in Table 2. A 
convergence graph for each problem was plotted. 
The graph shows the median run of the total runs 
with termination by the max number of function 
evaluations obtained.  We use the function value of 
the problem without penalties, f(x), and the fitness 
value of best-known solution, f(x*). In the log 
graphs, the x-axis corresponds to the number of 
function evaluations and the y-axis corresponds to 
the log (f(x)-f(x*)), see Figures 6 to 12. 

The comparison shows that our approach 
improves the best results reported of the SaDE 
algorithm, including better mean and standard 
deviation. 

In the second part, a comparison is made 
against genetic algorithm (GA), simplex-simulated 
annealing (M-SIMPSA & M-SIMPSA-pen variant), 
evolution strategies (ES), and modified differential 
evolution (MDE); all these algorithms are reported 
in [1], while particle swarm optimization (R-PSO_c) 
is reported in [47].   

Table 3. DE-HH Results 

Problem NFE NRC CPU-Time 

1 420 100 0.002111 

2* 

3 

4* 

5 

6 

7 

440 

1020 

1680 

6030 

2020 

14600 

100 

100 

100 

100 

100 

100 

0.002169 

0.007012 

0.012646 

0.047243 

0.026431 

3.841227 

Table 4. Percent reduction in NFE due to DE-HH as 
compared with the best algorithm reported 

Problem 
No. 

Our 
approach 

% 
Reduction 
in NFE by 

DE-HH 

Best 
algorithm 

reported 

1  30.81 % M-SIMPSA 

2* 

3 

4* 

5 

6 

7 

DE-HH 

10.20% 

41.68% 

6.51% 

10.14% 

20.35% 

2.67% 

MDE 

ES 

MDE 

ES 

ES 

R_PSO_C 
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Fig. 6. Convergence Graph Problem 1 

 

Fig. 7. Convergence Graph Problem 2 

Fig. 8. Convergence Graph Problem 3 Fig. 9. Convergence Graph Problem 4 

 

Table 5. Comparison of DE-HH, GA, M-SIMPSA, M-SIMPSA-pen, ES, MDE & R-PSO_c 

 ratio   
NFE/NRC 

      

Problem 
no. 

GA M-
SIMPSA 

M-SIMPSA-
Pen 

ES MDE R-PSO_c DE-HH 

1 67.87 6.13 162.82 15.18 7.05  -- 4.20 

2* 

3 

4* 

5 

6 

7 

139.39 

1070.46 

224.89 

1712.96 

371.67 

α 

127.49 

#/0 

147.38 

371.816 

315.057 

#/0 

144.40 

380.42 

422.95 

657.22 

357.43 

2799.33 

22.55 

17.49 

**/0 

67.10 

25.36 

**/0 

4.90 

19.74 

17.97 

119.14 

54.95 

405.50 

35.00 

-- 

40.00 

300.00 

-- 

166.66 

4.40 

10.20 

16.80 

60.30 

20.20 

146.00 

# Execution halted,    ** Converged to a non-optimal solution,   
 --such results were not available for the corresponding algorithm 

     α:  225176 of  NFE and zero of NRC reported 
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The results are based on the percentage of 

convergences to the global optimum (NRC) and 
the average number of objective function 
evaluations (NFE); these are listed in Table 3, 
where the CPU time in seconds is also reported. 
The best results obtained are listed in Table 4. For 
Problem 1, a comparison shows that the NFE for 
DE-HH is around 30.82\%  less than that for M-
SIMPSA and 93.82\% less than that for GA. 

Our approach improves the NFE and NRC of 
the M-SIMPSA reported as the best for this 
problem.  

For Problem 2, the NFE for DE-HH is 97.3% 
less than that for GA.  Moreover, for Problems 1 to 
7, the NFE for DE-HH is around 40.42%, 10.20%, 
48.33%, 6.51%, 49.38%, 63.23%, and 64% less, 
respectively, than that for MDE.  For Problem 7, our 
approach improves the NFE and NRC of the 
R_PSO_c algorithm, which has been reported as 
the best.  A summarized comparison of DE-HH 
with the best algorithms reported for each problem 
is presented in Table 5. 

 

Fig. 13. Problem 1 

 

Fig. 10. Convergence Graph Problem 5 

 

Fig. 11. Convergence Graph Problem 6 

 

Fig. 12. Convergence Graph Problem 7 
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The convergence plot, labeled  as (a), and the 
behavior of the self-adaptive parameters (CRm, 
Fp, and CrSel), labeled as (b), for each problem 
are shown in Figures 4 to 10. 

For the convergence plot, the x-axis 
corresponds to the number of generations and the 
y-axis corresponds to the values of ( )f x .  For the 

self-adaptive parameters, the x-axis corresponds 
to the number of generations and the y-axis 
corresponds to the obtained values of CRm, Fp, 
and CrSel. Observe that in Figures 5 to 7, the y-
axis appears with different scales on the left and 
right sides. More specifically, the y-axis on the left 
corresponds to Fp and CrSel, and the y-axis on the 
right corresponds to CRm. CPU time in seconds. 

9 Conclusions 

This paper proposed a differential-evolution-based 
hyper-heuristic (DE-HH) approach for the 
optimization of mixed-integer non-linear 
programming (MINLP) problems. Self-adaptive 
mechanisms of the control parameters in the DE 
algorithm are carried out over the hyper-heuristic 
framework.  The constraints are handled by the 

epsilon-constrained method. The choice functions 
of the proposed framework can adaptively select 
appropriate low-level heuristics from a set of 18 DE 
variants. Additional mutation strategies and 
different crossover schemes can also be applied to 
the hyper-heuristic framework in order to adapt it to 
a particular problem. 

We conducted experimental studies on test 
instances of process synthesis and design that 
represent difficult non-convex optimization 
problems often encountered in the field of chemical 
engineering. The results, which were based on the 
percentage of convergences to the global optimum 
(NRC) and the average number of objective 
function evaluations (NFE), showed that DE-HH 
can find a global optimum reliably and efficiently, 
improving, on average, the NFE by 17.48% as 
compared to the best algorithms reported while 
maintaining the NRC at 100%. The results, which 
were based on the best, the worst, mean and 
standard deviation, showed that our approach 
exhibits better high quality results for all 
benchmark problems than SaDE algorithm, 
including better mean and standard deviation. 

In a runtime it is possible to find DE models 
untouched (unused) by the hyper-heuristic. 

  

Fig. 14. Problem 2* Fig. 15. Problem 3 
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Thereby, it is unknown which of the 18 DE models 
are more requested for a particular problem.  

Also, the contribution of each model in obtain 
an optimal solution, the effects of adding (or 
subtracting) of more DE models and its 

repercussions in the quality of results are 
unknown.  Therefore, directions for future work 
include an analysis of sensitivity of variables and 
models over a hyper-heuristic environment. In 
addition, it is desirable to deal with larger problem 

 

 

Fig. 16. Problem 4* 

 

Fig. 17. Problem 5 

 

Fig. 18. Problem 6 (maximization) 

 

Fig. 19. Problem 7 
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instances to improve the percentage of 
convergences to the global optimum and improve 
the average number of objective function 
evaluations using parallelization strategies for 
hyper-heuristics, e.g., GPU computing and multi-
core resources. 
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Appendix A  

Problem 1. (Process synthesis problem). This 
problem has one real variable, one binary variable, 
one non-linear inequality constraint, and one linear 
inequality constraint. The problem was proposed in 
[21]; it has also been solved in [9,10,14,34]: 

{ }

2

min ( , ) 2

. . 1.25 0

1.6

0 1.6

0,1

f x y x y

s t x y

x y

x

y

= +

− − ≤

+ ≤

≤ ≤

∈

 
(16) 

The global optimum is (x,y;f)=(0.5,1;2). There is 
a local minimum at x=1.118 and  y=0 with f=2.236. 

Problem 2. (Process synthesis and design 
problem). This problem has two real variables, one 
binary variable, one non-linear equality constraint, 
and one linear inequality constraint. It was 
proposed in [21] and has also been studied in 
[9, 35]: 

{ }

1 2, 1 2

2

1 2

1

min ( , ) 2

. . 1.25 0

2exp( ) 0

0.5 1.4

0,1

f x x y y x x

s t x y

x x

x

y

= − + +

− − ≤

− − =

≤ ≤

∈

 
(17) 

The global optimum is 
1 2( , , : )x x y f = .

(1.375,0.375,1;2.124) . 

Problem 2*. (Process synthesis and design 
problem). Problem 2 can also be formulated 
without the non-linear equality constraint with the 
same global optimum: 

{ }

1 1 1

1 1

1

min ( , ) 2 ln( / 2),

. . ln( / 2) 0,

0.5 1.4

0,1

f x y y x x

s t x x y

x

y

= − + −

− − + ≤

≤ ≤

∈

 
(18) 

Problem 3. (Process flowsheeting problem).  This 
non-convex problem has two real variables, one 
binary variable, one non-linear inequality 
constraint, and two linear inequality constraints. It 
was studied in [15] and has also been solved in 
[9,10]: 

{ }

2

1 2, 1

1 2

2

1

2

min ( , ) 0.7 5( 0.5) 0.8,

. . exp( 0.2) 0,

1.1 1.0,

1.2 0.2,

2.22554 1,

0,1

f x x y y x

s t x x

x y

x y

x

y

= − + − +

− − − − ≤

+ ≤ −

− ≤

− ≤ ≤

∈

 
(19) 

The global optimum is 
1 2( , , : )x x y f = (0.94194, 

-2.1,1;1.07654). 

Problem 4. (Two-reactor problem). This problem, 
taken from [22], has seven real variables, two 

Table 6. Constants of Problem 6 

a1=85.334407 a5=80.512490 a9=9.30096100 

a2=0.0056858 a6=0.0071317 a10=0.0047026 

a3=0.0006262 a7=0.0029955 a11=0.0012547 

a4=0.0022053 a8=0.0021813 a12=0.0019085 

Table 7. Values of constants of
ijS and 

ijT   of Problem 7 

ijS  
ijt  

2     3     4 8    20     8 

4     6     3 16   4      4 
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binary variables, two non-linear variables, four 
non-linear equality constraints,   and four linear 
inequality constraints.   The objective is to select 
one of two candidate reactors in order to minimize 
the production cost.  This problem has also been 
solved in [9, 10, 11, 12]. 

{ }

1 1 2 1 2 1 2 1 2

1 2

1 1 1

2 2 2

1 2

1 2

1 1 2 2

1 1

2 2

1 1

2 2

1 2 1 2 1 2

1 2

min ( , , , , ) 7.5 5.5 7 6 5

. . 1,

0.9[1 exp( 0.5 )] ,

0.8[1 exp( 0.4 )] ,

10,

,

10,

10 ,

10 ,

20 ,

20 ,

, , , , , 0

, 0,1

f x y y v v y y v v x

s t y y

z v x

z v x

z z

x x x

z y z y

v y

v y

x y

x y

x x z z v v

y y

= + + + +

+ =

= − −

= − −

+ =

+ =

+ =

≤

≤

≤

≤

≥

∈

 

(20) 

The global optimum is 
1 2 1 2( , , , , ; )x y y v v f =  

(13.36227,1,0,3.514237,0;99.245209). 

Problem 4*. (Two-reactor problem) Problem 4 can 
be reformulated without equality constraints as 
follows: 

{ }

1 1 2 1 1 1 2

1

2

1

1

1 1

2 1

1

1

1 2

1

( , , ) 7.5 55(1 ) 7 6

1
min 50
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50
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. . 0.9[1 exp( 0.5 )] 2 0,
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10,

2 10(1 )
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v y
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y
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−
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≤
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(21) 

The global optimum is the same as that in 
Problem 4. 

Problem 5. (Process synthesis problem). This 
problem features non-linearities in both continuous  
and binary variables, and it has seven degrees of 
freedom. The problem was studied in [9,10,14,35]. 

2 2

1 2 3 1 2 3 4 1 2

2 2 2 2

3 4 1 2 3

1 2 3 1 2 3

2 2 2 2

3 1 2 3
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2 2

3 3

4 1
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(22) 

The global optimum is 

1 2 3 1 2 3 4( , , , , , , ; )x x x y y y y f =  (0.2,1.28062,1.95448, 

1, 0,0,1; 3.557473). 

Problem 6. (Process design problem). This is a 
maximization problem studied in [9,10]. It has three 
real variables, two integer variables, and three 
inequality constraints:  

{ }

2

1 2 3 1 2 1

1 3 1

1 2 2 3 3 1 2 4 1 3

2

5 6 2 3 7 1 2 8 1

9 10 1 3 11 1 1 12 1 2

1 2 3

1

2

( , , , , ) 5.37854
max
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90 20,

20 5,
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78,...,102 ,int ,
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y

= − −

− +

+ + − ≤

+ + − − ≤
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∈{ },..., 45 ,int ,eger

 

(23) 

where 
1 12a a−  are constants, the values of which 

are listed in Table 6. 
The global optimum (for any combination of 

2 2,x y  is 
1 3 1( , , ; ) (27,27,78;32217.4)x x y f = . 

Problem 7. (Multi-product batch plant (MPBP)). 
This is a multi-product batch problem with M serial 
processing stages, where fixed amounts 

i
Q of N 

products must be produced. The objective is to 
determine for each   stage j, the number of parallel 
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units 
jN  together with the respective sizes 

jV , and 

for each product i, the corresponding batch sizes 

i
B  and cycle times 

Li
T . The data are the horizon 

time H, size factor 
ijS , processing times 

ijt of 

product i in stage j, required production 
i

Q ,and cost 

coefficients 
jα  and 

jβ . This problem, studied in  

[9,10,17,21,35], has the following mathematical 
formulation: 

1

1

m in ,
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(24) 

where for the specific problem considered, M=3, 
N=2, H=6000, 

jα =250, 
jβ =0.6, u

jN =3, l

jV =250, 

u

jV  =2500, 
1

Q =40000, and 
2

Q =20000. The values 

of l

LiT , u

LiT , l

jB , and u

jB  are given by 

( / )l u

Li ij jT max t N= , ( )u

Li ijT max t= , l li
i Li

Q
B T

H
= , 

and m in , m in ( )

u

ju

i i

ij

V
B Q

S

  
=  

  

. 

The values of 
ijS and 

ijt  [i=1-2 (rows);  and j=1-

3 (columns)] are given in Table 7. The problem has 
7 real variables, 3 integer variables, and 18 
inequalities constraints. The global optimum is

1 2 3 1 2 3 1 2 1 2
( , , , , , , , , , ; )N N N V V V B B T T f = 

(1,1,1,480,720,960,240,120,20,16;38499.8). 
Various mutation strategies for each 

exponential and binomial crossover strategies are 
presented in Table 8. 
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best/1/exp 

14 
DE/rand-to-
best/1/bin 

Vi,G  = Xi,G  + F ∗ (Xbest,G  − Xi,G )+ F ∗ (Xr1,G   − Xr2,G ) 

6 
DE/current-to-

rand/1/exp 
15 

DE/current-to-
rand/1/bin 

Vi,G  = Xi,G  + K ∗ (Xr3,G   − Xi,G )+ F ∗ (Xr1,G   − Xr2,G ) 

7 
DE/current-to-

best/1/exp 
16 

DE/current-to-
best/1/bin 

Vi,G  = Xi,G  + K ∗ (Xbest,G  − Xi,G )+ F ∗ (Xr1,G   − Xr2,G ) 

8 
DE/current-to-

best/2/exp 
17 

DE/current-to-
best/2/bin 

Vi,G  = Xi,G  + K ∗ (Xbest,G  − Xi,G )+ F ∗ (Xr1,G   − Xr2,G )+ F ∗ 

(Xr3,G   − Xr4,G ) 

9 
DE/rand-to-
best/2/exp 

18 
DE/rand-to-
best/2/bin 

Vi,G  = Xi,G  + F ∗ (Xbest,G  − Xi,G )+ F ∗ (Xr1,G   − Xr2,G )+ F ∗ 

(Xr3,G   − Xr4,G ) 
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