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Abstract. Dung’s abstract argumentation has been an
object of intense study not only due to its relationship
with logical reasoning but also because of its uses within
artificial intelligence. One research branch in abstract
argumentation has focused on finding new methods for
computing its different semantics. We present a novel
method, to the best of our knowledge, for computing
semi-stable semantics using 0-1 integer programming.
This approach captures the notions of conflict freeness,
acceptability, maximality with regard to set inclusion,
etc., by 0-1 integer constraints. Additionally, this
work also presents an empirical experiment to compare
our novel approach with an answer set programming
approach. Our results indicate that the new method
performed well, and it has a great opportunity space for
improving.

Keywords. Argumentation frameworks, binary program-
ming, answer set programming, semi-stable semantics.

1 Introduction

Argumentation theory has become an increasingly
important and exciting research topic in Artificial
Intelligence (AI), with research activities ranging
from developing theoretical models, prototype
implementations, and application studies [3], [28].
The main purpose of argumentation theory is to
study the fundamental mechanism humans use in
argumentation and to explore ways to implement
this mechanism on computers.

Argumentation theory is related to debate, dia-
logue, negotiation, conversation, and persuasion;
it searches conclusions through logical reasoning

[25]. In fact, argumentation theory has been
successfully used in a variety of applications
such as organ transplantation [24], democratic
decision support [1], multi-agent systems [21],
legal reasoning [22] [29], machine learning [23], as
well as debate and argument mining [19].

Currently, formal argumentation research has
been strongly influenced by abstract argumen-
tation theory of Dung [15]. This approach is
mainly orientated to manage the interaction of
arguments by introducing a single structure called
Argumentation Framework (AF). An AF basically
is a pair of sets: a set of arguments and a set of
disagreements between arguments called attacks.
Indeed, an AF can be regarded as a digraph in
which the arguments are represented by nodes
and the attack relations are represented by arcs.
In Figure 1, one can see an example of an AF and
its graph representation.

Fig. 1. Graph Rep. AF := 〈{a, b, c, d, e}, {(a, b), (b, a),
(b, c), (c, d), (d, e), (e, c)}〉

In [15], four argumentation semantics were intro-
duced: grounded, preferred, stable, and complete
semantics. The central notion of Dung’s semantics
is the acceptability of the arguments. Even though
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each of these argumentation semantics represents
different patterns of selection of arguments, all
of them are based on the basic concept of
admissible set. Informally speaking, an admissible
set presents a coherent and defendable point of
view in a conflict between arguments. For instance,
by considering the AF of Figure 1, one can find the
following admissible sets: ∅, {a}, {b}, {b, d}.

One research branch in abstract argumentation
has been to find new methods for computing its
different semantics, i.e. the search for acceptable
(w.r.t. certain criteria) sets of arguments. Charwat
et al. [12] survey the approaches that have been
used so far for computing AF semantics, and
divide them into reduction and direct approaches.
The direct approach consists in developing new
algorithms for computing AF semantics, and
the reduction approach consists in using the
software that was originally developed for other
formalisms [12].

Our interest is in the reduction approach. Thus,
a given AF has to be formalized in the targeted
formalism such as constraint-satisfaction [13],
constraint-programming [6], propositional logic [4],
and answer-set programming [7, 30]. But, our inter-
est is particularly in the answer-set-programming
and binary integer programming approaches.

To the best of our knowledge, there is only one
previous work [27] where authors indirectly used
0-1 integer programming for computing preferred
semantics. Their approach was based on a
mapping from an argumentation framework AF
into a logic program with negation as failure
ΠAF . After that, authors computed the Clark’s
completion Comp(ΠAF ) [26], and finally they
created the 0-1 integer program lc(ΠAF ) [2] which
then was solved by a mathematical programming
solver.

In this work, we present a novel method,
to the best of our knowledge, for directly
computing semi-stable (SS) semantics using 0-1
integer programming with no mapping. Our
approach is based on 0-1 integer programming i.e.
a mathematical programming formulation which
models the semi-stable semantics. This work
presents the mathematical model and explains it
in terms of Dung’s abstract argumentation notions
[15], i.e. the mathematical constraints model

conflict-freeness, acceptability, and the semi-stable
extension definition itself [10]. This work explains
the objective function and each constraints’ role.

It is worth mentioning that semi-stable semantics
has been regarded as an alternative for stable
semantics by Caminada et al. [10] [9] because of
the following:

— Every stable extension is also a semi-stable
extension.

— There exists at least one semi-stable exten-
sion, while it is possible to have no stable
extensions.

— Preferred semantics has also been proposed
as an alternative [15], but additional non-
stable extensions can be introduced, even
in situations where stable extensions already
exist.

— Additionally, Caminada and Gabbay [11] also
state that every semi-stable extension is also
a preferred extension.

Therefore the semi-stable semantics is closer and
more adequate for being an alternative for stable
semantics.

In this work, we also experimentally compare
our approach against an answer set programming
(ASP) approach: the ASPARTIX approach [17]
using its general encoding for SS semantics1. The
results we obtained indicate that our new method
performed well.

However, we must say that ASPARTIX
has been proved against tools from other
approaches [5] such as Dung-O-Matic2 which
is based on well-known algorithms (direct
approach), and ConArgs23 which is based on
constraint-programming (reduction approach). The
results showed that ASPARTIX outperformed
Dung-O-Matic, but ConArg2 outperformed
ASPARTIX.

The selection of Clingo in our research is due
to the following reasons. Clingo is an answer set
solver for (extended) normal and disjunctive logic

1http://www.dbai.tuwien.ac.at/research/project/argumentation/
systempage/

2http://www.arg.dundee.ac.uk/?page_id=279
3http://www.dmi.unipg.it/conarg/
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programs. It combines the high-level modeling
capacities of ASP with state-of-the-art techniques
from the area of Boolean constraint solving. The
group that developed Clasp won the 2014 Artificial
Intelligence Dissertation Award4. Furthermore, the
software has several trophies5.

The paper is organized as follows. Section 2
gives some background on argumentation. Section
3 presents a procedure based on solving a
series of 0-1 integer programming problems for
computing SS semantics. Section 4 presents
the preliminary results as well as the used
methodology. Section 5 presents our approach
for addressing different decision problems. Finally,
Section 6 presents some conclusions and future
work.

2 Background

We assume that readers are familiar with the basic
notions of answer set programming, otherwise
readers can find good introductions in [7], and
additionally in [30] one can find a survey of
ASP approaches for computing argumentation
semantics.

2.1 0-1 Integer Programming [31]

A linear programming problem (LP) is a class of
mathematical programming problem, a constrained
optimization problem, in which we seek to
find a set of values for continuous variables
(x1,x2, ...,xn) that maximizes or minimizes a linear
objective function z, while satisfying a set of
linear constraints (a system of simultaneous linear
equations and/or inequalities) [14]. Mathematically,
an LP is expressed as follows:

max{cx : Ax ≤ b,x ≥ 0},

where A is an m by n matrix, c an n-dimensional
row vector, b an m-dimensional column vector, and
x an n-dimensional column vector of variables or
unknowns.

4http://www.eccai.org/diss-award/current.shtml
5http://potassco.sourceforge.net/trophy.html

If all variables are integer, we have an Integer
Program (IP) written as

max
{
cx : Ax ≤ b,x ∈ Zn

+

}
and If all variables are restricted to 0-1 values, we
have a 0-1 or Binary Integer Program (BIP):

max {cx : Ax ≤ b,x ∈ {0, 1}n} .

2.2 Formulation of a 0-1 Integer Program

Translating a problem description into a formulation
should be done systematically, and a clear
distinction should be made between the data of the
problem instance, and the variables (or unknowns)
used in the model: (1) Define what appear to
be the decision variables, (2) Define a set of
constraints which will define the feasible solutions
space, (3) Using the decision variables, define the
objective function.

If something goes wrong, define an alternative
set of decision variables and iterate. Once the
formulation is ready, it can be coded in any
mathematical programming modeling language
such as AMPL.

2.3 Abstract Argumentation

Readers with no background on argumentation
semantics can find a gentle introduction in [25]. We
will use some concepts of Dung’s argumentation
approach, the main of them is an Argumentation
Framework (AF), which captures the relationships
between arguments.

Definition 1. [15] An AF is a pair AF :=
〈AR, attacks〉, where AR is a finite set of
arguments, and attacks is a binary relation on AR,
i.e. attacks ⊆ AR×AR.

Any AF can be regarded as a digraph. For
instance, if AF := 〈{a, b, c, d, e}, {(a, b), (b, a), (b, c),
(c, d), (d, e), (e, c)}〉, then AF is represented as it is
shown in Figure 1. We say that a attacks b (or b
is attacked by a) if attacks(a, b) holds. Similarly,
we say that a set S of arguments attacks b (or b is
attacked by S) if b is attacked by an argument in S.

Dung defined his argumentation semantics
based on the basic concept of admissible set,
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which can be understood in terms of defense of
arguments and in terms of conflict-free sets, as
follows:

Definition 2. [10] Let AF := 〈AR, attacks〉 be an
argumentation framework, A ∈ AR and S ⊆ AR,
then:

1. A+ as {b ∈ AR : a attacks b} and

2. S+ as {b ∈ AR : a attacks b for some a ∈
S}.

3. A− as {b ∈ AR : b attacks a} and

4. S− as {b ∈ AR : b attacks a for some a ∈
S}.

5. S is conflict-free iff S ∩ S+ = ∅.

6. S defends an argument a iff A− ⊆ S+.

7. F : 2AR → 2AR as F (S) = {a ∈ AR : a is
defended by S}.

It is possible to define the semantics in terms of
admissible sets as follows:

Definition 3. [10] Let AF := 〈AR, attacks〉 be
an argumentation framework and S ⊆ AR be a
conflict-free set of arguments, then:

1. S is admissible iff S ⊆ F (S).

2. S is a complete extension iff S = F (S).

3. S is a preferred extension iff S is a maximal
(w.r.t. set inclusion) complete extension.

The SS semantics is similar to the preferred
semantics [10], but instead of maximizing S it is
required to maximize S ∪ S+, as the following
definition states:

Definition 4. [10] Let AF := 〈AR, attacks〉 be
an argumentation framework and S ⊆ AR be a
conflict-free set of arguments, then: S is called a
SS extension iff S is a complete extension where
S ∪ S+ is maximal.

The semi-stable semantics accepts an equiva-
lent statement, as follows:

Definition 1. [10] Let AF := 〈AR, attacks〉 be an
argumentation framework and let S ⊆ AR. The
following statements are equivalent:

1. S is a complete extension such that S ∪ S+ is
maximal (Definition 4).

2. S is an admissible set such that S ∪ S+ is
maximal.

3 Computing Semi-Stable Semantics
by 0-1 Integer Programming

In this section we show the 0-1 integer program-
ming formulation for the SS semantics problem
and its encoding in Mosel6, which is the modeling
language of the mathematical solver Xpress7 that
we used for this work. This section also explains
the objective function and constraints, as well
as the iterative process for computing all the
extensions of the SS semantics.

3.1 Semi-Stable Semantics Problem
Formulation

A mathematical programming solver works with
mathematical formulations which in turn work with
decision variables. These formulations are coded
using the solver’s modeling language. In our case,
the values that decision variables can take on
are restricted to {0, 1} since we use 0-1 integer
programming.

The task of the solver is to determine the values
that the decision variables should take on in order
to optimize (maximize or minimize) the objective
function of its underlying mathematical model. It
is possible to have several feasible solutions, but
the solver has to find the optimal one, if it exists.
Therefore, the first step is to define the required
binary decision variables.

Considering that Definition 4 and Proposition 1
state an SS extension in terms of an admissible set
S such that S ∪ S+ is maximal, then it is required

6http://www.fico.com/en/wp-content/secure_upload/

Xpress-Mosel-User-Guide.pdf
7FICO XPRESS: http://www.fico.com/en/products/fico-

xpress-optimization-suite
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a decision variable for S and another for S+ as
follows:

Si =

{
0 if i 6∈ S

1 if i ∈ S
∀ i ∈ AR. (1)

When the solver executes the mathematical
model’s program and finds an optimal solution, we
should interpret the values of the decision variables
in terms of a solution of the modeled problem.
Thus, in our case, if the variable Si = 1, the
associated argument i is in the set S, otherwise
it is not. Once we have this solution we define

Definition 5. The set M = {i ∈ AR : Si = 1 in
the optimal solution}, and C = {i ∈ AR : Si =
0 in the optimal solution} is M’s complement.

Accordingly, we define the decision variable for
S+ as follows:

S+
i =

{
0 if i 6∈ S+

1 if i ∈ S+
∀ i ∈ AR. (2)

Definition 6. The set M+ = {i ∈ AR : S+
i = 1 in

the optimal solution}, and C+ = {i ∈ AR : S+
i =

0 in the optimal solution} is M+’ complement.

In this way, the optimal solution of the 0-1 integer
problem formulation for the SS semantics can be
stated in terms of maximizing S∪S+. Additionally, it
is required to have a decision variable for the union
of these sets as follows:

Ui =

{
0 if i 6∈ S ∪ S+

1 if i ∈ S ∪ S+
∀i ∈ AR. (3)

Definition 7. The set Mu = {i ∈ AR : Ui = 1 in
the optimal solution}, and Cu = {i ∈ AR : Ui =
0 in the optimal solution} is Mu’s complement.

Now, in order to have a mechanism to work
with attacks more suitable than working with the
adjacency matrix of a given AF, we define the
following:

Definition 8. Let AF := 〈AR, attacks〉 be an
argumentation framework, then R−i = {j ∈ AR :
(j, i) ∈ attacks} ∀i ∈ AR, is the set of nodes
attacking node i, and the set of sets R− = {R−i :
i ∈ AR}.

Considering Definitions 2 and 3, we restate the
admissible set definition in terms of Definition 8 in
order to be able to derive the linear constraint that
assures admissibility, thus we have the following
Lemma:

Lemma 1. Let AF := 〈AR, attacks〉 be an
argumentation framework, and set S ⊆ AR, then S
is admissible iff ∀i ∈ S,∀j ∈ R−i ,∃k ∈ S, ((k, j) ∈
attacks)).

It is important to take into account that a
mathematical solver searches in the solution space
for just one optimal solution for a given problem
formulation, i.e. just one extension. Therefore,
if we want all the extensions of a given AF, it is
required to solve a series of binary programming
models, one for each extension. Therefore, we can
think of the SS semantics problem formulation in
terms of a series of solutions that the solver finds
in a series of iteration.

Since SS semantics is made up of several
sets, we use M t to denote the solution of
the binary subproblem in iteration t and q to
denote the amount of SS extensions that a given
argumentation framework has such that q ≥ 1,
thus:

{Mu1,Mu2, ...,Muq} :

|Mu1| ≥ |Mu2| ≥ ... ≥ |Muq|. (4)

This expression states that the Mu1 has the
largest possible cardinality, and that Muq has the
smallest possible cardinality. Therefore, it is clear
that in order to get all SS extensions it is required
to iterate q times, and the problem formulation will
use t to denote a given iteration.

Additionally, it is also required to have a decision
variable for a couple of either/or constraints [20]
which will be added per each iteration (see Section
3.3) in order to assure S ∪ S+ maximality w.r.t. set
inclusion, i.e. they help us just to avoid that solution
Mut+1 be the same than the solutions found in
iterations t, t − 1, . . . , 1 or any subset of them as
follows:

Yr =

{
1 if |Mut| > |Mu|t+1

0 otherwise
r = 1, . . . , t− 1.

(5)
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This way, the following 0-1 integer problem for-
mulation to compute the tth semi-stable extension
of a given AF is the following (including (1), (2), (3),
(5)):

max f(S) =
∑
i∈AR

(Si + S+
i ), (6)

subject to:

Si + Sj ≤ 1,∀i ∈ AR,∀j ∈ R−i , (7)∑
k∈R−

j

Sk ≥ Si,∀i ∈ AR,∀j ∈ R−i , (8)

S+
i ≥ Sj ,∀i ∈ AR,∀j ∈ R−i , (9)

S+
i ≤

∑
j∈R−

i

Sj ,∀i ∈ AR, (10)

Ui = Si + S+
i ,∀i ∈ AR, (11)

∑
i∈Cr

Si ≥ 1,∀r = 1, . . . , t− 1, (12)

− (
∑

i∈Mur

Ui) + |Mur| ≤ |AR| ∗ Yr,∀r = 1, . . . , t− 1,

(13)

− (
∑

i∈Cur

Ui) + 1 ≤ |AR| ∗ (1− Yr),∀r = 1, . . . , t− 1,

(14)

Si ∈ {0, 1}, i = 1, ..., |AR|, (15)

S+
i ∈ {0, 1}, i = 1, ..., |AR|, (16)

Ui ∈ {0, 1}, i = 1, ..., |AR|, (17)
Yi ∈ {0, 1}, i = 1, ..., t− 1. (18)

Note that (1), (2), (3) and (5) are the decision
variables definition, and constraints (15), (16), (17),
(18) define the problem’s domain.

Note also that constraints (12), (13), and (14) are
going to be added in iteration t, once the model
was solved, in order to be active in iteration t + 1,
while the remaining constraints are always active.
The following paragraph explains the objective of
these constraints, but they are explained with more
detail in Section 3.3.

Now, let us explain each constraint within the
context of Dung’s abstract argumentation notions
and the semi-stable definition:

1. Maximality with regard to set inclusion.
The model’s objective function (OF)(6) guar-
antees us that we will find a maximum
cardinality set, which will be the solution Mut.
This set is made up of S ∪ S+. Constraints
(12), (13), and (14) along with the objective
function will avoid that M t+1 and Mut+1 be
any subset of M t and Mut respectively, thus
they guarantee us maximality with regard to
set inclusion. Subsection 3.3 explains how
constraints (13) and (14) were defined and
why they are added after the computation of
each additional extension in order to compute
the whole semantics.

2. Conflict-Freeness. Note that the definition
of a conflict-free set in Definition 2 item 5 is
not stated in terms of attacks’s directions but
just in terms of attacks between arguments,
without considering the directions of them. In
this way, such a definition considers an arc just
as an edge, and therefore the whole AF can be
regarded as an undirected graph, at least with
regard to the conflict-free set problem.

Note that the expression Si + Sj ≤ 1 in
constraint (7) will be fulfilled only when Si = 1
or Sj = 1 but not both and when Si = 0 and
Sj = 0, therefore at most one argument will be
selected. Thus, this constraint guarantees us
that solution will be a conflict-free set.

3. Admissibility. The intuition of Definitions
1, 2, and 3 is that an admissible set S
should defend each of its arguments, and
Lemma 1 only restates it in terms of Definition
8. Note that in Lemma 1 the existential
quantifier suggests that constraint (8) should
be
∑

k∈R−
j
Sk ≥ 1, but we used

∑
k∈R−

j
Sk ≥

Si since the constraint must be fulfilled ∀i ∈
AR 8. This way, the translation from this
definition to constraint (8) is a straightforward
task, this constraint guarantees us that the set
M t is admissible.

8There are two special cases: Si = 0 and Si = 1. In the
first one, the total of

∑
k∈R−

j
Sk does not matter because Si 6∈

Solution, thus in the second case we will have
∑

k∈R−
j
Sk ≥ 1

which means that there will be at least one argument defending
argument i since Si ∈ Solution.
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4. Creation of S+. So far, we have a conflict-free
and admissible set, and it is still required
to build S+

i as in Definition 2 item 2 ∀i ∈
M+. It should be done by decision variables
(2) such that the objective function can be
executed. This way, S+

i should take on value
1 if argument i is attacked by some argument
j ∈ R−i such that Sj = 1. This is the same
that d = di ∨ d2 . . .∨ dn as a logical expression
which can be linearized as follows [20]:

d ≥ di i = 1, . . . ,n (19)

d ≤
∑
i

di i = 1, . . . ,n (20)

Note that (19) and (20) become (9) and (10)
respectively. Additionally to (19) and (20) we
should have d ≤ 1, but it is redundant due to
(16). Thus, constraints (9), (10), and (16) will
determine the values of decision variables (2)
from values on decision variables (1).

Thus, M1 is a conflict-free and admissible set,
considering that (6) guarantees a maximum
cardinality set, and according to Definition 4
and Preposition 1, M1 is an SS extension.

5. Construction of U = S∪S+. In order to avoid
that Mut+1 be a subset of Mut, it is required
to have as decision variables the union of (1)
and (2), as defined in (3). To this end, and
in order to ease this process, consider that it
is not possible that Si = 1 and S+

i = 1 at
the same time, since it would mean that M is
not a conflict-free set. Thus, the value that Ui

will take on should be Si + S+
i . Considering

Definition 7, constraint (11) guarantees that
Mu will have the whole solution.

3.2 Semi-Stable Extensions Program

Notice that the problem formulation was made up
of (1)-(11), and (15)-(18) already can be used
for computing the first SS extension of a given
AF. To this end, this program should be coded
using a mathematical programming language like
Mosel9, this is a straightforward task, since

9http://www.fico.com/en/products/fico-xpress-optimization-
suite/

the mathematical language was developed for
expressing mathematical formulas. The following
code stands for the whole mathematical model:

z:= sum(i in arguments) (S(i) + Sp(i))

forall(i in arguments, j in R(i))

S(i) + S(j) <= 1

forall(i in arguments, j in R(i))

sum(k in R(j)) S(k) >= S(i)

forall(i in arguments, j in R(i))

Sp(i) >= S(j)

forall(i in arguments)

Sp(i) <= sum(j in R(i)) S(j)

forall(i in arguments)

U(i) = S(i) + Sp(i)

forall(i in arguments) S(i) is_binary

forall(i in arguments) Sp(i) is_binary

forall(i in arguments) U(i) is_binary

forall(i in t-1) Y(i) is_binary

maximize(z).

We will denote this program as BIP in order to
make reference to it.

3.3 Semi-Stable Semantics

As it was stated, once the model is implemented
in a mathematical programming language, the
program computes only one SS extension. In order
to compute an additional extension it is required to
iterate, but adding additional constraints to avoid
getting previous solutions, these constraints will
force to get another different extension. In this
setting, it is required to iterate to find all the
extensions of a given AF until no feasible solution
exists. Thus, we have to take care of getting no
subsets of M t (Case No. 1), and no proper subsets
of Mut (Case No. 2).

Case No. 1. Then, in order to find the constraint
that we have to add to avoid that M t+1 ⊆ M t,
consider Definitions 5, and let P be the solution
in iteration t + 1, and M the solution in iteration t,
thus:

P ⊆M ↔ ∀x(x ∈ P → x ∈M)

↔ ∀x(x 6∈ P ∨ x ∈M), (21)
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P 6⊆M ↔ ∃x(x ∈ P ∧ x 6∈M)

↔ ∃x(x ∈ P ∧ x ∈ C). (22)

The intuition of this result is that it is required
that the solution in iteration t + 1 has at least one
element from solution’s complement in iteration t.
Constraint (12) is defined from this intuition. Note
that the Mosel code must take care of the special
case where |M | = |AR|.
Case No. 2. Additionally, we have to add another
constraint to avoid that Mut+1 ⊂ Mut. In order to
find such a constraint(s), consider Definition 7 and
let P be the solution in iteration t + 1 and Mu the
solution in iteration t, thus:

P ⊂Mu

↔ ∀x(x ∈ P → x ∈Mu) ∧ ∃x(x 6∈ P ∧ x ∈Mu)
(23)

↔ ∀x(x /∈ P ∨x ∈Mu)∧∃x(x 6∈ P ∧x ∈Mu),
(24)

P 6⊂Mu

↔ ∃x(x ∈ P ∧ x 6∈Mu) ∨ ∀x(x ∈ P ∨ x 6∈Mu)
(25)

↔ ∃x(x ∈ P ∧x ∈ Cu)∨∀x(x ∈ P ∨x 6∈Mu).
(26)

Note that the intuition of the expression in (22)
should be the same as that of the first part
of the disjunction in (26). Consider also that
we wanted to find an expression that led us
to a linearized constraint to avoid getting proper
subsets of previous solutions. Thus, we can have
a proper subset when |P | < |Mu| holds, and
therefore we must apply the expression ∃x(x ∈
P ∧ x ∈ Cu), otherwise apply the expression
∀x(x ∈ P ∨ x 6∈ Mu), whose intuition is that the
new solution P can have any element, this means
that it requires no constraint. Thus, we have just to
work with the first part of the disjunction. Therefore,
we have to linearize the expression

if |P | < |Mu| then ∃x(x ∈ P ∧ x ∈ Cu)

↔ if |P | < |Mu| then
∑
i∈Cu

Ui ≥ 1,

as follows [14]:

if |P | < |Mu| then
∑
i∈Cu

Ui ≥ 1

↔ not (|P | < |Mu|) ∨
∑
i∈Cu

Ui ≥ 1,

that in turn can be transformed as follows:

↔ |P | ≥ |Mu| ∨
∑
i∈Cu

Ui ≥ 1

↔
∑

i∈Mur

Ui ≥ |Mur| ∨
∑

i∈Cur

Ui ≥ 1.

This means that only either
∑

i∈Mur Ui ≥
|Mur| or

∑
i∈Cu Ui ≥ 1 will be active, but to

satisfy the simultaneousness assumption of binary
integer programming, they must be transformed
considering the following general format [20]:

f(x1,x2, . . . ,xn) ≤ By,

g(x1,x2, . . . ,xn) ≤ B(1− y).

where B is a big number, in our case B = |AR|,
and y is the binary variables defined in (18). This
transformation becomes constraints (13) and (14).

Now, let SSE be a set of all the SS extensions
of a given AF, and MC a set of additional (12),
(13), and (14) constraints, then the algorithm for
computing the q extensions of a given AF is
Algorithm 1:

1 [ht] Set SSE = ∅, MC = ∅;
2 Solve BIP ∪MC;
3 while optimal solution found do
4 Let M ,M+, and Mu be the optimal

solution, and C,C+, and Cu its
complements respectively;

5 Add M to SSE;
6 Add

∑
i∈C Si ≥ 1 to MC;

7 Add −(
∑

i∈Mur Ui) + |Mur| ≤
|AR| ∗ Y (r)∀r = 1, . . . , t− 1 to MC;

8 Add −(
∑

i∈Cur Ui) + 1 ≤
|AR| ∗ (1− Y (r))∀r = 1, . . . , t− 1 to MC;

9 Solve BIP ∪MC;
10 end

Algorithm 1: Computing all semi-stable exten-
sions of a given AF
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Now it is possible to state the following theorem:

Theorem 1. Let AF be an argumentation
framework, R− as in Definition 8, M ,M+, and Mu
is a solution of BIP , and SSE is computed as
described in Algorithm 1, then SSE is the set of all
SS extensions of AF .

Proof. Sketch: From the above discussion
consider the following items:

1. By constraints (7), (8) we know that M is a
conflict-free and admissible set. See Section
3.1 item 2 and 3.

2. By constraints (9) and (10) we know that M+

is made up from M . See Section 3.1 item 4.

3. By constraint (11) we know that Mu = M ∪
M+. See Section 3.1 item 5.

4. By the Objective Function (6) we know that
M ∪ M+ is a maximum cardinality set. See
Section 3.1 item 1.

5. By Definition 4 and Proposition 1 we know that
if a set M is a conflict-free and admissible set
and M ∪ M+ is maximal, then M is an SS
extension.

6. Now, notice that in each iteration, due to the
constraints added to MC in steps 6, 7, and 8 in
iteration t, the solution Mu (if exists) obtained
in step 4 must not be a superset or subset
of any previous solutions already in SSE, and
Mu must be of maximum cardinality among
the solutions that satisfy BIP ∪MC, therefore
Mu is maximal w.r.t. set inclusion.

7. By previous items and according with (4),
there is no any possible solution between
solutions found in iteration t and t+1, therefore
SSE is the set of all SS extensions of AF.

4 Preliminary Results

In order to measure the performance of the 0-1
integer programming approach, it was compared
with an ASP approach: the ASPARTIX [18] which
we will refer to as ASP1. Additionally, the approach
based on 0-1 integer programming will be called
BIP (Binary Integer Programming).

4.1 Experiment Description

For the readers interested in the code used to
compute the SS extensions, it is available at
ASPARTIX’s web page10. It is worth mentioning
that ASPARTIX is the de facto benchmark for
argumentation systems.

The solver used by the ASP approach was
Clingo11 due to its great performance in several
ASP competitions [8], while the 0-1 integer
programming approach used the ad-hoc Xpress12

solver. Both solvers were used without any special
configuration parameter. The computers used in
the experiment had the following configuration: An
AMD Phenom II X3 2.80 Ghz processor, 4GB of
RAM, and 32-bit Windows 7 professional operating
system.

The given time for solving each instance was
1000 seconds. In order to compute the global time
when a solver fails solving a given instances, the
time assigned is 1000 seconds.

The instances that were used during all the
experiments were taken from the ASPARTIX web
page13. The name of each instance gives us some
information about its inherent difficulty to be solved
and it has the form inst G n p1 p2 i, that should be
interpreted as follows [16]:

— G: Generator used: 2: arbitrary AFs (does not
use p2); 4: 4-grid AFs; 8: 8-grid AFs.

— n: Number of arguments

— p1: Probability for each pair of arguments
(a,b) that the attack (a,b) is present for the
arbitrary graphs. For the grid graphs this
parameter indicates one dimension of the grid.
The other is calculated with n.

— p2: Present only for grid AFs. It indicates
the probability that a given attack is a mutual
attack.

10http://www.dbai.tuwien.ac.at/research/project/argumentation/
systempage/

11http://potassco.sourceforge.net
12http://www.fico.com/en/Products/DMTools/Pages/FICO-

Xpress-Optimization-Suite.aspx
13http://www.dbai.tuwien.ac.at/research/project/argumentation/

systempage
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— i: Index for AFs with the same parameters, i.e.
AFs generated with the same parameters are
distinguished with this index.

ASPARTIX project’s goal was to find ”new
methods for analyzing, comparing, and solving
argumentation problems”14, and with this goal in
mind the project’s team created the instances that
we used.

4.2 Performance Results

A total of 1,118 instances were used, the instances
ranged from 20 arguments to 100 arguments with
increments of 10 arguments. There were 132
instances of 20 arguments, 44 of each kind of
instances, and so on for the rest of the instances.

In Figure 2 we present average computation
times for each approach and for each kind of
instances (arbitrary, 4-grid, and 8-grid). Figure 2
shows also that ASP1 had the best performance
(near zero) for arbitrary instances, while the Binary
Integer Program (BIP) was very close to it for the
same kind of instances.

The performance of both solvers solving 4-grid
and 8-grid instances were close to zero until
60-arguments instances, where the BIP approach
started to have difficulties to solve them. The
ASP1 approach started to have problems until the
70-arguments instances for 4-grid instances, and
80-arguments instances for 8-grid instances. Both
solvers had no problem solving arbitrary instances,
even with the 100-argument ones.

Figure 3 shows timeouts per approach and per
kind of instance. Note that there are no timeouts for
arbitrary instances and that the behavior is similar
to that of average execution times. Note also
that though BIP’s timeouts started at 60 arguments
instances and ASP’s at 70 arguments, the rate
of growth is almost parallel from 90 arguments
instances.

Figures 2 and 3 seem to show that the rate of
growth of both solvers is similar with a constant
difference between the performance of them, and
though we have observed that the execution time
for BIP approach for arbitrary instances at n
arguments t(n)BIP ,2 is never larger than 2.691

14The goal is stated at the ASPERTIX project web page.

times the time of the ASP approach t(n)ASP ,2 (i.e.
t(n)BIP ,2 ≤ 2.691 ∗ t(n)ASP ,2), Figure 4 suggests
that at some point both lines are going to cross.
With regard to the other instances, it is difficult
to say if there is also a constant difference since
timeout actually indicate a lack of reliable times to
determine if this constant exists or not.

On the other hand, Figure 5 shows average
execute times for finding just the first extension for
arbitrary instances, note that the ASP solver was
faster than the BIP solver, while Figure 6 shows
that for 4-Grid and 8-Grid instances it was the
other way around, i.e. the BIP solver had a better
performance.

It is important to say that the average amount
of extensions corresponding to arbitrary instances
(2-Grid) is very small, while the average amount
of extensions for 4-Grid and 8-Grid instances is
larger. Note the great similarity of Figures 4 and
5 which also suggest that the BIP performance
is as good as the ASP’ performance, but there
is a difference in how solvers compute the
remaining extensions: the ASP solver keeps
enough information to ease the search of the
remaining extensions, while the BIP solver starts
with no information from previous searches.

At this moment, we can say that this problem
could be addressed either by programming the
whole solution using ad-hoc libraries or by
configuring the solver for keeping information of
previous searches and adding additional Mosel
code.

5 Addressing Decision Problems

In order to have a more complete view of our
approach to calculate the semi-stable semantics,
we decided to analyze its behavior with the
decision problems that Caminada et al. [10]
described in his paper. Such a description is as
follows.

Given an argumentation framework H =
(AR, attacks), let E be its SS semantics. Table 1
describes a number of general decision problems
relative to E .

Let H be the argumentation framework shown in
Figure 1, which has {b, d} as the only SS extension.
Let S1, ...S5 be the set of decision variables as in
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Fig. 2. Average computation times per approach and per kind of AF

Fig. 3. Timeouts per approach and per kind of AF

Definition 1, such that the set {b, d} corresponds to
the set S = {0, 1, 0, 1, 0}.

1. Verification. In order to decide if {b, d} ∈
E(H) just add the following constrains:

S1 = 0; S2 = 1; S3 = 0; S4 = 1; and S5 = 0.

Computación y Sistemas, Vol. 21, No. 3, 2017, pp. 457–471
doi: 10.13053/CyS-21-3-2230

0-1 Integer Programming for Computing Semi-Stable Semantics of Argumentation Frameworks 467

ISSN 2007-9737



Fig. 4. Average computation times for arbitrary instances (2-grid)

Fig. 5. Average computation times for finding the 1rst extension for arbitrary instances (2-grid)

In this case, if the solver finds an optimal
solution, then {b, d} is an SS extension,
otherwise it is not. Algorithm 1 is not required
since we are asking for the first extension, i.e.

the one the solver finds with no iteration.

2. Credulus Acceptance. Let x = b. In order
to decide if there is any S ∈ E(H) for which
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Fig. 6. Average computation times for finding the 1rst extension for 4-grid and 8-grid instances

Table 1. Decision problems described in [10]

Problem Name Instance Question
Verification H = (AR, attacks) Is S ∈ E(H)?
(V ERE ) S ⊆ AR

Credulus Acceptance H = (AR, attacks) Is there any S ∈ E(H)
(CAE ) x ∈ AR for wich x ∈ S?

Sceptical Acceptance H = (AR, attacks) Is x member of
(SAE ) x ∈ AR every S ∈ E(H)?

Non-emptiness H = (AR, attacks) Is there any S ∈ E(H)

(EXISTS¬∅
E ) for wich S 6= ∅ ?

x ∈ S, add the following constraint:

S2 = 1.

In this case, if the solver finds an optimal
solution, then the condition we are asking for
holds, otherwise it is not. Again, Algorithm 1 is
not required.

3. Sceptical Acceptance. In this case it is not
required to add more constraints, but it is
required to use Algorithm 1.
Additionally, it is required to add code to the
algorithm in order to test if x ∈ S. On the
other hand, it is not required to compute all SS
extensions of H, since it is enough to find the

first extension where x /∈ S holds in order to
stop.

4. Non-emptyness. It is not required to
add more constraints neither Algorithm 1 is
required. It is enough to attempt to compute
the first extension and test if the solver found
an optimal solution.

6 Conclusions

We have presented a novel method for computing
SS semantics using binary integer programming.
The performance of the new method was good
although the ASP approach outperformed it
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at finding all the SS extensions of a given
argumentation framework.

However, the BIP approach had a performance
that was as good as that of the ASP approach at
finding just the first extension. It means that our
approach is good for solving decision problems, at
least in those cases where it is enough to compute
the first extension.

The reason for the difference between both
approaches for computing all extensions of the SS
semantics lies in their designs. The mathematical
solver was designed to efficiently compute only
the first optimal solution, while the ASP solver
was designed to compute all models of a logic
program. Despite this difference, it is possible that
a mathematical solver can take advantage of the
information used for computing the first optimal
solution in order to compute the remaining ones
more efficiently.

It is well known that binary integer programs can
be improved in order to compute more efficiently
its objective function by using mathematical
programming techniques such as relaxation or
adding strong valid inequalities. Therefore, there
is a great opportunity space for improving this
approach for computing the semi-stable semantics.

This new approach constitutes an alternative
for computing AF semantics using mathematical
programming, and even though we used a state
of the art mathematical programming solver, there
exist several libraries for Java, C++, and other
general purpose languages.
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Potosı́, México, September 18, 2006.

25. Nieves, J. C., Osorio, M., & Cortés, U. (2008). An
overview of argumentation semantics. Computación
y Sistemas, Vol. 12, No. 1.

26. Nieves, J. C., Osorio, M., & Cortés, U. (2008).
Preferred Extensions as Stable Models. Theory
and Practice of Logic Programming, Vol. 8, No. 4,
pp. 527–543.

27. Osorio, M. & Santoyo, A. (2013). Preferred
extensions as minimal models of clark’s completion
semantics. Research in Computing, Vol. 68,
pp. 57–68.

28. Rahwan, I. & Simari, G. R., editors (2009).
Argumentation in Artificial Intelligence. Springer.

29. Rissland, E. L., Skalak, D. B., & Friedman, M. T.
(1993). Bankxx: A program to generate argument
through case-base research. Proceedings of the
4th International Conference on Artificial Intelligence
and Law, ICAIL ’93, ACM, New York, NY, USA,
pp. 117–124.

30. Toni, F. & Sergot, M. (2011). Argumentation and
answer set programming. In Balduccini, M. &
Son, T. C., editors, Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning.
Springer-Verlag, Berlin, Heidelberg, pp. 164–180.

31. Wolsey, L. A. (1998). Integer Programming.
Discrete Mathematics and Optimization. John Wiley
& Sons, Inc.

Article received on 15/04/2015; accepted on 15/09/2015.
Corresponding author is Alejandro Santoyo.

Computación y Sistemas, Vol. 21, No. 3, 2017, pp. 457–471
doi: 10.13053/CyS-21-3-2230

0-1 Integer Programming for Computing Semi-Stable Semantics of Argumentation Frameworks 471

ISSN 2007-9737


