

Open Framework for Web Service Selection
Using Multimodal and Configurable Techniques

Oscar Cabrera1, Marc Oriol1, Xavier Franch1, Jordi Marco1, Lidia López1,
Olivia Graciela Fragoso Díaz2, and René Santaolaya2

1 Universitat Politècnica de Catalunya (UPC), Barcelona,
Spain

2 Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Morelos,

Mexico

{ocabrera, moriol, franch, llopez}@essi.upc.edu, jmarco@lsi.upc.edu,
{ofragoso, rene}@cenidet.edu.mx

Abstract. Services as part of our daily life represent an
important means to deliver value to their consumers
and have a great economic impact for organizations.
The service consumption and their exponential
proliferation show the importance and acceptance by
their customers. In this sense, it is possible to predict
that the infrastructure of future cities will be supported
by different kind of services, such as smart city
services, open data services, as well as common
services (e.g., e-mail services), etc. Nowadays a large
percentage of services are provided on the web and
are commonly called web services (WSs). This kind of
services has become one of the most used
technologies in software systems. Among the
challenges when integrating web services in a given
system, requirements-driven selection occupies a
prominent place. A comprehensive selection process
needs to check compliance of Non-Functional
Requirements (NFRs) which can be assessed by
analyzing the Quality of Service (QoS). In this paper,
we describe a framework called WeSSQoS that aims at
ranking available WSs based on the comparison of
their QoS and the stated NFRs. The framework is
designed as an open Service Oriented Architecture
(SOA) that hosts a configurable portfolio of
normalization procedures and ranking algorithms which
can be selected by users when starting a selection
process. The QoS data from WSs can be obtained
either from a static, WSDL-like description or
dynamically through monitoring techniques. WeSSQoS
is designed to work over multiple WS repositories and
QoS sources. The impact of having a portfolio of
different normalization and ranking algorithms is
illustrated with an example.

Keywords. Web service (WS), web service selection,
service oriented architecture (SOA), quality of service

(QoS), non-functional requirement (NFR), service level
agreement (SLA), ranking services.

1 Introduction

In today´s world, there are different kinds of
services created to facilitate the life of citizens in
their daily tasks. These services have been
developed to solve different needs according to
certain requirements of different human desires.
As a result, an enormous explosion in offering
services has occurred. In fact, it can be observed
that for a given need, a plethora of services can
be found. In addition, according to [1] there is a
growth in consumer services driven by various
social, economic, and technological factors (e.g.,
a demand for social services, the size and role of
the public sector, complexity of work
environments, etc.).

A generic definition of a service is provided by
the Office of Government Commerce (OGC) in its
ITIL standard as follows [1]: “A service is a means
of delivering value to customers by facilitating
outcomes customers want to achieve without the
ownership of specific costs and risks”.

The OGC considers that the outcomes
mentioned are possible through the performance
of different tasks and are limited by the presence
of certain constraints. In this sense, the presented
paper is focused on quality constraints that
characterize services. Specifically, web services
(WSs), since a large amount of services are being
provided using this technology.

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

ISSN 2007-9737

WSs integrate a set of protocols and standards
for data interchange among software applications
developed in different programming environments
and languages, and executed in different
platforms. This interoperability is provided mainly
by the following open standards: XML, SOAP,
HTTP, WSDL, and other web-related
standards [2].

WSs have become a useful technology to
implement any kind of software, providing greater
interoperability and scalability. This success has
triggered the emergence of a huge WSs
marketplace. Consequently, for a given
functionality we may find a large set of WSs that
can be selected in several ways. This proliferation
of WS increments the chances to find existing
software that satisfies the stated needs, but at the
same time raises new problems and challenges.
Among them, there is an increasing need for
selecting the most appropriate WS in a given
context of usage [3]. Usually this problem is
studied in relation with the requirements elicited
from the stakeholders. In other words, the goal is
to select the WS that “better” satisfies the
stakeholder requirements.

We consider here the classical distinction
among functional and non-functional
requirements [4]. With respect to functional
requirements, it is necessary to validate that a
WS fulfills the functionality expected by the
stakeholders. On the other hand, non-functional
requirements (NFRs) refer to the Quality of
Service (QoS) that a given WS offers, i.e.,
behavioral and non-behavioral characteristics that
the WS exhibits for offering a given functionality:
cost, response time, availability, etc. Usually,
NFRs are expressed in terms of conditions over
the QoS in a document named Service Level
Agreement (SLA). Therefore, we can assess if a
WS w satisfies an NFR r by checking if the QoS
of w satisfies the clauses from the SLA that refer
to the concepts inherent to r.

Given this context, our work proposes a
framework for ranking a set of WSs that belong to
a certain software domain. We assume that the
functional requirements are used to determine
this software domain, therefore our framework
focuses on the ranking based on the satisfaction
of NFRs.

The main goals that we aim to address in this
paper are: how NFRs are expressed; what
measure of the satisfaction of an NFR in a given
WS is; how these individual measures are
combined in order to rank the WS according to a
set of NFRs; how the QoS of a WS may be
obtained; where the WSs are obtained from; and
what the value obtained by combining different
normalization procedures and ranking algorithms
to select WSs is. To attain these goals we have
designed WeSSQoS (Web Service Selection
based on Quality of Service), a framework for
selecting WSs based on their QoS and NFRs.
WeSSQoS proposes an open Service Oriented
Architecture (SOA) that is able to manage several
ranking algorithms and normalization procedures
for computing the adequacy of a WS with respect
to NFRs. These NFRs are expressed by means of
formulae stated over QoS attributes (i.e., SLA
clauses) coming from the quality model proposed
in an earlier work [5]. NFR are classified as
mandatory and optional, and this information may
be used for ranking the results. WeSSQoS is
designed to work over several WS repositories
that eventually can be built using different
technologies. In order to get the behavior of the
accessible WSs with respect to the selection
criteria, it is possible to use either the description
of the QoS (if included in the WS definition), or
the results of WS monitoring (obtaining then the
real, updated QoS of the WS). In this sense, we
share the vision of [6] that proposes to define a
priori only static attributes like cost, whilst
dynamic attributes like response time or
availability should be obtained through
monitoring.

The rest of the paper is organized as follows.
In Section 2 a review of some similar frameworks
is provided. Then, Section 3 describes the
proposed WS selection process. Section 4
introduces normalization procedures and ranking
algorithms. Section 5 describes the framework
architecture proposed. Sections 6 and 7 describe
a prototype and provide some validation. Finally,
Section 8 presents conclusions and future work.

2 Related Work

In the academic research, different frameworks
for ranking and selecting WSs according to their

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

666 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

QoS have been proposed. In Table 1 we show a
representative sample of these proposals,
including our WeSSQoS framework, comparing
them according to the following criteria:

a. Architectural style: architecture in which
the framework has been developed. We find
Component Based Architectures (CBA),
Service Oriented Architectures (SOA) and a
combination of both. We represented each of
the styles by using C, S, and CS, respectively.
It is worth noting that adopting SOA allows
integrating heterogeneous systems more
easily.

b. Attributes: quality attributes considered in
those systems. In some cases, a small
predefined set of quality attributes is used,
whereas other frameworks allow the usage of
arbitrary ones (although they may validate the
proposal with a given set). We represent the
value of this criterion by using the amount of
attributes defined as dynamic (d) or as static
(s). In case of configurable attributes, i.e., the
possibility of adding new attributes, we use an
asterisk (*).
c. QoS data source specifies if quality data
are declared in the service description
(represented by using S) or for dynamic quality

Table 1. Comparative table of frameworks

Proposal (a) (b) (c) (d) (e) (f) (g)

E. Al-Masri et al. [6] C 6d 3s SM X X � �

T. Yu et al. [7, 8] C 4d 1s S X � X X

X. Wang et al. [9] - *1d5s S X X X X

D. D’ Mello et al. [10]
CS *3d2s SM X X X X

H. Wang et al. [11] C 6s SM X X X X

P. Wang et al. [12] - *6d S X X X X

R. Mohanty et al. [13]
- 9s S X � X X

Q. Tao et al. [14] C 6s SM X X X X

H. Cai et al. [15] CS *0s SM X X X X

L. Sha et al. [16] CS 7s SM X X X X

M. Alrifai et al. [17]
C 0s SM X X X X

A. Huang et al. [18] - 0s S X X X X

C. Lin et al [19] C 0s S X X X X

Z. Gao et al. [20] - 5s S X X X X

WeSSQoS
CS *9d1s SM * � * � *� �

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

Open Framework for Web Service Selection Using Multimodal and Configurable Techniques 667

ISSN 2007-9737

attributes, if their value is obtained through
monitoring (represented by using M). In cases
where the proposals provide both kinds of
sources we represent the value by using SM.

d. Multinormprocedure specifies if the
framework is able to work with more than one
normalization procedure in order to obtain the
normalized QoS data about WSs and
stakeholders. We represent the value of this
criterion by using yes (�) or no (X). In case of
proposals which allow adding new procedures,
we use an asterisk (*).

e. Multialgorithm specifies if the framework
is able to work with more than one selection
algorithm. We represent the value of this
criterion by using yes (�) or no (X). In case of
proposals which allow adding new algorithms,
we use an asterisk (*).

f. Multirepository specifies if the framework
is able to obtain data from different
repositories and combine information to extend
the number of services and quality attributes to
evaluate. We represent the value of this
criterion by using yes (�) or no (X). In case of
proposals which allow adding new
repositories, we use an asterisk (*).

g. Prototype available specifies if the
framework is available to be used for the
research community. We represent the value
of this criterion by using yes (�) or no (X).

As a result of the previous evaluation we
identified different gaps, such as a lack of
frameworks with the capability to retrieve a list of
web services from different sources. As far as we
know, the only framework that fulfills this criterion
is provided by Al-Masri et al. [6], whose
framework obtains a list of WSs from several
sources (UDDIs, ebXMLs, search engines, and
service portals). However, it does not specify the
method to combine the services data when
different sources have the same service with
different QoS data: cost, brand reputation, etc.

Another important gap is a lack of frameworks
with the capability to reuse existing normalization
procedures and selection algorithms, which would
allow assessing results obtained from different
proposals. In fact, only QCWS [7, 8] offers the
capability of multialgorithm. However, since it is

not a SOA, it does not allow adding external
algorithms in an easy manner.

Regarding the criterion of prototype available,
we identified that although in most of the
proposals a prototype is being described and
even some of them have a web page (e.g., [7, 8]),
there is not a framework available. In fact, we
have only found a tool available from Al-Masri et
al. [6].

3 The Proposed Web Service Selection
Process

Figure 1 shows the proposed web service
selection process with the following inputs and
selection phases:

Inputs:

- WSlist, a QoS matrix of size k×n, where (w1,
…, wk) are the candidate WS and (q1, …, qn)
are the quality attributes referred in the NFRs.
WSlist[i, j] stands for the value of the quality
attribute qj in the WS wi.

- lreqs, a NFR vector of size n, where lreqs[i]
specifies (1) the value that is required for the
attribute qi, (2) a Boolean value that indicates
if the attribute’s value is to be minimized or
maximized, and (3) another Boolean value
that indicates if the required attribute’s value
is mandatory or not. A value is mandatory
when it cannot be higher than the required
threshold when it has to be minimized, or
cannot be lower than the threshold when it
has to be maximized, e.g., a NFR may state
to minimize the cost mandatorily with a
maximum of 100 euros per month.

Selection phases:

- Normalization. This phase has the purpose of
integrating the heterogeneous QoS attributes’
values over which decision-making in the
WSs selection problem relies. Both inputs
WSlist and lreqs must be normalized to
compensate the different measurement units
of the different QoS values by projecting them
onto a normalized interval. Interval
boundaries are established by the
normalization procedure used. Details of the
different normalization procedures are

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

668 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

described in the next section. The result of
this phase is the normalized structures
denoted by WSlistN and lreqsN.

- Ranking. Starting from the normalized data in
the previous stage, a ranking algorithm can
be applied with the goal of computing a
similarity measure between the NFR (lreqsN)
and the QoS of each service (WSlistN). This
algorithm may be any of the commonly
employed in Vector Space Models (VSM) to
evaluate the similarity between two objects
described by vectors [21]. For example, the
Euclidian Distance algorithm looks for the
shortest distances between the QoS of each
candidate WS and the user NFR. As a result,
we obtain the values of the algorithm and the
WSs ranked according to them. Next section
describes different ranking algorithms.

- Priority evaluation. In this phase two main
types of WSs ranking are carried out, one by
the number of mandatory requirements that
services fulfill and one by the selection
algorithm used.

4 Normalization Procedures and
Ranking Algorithms

One of the main characteristics of the proposed
framework architecture is that it supports the
coexistence of normalization procedures and
ranking algorithms offered as services.

4.1 Normalization Procedures

The normalization service that WeSSQoS
currently offers has four normalization procedures
(see equations 1 to 4). Nevertheless, as
mentioned before, users can extend it by
providing their own normalization procedures. In
this sense, providing or selecting these
procedures depend on both the user’s needs and
the properties of such procedures, i.e., the
selection process involves analyzing and
evaluating their advantages and disadvantages
as well as their applicability.

�� � �� ��� ��⁄ 0<��≤1, (1)

Fig. 1. Flow diagram for the web services selection process

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

Open Framework for Web Service Selection Using Multimodal and Configurable Techniques 669

ISSN 2007-9737

�� � �	
 �� ��⁄ 0<��≤1, (1a)

�� � �� − �	
 �� ��� �� − �	
 ��⁄ 0≤��≤1, (2)

�� � ��� �� − �� ��� �� − �	
 ��⁄ 0≤��≤1, (2a)

�� � �� � ��
��
��� 0<��<1, (3)

�� � �� �� ���
��
��� 0<��<1. (4)

For example, according to [22], procedure (1)
is very common and has an intuitive
interpretation. It also maintains the proportionality
of different values, i.e., ��/�� � ��/��, for all i, k.
Procedure (2) refines the previous one in order
that the normalized scale covers exactly the
interval [0, 1], i.e., for each criterion the worse
value is 0 and the best value is 1, but in this case
the proportionality is not maintained. Procedure
(3) offers almost the same advantages as
procedure (1), although (3) concentrates ��
towards small values. Finally, procedure (4) offers
an important advantage allowing dimensionless
comparisons of vectors related to the problem
criteria. Procedures (1a, 2a) represent the case of
minimum values of procedures (1, 2),
respectively, i.e., they vary the relation mentioned
above and establish 1 as the worst value and 0 as
the best value. An extended comparative analysis
of these procedures is out of the scope of the
paper, but the reader can refer to [22, 23] for
details regarding the different normalization
procedures.

4.2 Ranking Algorithms

The ranking service which WeSSQoS currently
offers includes six ranking algorithms (see
equations 5 to 10). As mentioned before, users
can also provide their own ranking algorithms. In
this sense, users are responsible for selecting the
ranking algorithms fulfilling their requirements, by
analyzing and assessing the advantages and
disadvantages as well as their applicability.

�	�������(�, �) � ∑ (!∗#!)$!%&
'∑ !($!%& ∗∑ #!($!%&

 , (5)

�	��)�*+ ,(�, �) � ∑ (�� ∗ -�)����	
.∑ ����� , ∑ -���� /, (6)

�	�0���(�, �) � �∗∑ (!∗#!)$!%&∑ !$!%& 1∑ #!$!%& , (7)

�	�2 �� *0(�, �) � ∑ (�� ∗ -�)���∑ ����� + ∑ -���� − ∑ (�� ∗ -�)��� , (8)

4	56�7�+�0� �(�, �) � �� (�� − -�)��
�� , (9)

8
94	56�7�+�0� �(�, �) � �
�1'∑ (!:#!)($!%&

 .
(10)

According to [24], the cosine measure (5)
assumes that similarity is proportional to the angle
between two t-dimensional vectors in a t-
dimensional space. Because the numerator is
divided by the product of the lengths of the
vectors, the measure tends to give low similarities
between long vectors, i.e., vectors with many
terms. The overlap measure (6) compensates the
cosine measure by dividing by the vector having
the lowest sum of weights. The Dice coefficient
(7) gives more weight to matches in the data than
to differences, whereas Jaccard's coefficient (8) is
the proportion of characters (i.e., index terms) that
match, excluding those characters that lack in
both vectors. Finally, the Euclidean distance (9)
emphasizes differences between two vectors
more than matched features. An important
disadvantage of this measure is related to the
variables used, i.e., if these variables are
correlated then the information provided will be
redundant. A variation of the Euclidean distance,
emphasizing distance rather than similarity is
presented in equation (10). An extended
comparative analysis of these algorithms is out of
the scope of the paper. Details of such algorithms
can be checked in [24, 25].

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

670 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

To illustrate the execution of the WS selection
process, let’s consider the following example. A
user needs to select a WS for a given domain
with a set of NFRs instrumented in different
metrics (e.g., cost, response time, availability,
etc.). The user defines the list of values for such
metrics in Ireqs (see Table 2, NFRs from
Stakeholders Ireqs).

In the repository there are 4 WSs that fulfill the
functionality required by the user with different
QoS (see Table 2, QoS from candidate WSs).
Both NFRs and QoS are normalized by applying
the procedure that better fulfills the user’s needs.
In Table 2 we show the results applying the
normalization procedure (1). These normalized
data are then the input for the ranking phase (see
Table 3). On top of the table, we depict the results
of applying the Euclidean distance algorithm (9). It
may be observed that WS1 has the minimum
value, thus it looks like a promising candidate for
selection before evaluating the compliance
degree of the mandatory requirements.

As for the priority evaluation phase, let’s
suppose that all requirements are mandatory.
Based on this premise, the results depicted in the
bottom of Table 3 shows that WS1 and WS2
comply with 5 of the 8 NFR, whilst WS3 and WS4
comply with 3. When the results obtained by the
phases of ranking and priority evaluation are
combined, the prioritized list of services is as
shown at the bottom of Table 3. WS1 is still the
best ranked service, although the ranking results
for the rest of services change.

Fig. 2. WeSSQoS general architecture

Table 2. Inputs and outputs of the normalization
phase

NFRs from Stakeholder, lreqs

[30, 35, 31, 15, 20, 0.5, 0.03, 150]

QoS from candidate WSs, WSlist

WS1 20 30 25 15 10 0.4 0.3 50

WS2 5 10 20 20 15 0.5 0.2 80

WS3 33 11 6 8 10 0.8 0.4 125

WS4 25 35 45 45 15 0.5 0.5 302

Normalized NFRs, lreqsN

[0.91, 1, 0.69, 0.33, 1, 0.62, 0.60, 0.50]

Normalized QoS from candidate WSs, WSlistN

WS1 .7 .9 .6 .3 .5 .5 .6 .2

WS2 .1 .3 .4 .4 .8 .6 .4 .3

WS3 1 .3 .1 .2 .5 1 .8 .4

WS4 .8 1 1 1 .8 .6 1 1

Table 3. Results using ranking and priority
evaluation

ID Name

WS

Euclidian
distance

Ordering
by QoS

WS1 AirportWeather

Check

0.71083 1

WS2 BerreWeather 1.14562 4

WS3 FastWeather2 1.11749 3

WS4 Weather 1.01981 2

ID Name

WS

Mandatory QoS vs.
Mandat.

WS1 AirportWeather

Check

5/8 1

WS2 BerreWeather 5/8 2

WS3 FastWeather2 3/8 4

WS4 Weather 3/8 3

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

Open Framework for Web Service Selection Using Multimodal and Configurable Techniques 671

ISSN 2007-9737

5 Proposed Framework Architecture

The proposed framework, Web Service Selection
Based on Quality of Service (WeSSQoS) is
structured under the SOA paradigm in order to
facilitate its integration into other systems.
Figure 2 shows the elements integrating the
framework architecture which are described as
follows:

- QoSSelector is a service that integrates three
services: QoSRepositoryProxy, QoS
NormalizeData, and QoSSelectionModel,
providing a unified view and a single entry
point to the whole system.

- QoSRepositoryProxy is a service that obtains
the QoS of WSs that belong to a given
domain. Two sources of QoS information are
defined:
- Monitor. It obtains the QoS at execution

time by means of monitoring techniques.
A monitor works on a predefined catalog
of dynamic quality attributes. Any
information about static quality attributes
will be available in the description of the
service, e.g., service cost.

- Data Bank. It obtains the QoS from the
WS provider which describes quality data
in extended WSDL files. In case of
dynamic quality attributes, such as mean
response time, the quality value is the
one that the provider promises to deliver.

- QoSNormalizeData is a service that
normalizes stakeholder requirements and
QoS data obtained from WSs by applying
normalization procedures as described in
Section 4. Its SOA is flexible enough as to
extend the portfolio of normalization
procedures. In its current version, WeSSQoS
provides, but is not limited to, four
normalization algorithms. Users can provide
and add their own normalization procedures
which will be available for the scientific
community.

- QoSSelectionModel is a service that sorts
candidate WSs by applying ranking
algorithms as described in Section 4. Also, its
internal architecture is flexible enough as to
extend the portfolio of ranking algorithms.
Currently, WeSSQoS provides, but is not

limited to, six ranking algorithms. Users can
provide and add their own ranking algorithms
which will be available for the scientific
community.

Figure 2 also shows the relationships among
the services previously mentioned. As shown, the
composition of services follows an orchestration
managed by QoSSelector service. A sequence
diagram of such orchestration is shown in
Figure 3. The main method in QoSSelector is
rank4QoSRepository which is used to rank the
services. The input of this operation is a list of
repositories (lProxies), the list of requirements
(lReqs), domain of the WSs (domain),
normalization procedure (iNumNormalize), and
ranking algorithm (iNumUtilFunction). The output
obtained is a list of WSs ranked according to the
satisfaction of NFRs and mandatory nature,
according to the process described in Section 3.

The sequence shown in Figure 3 is described
as follows: rank4QoSRepository operation
invokes getServicesDataFromDomain operation
for each QoSRepositoryProxy (Databank or
Monitor) specified in lProxies. From such
invocation, the list of services with QoS
information is obtained (WSlist). In case of having
repeated QoS information in more than one
repository, a simple priority policy is applied to the
repositories list, i.e., the order in the repositories
list determines the priority of attributes appearing
in more than one repository.

Once the list WSlist of services with their QoS
information is obtained, the operations of
normalization and ranking are applied. First, the
operation getNormalizedData from QoS
NormalizedData service is executed. This
operation takes as input the following parameters:
WSlist, NFRs from the stakeholder represented
by lreqs, and the type of normalization process
represented by iNumNormalize. The output of this
method is the normalized list of QoS and NFR.
Afterwards, QoSSelectionAlgorithm operation
from QoSSelectionModel service is executed in
order to rank WSs applying the ranking algorithm
identified by iNumUtilFunction.

The final output is a list of orderedWS that can
be simple or multiple. A simple list provides WSs
sorted by a single ranking algorithm using a single
normalization procedure and furthermore provides

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

672 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

WSs sorted by mandatory attributes. On the other
hand, a multiple list provides a simple list by each
ranking algorithm and normalization procedure
applied, considering that stakeholders can
provide a list of normalization procedures and
ranking algorithms.

Table 4 shows the interfaces of services
appearing in the sequence diagram, whereas
attributes and classes involved are represented in
Figure 4a and 4b. A general description of these
elements is provided as follows:

- lproxies is a list of repositories from which the
QoSRepositoryProxy service obtains QoS
Data. Each repository has the following
information: name, endpoint that corresponds
to the URL address where the repository is
located (either databank or monitor) and
description.

- lReqs is a list of NFRs from the stakeholder
where each NFR has the following
information: name of the quality attribute,
required value, and two Boolean values
regarding normalization of attributes
(maximize or minimize) and mandatory
attributes (mandatory or non-mandatory).

- The domain is a string that defines a specific
class of WSs.

- Identifiers iNumNormalize and iNumUtil
Function represent normalization procedures
and ranking algorithms, respectively.

6 WeSSQoS Prototype Description

The WeSSQoS system described so far is
implemented and available in the following URL:
http://gessi.lsi.upc.edu/wessqos/. The system has
been developed using Java J2EE and Apache
Axis2 as web service technology, and Apache
Tomcat as the execution platform. We have
developed WSs belonging to different domains
and placed in different repositories using
Glassfish web service technology, in order to
assess the technological independence of the
platform.

A client Web interface divided into different
sections was also developed (see Figure 5). The
first section corresponds to repositories
containing WSs with QoS data description. The
basic use case of this section is to provide the
domain and repositories over which the search
will be done. The domain name is required to
obtain a specific subset of services from
repositories. The framework allows using both

Table 4. Interfaces of WeSSQoS services

QoSSelector

Operation:
rank4QoSRepository

Input parameters:

lProxies: list<Repository
Proxy>

lReqs: list<Stakeholder

Requirements>

domain: string

iNumNormalize: int

iNumUtilFunction: int

Result:

orderedWS: list

<ServiceData
PriorityResult>

QoSRepositoryProxy

Operation:

getServicesDataFromDomain

Input parameters: domain:
string

Result:

WSList: list

<ServiceData>

QoSNormalizeData

Operation:

getNormalizedData

Input parameters:

completeWSList: list
<ServiceData>

lReqs: list <Stakeholder
Requirements>

iNumNormalize: int

Result:

NormalizedData:
list

<normalizedService
Data, normalized
lReqs>

QoSSelectionModel

Operation:

QoSSelectionAlgorithm

Input parameters:

CompleteWSList: list
<ServiceData>

lReqs: list <Stakeholder

 Requirements>

iNumUtilFunction: int

Result:

orderedWS: list
<ServiceDataPriorit
yResult>

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

Open Framework for Web Service Selection Using Multimodal and Configurable Techniques 673

ISSN 2007-9737

internal repositories (i.e., local to WeSSQoS) and
external ones (i.e., provided by stakeholders).

As already mentioned, the repositories are
identified using their endpoint. Each repository
might have different strategies to extract QoS
data, i.e., using the strategy design pattern it is
possible to extend the repository behavior
adopting different QoS data sources in the same
repository (e.g., QoS data from XML documents,
databases, etc.). Finally, each repository from the
list of chosen repositories can be prioritized.

The second section, depicted in Figure 6,
corresponds to normalization procedures that will
be applied on both QoS data from WS and NFR
from stakeholders. The basic use case of this
section is to provide at least a normalization
procedure in order to compensate the different
measurement units of the different QoS and NFR
values by projecting them onto a normalized

interval. The framework allows using both internal
normalization procedures (i.e., local to
WeSSQoS) and external ones (i.e., provided by
the stakeholders).

Normalization procedures are also identified
using their endpoint. Each procedure selected or
provided might have optional strategies acting as
a repository of normalization procedures in the
same endpoint.

The third section, depicted in Figure 7,
corresponds to ranking algorithms that will be
applied to prioritize WSs. The basic use case of
this section is to provide at least a ranking
algorithm fulfilling the data structure specified in
the QoSSelectionModel service depicted in
Table 4.

Furthermore, the framework allows using both
internal ranking algorithms and external ones.
Ranking algorithms are identified using their

Fig. 3. Sequence diagram of the basic use case of the framework

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

674 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

endpoint. Each algorithm selected or provided
might have alternative strategies acting as a
repository of ranking algorithms in the same
endpoint.

Finally, each endpoint from the list of chosen
selection models can be deleted.

The fourth section, depicted in Figure 8,
corresponds to stakeholder requirements, where
stakeholders introduce NFRs to be fulfilled. These
NFRs are settled over quality attributes that can
be attributes provided by the framework based on
[5] or by other external source. Clearly,
stakeholders have the responsibility of choosing
quality attributes that WSs should comply with,
i.e., these attributes will be used to compute the
relationship (similarity or dissimilarity) between

them and the QoS information from WSs. For
each attribute introduced, the following
information is required: the value that WSs should
meet, maximization or minimization to
compensate the attribute value, and information
that allows identifying when an attribute is
mandatory to prioritize services.

Finally, the results section depicted in Figure 9
shows the resulting ranking and provide different
options described below. The first ranking
provided is a sorted WSs list according to the
ranking algorithm and normalization procedure
chosen by stakeholders. Also the number of
mandatory attributes fulfilled is depicted.

Figure 10 shows the graphic option of the
results with two types of charts. The chart on the

Fig. 4a. Class diagram of the services supporting the internal architecture of WeSSQoS

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

Open Framework for Web Service Selection Using Multimodal and Configurable Techniques 675

ISSN 2007-9737

right shows the ranking results applying
normalization procedure (1) and ranking algorithm
(5). The chart on the left shows the ranking
results applying mandatory requirements.

As mentioned before, the architecture of
WeSSQoS allows providing both a list of
normalization procedures and a list of ranking
algorithms supplying the list of results. This
functionality allows comparing the different
rankings obtained and the behavior shown by a
particular ranking algorithm in combination with a
normalization procedure. In this sense, Figure 11
shows the ranking of four services applying two
ranking algorithms with two normalization
procedures yielding four different results.

7 Validation

In order to test our prototype, we designed a
scenario to execute some test cases. The
scenario was designed to assess the following
features of our framework:

- Quality attributes management. In the
scenario, the customer can decide the quality
attributes which she is interested in. These
attributes may or may not be defined in the
information about the WSs being selected.
The basic case is when the customer asks for
a subset of attributes defined on the
repositories. The customer can also ask for

Fig. 4b. (cont.) Class diagram of the services supporting the internal architecture of WeSSQoS

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

676 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

attributes that are not specified on
repositories, these attributes will be treated as
undefined by the ranking algorithm.

- Repositories independence. Our framework
does not have restriction on the number of
repositories used for the search. Each
repository can be static or dynamic. When
there is more than one repository, the
following assumptions are considered:

- The WS of each repository can be
different. In this case we consider as WS
candidates the union of all services inside
all repositories.

- More than one repository may contain
information of a given WS, but the quality
attributes are disjoint. In this case, the
algorithm will simply combine the required
attributes retrieving them from the
adequate repositories.

Fig. 5. Repositories of web services with QoS description

Fig. 6. Normalization procedures interface

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

Open Framework for Web Service Selection Using Multimodal and Configurable Techniques 677

ISSN 2007-9737

- More than one repository may contain
information of a given WS, and some
quality attribute may appear in more than
one repository. In this situation, the value
is taken from the repository with a higher
priority (i.e., the one declared first).

Figure 12 shows the architecture implemented
and the necessary data for running the tests
previously described. We have both types of
QoSRepositoryProxy (static and dynamic). The
Monitor instances use Axis, whilst the DataBank
(which contains information about two WS

Fig. 7. Ranking algorithms interface

Fig. 8. Stakeholder requirements interface

Fig. 9. Interface for representation of results

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

678 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

domains) uses Glassfish. In Figure 12, the names
of some of WSs were included. These services
were selected in order to highlight services
located in more than one repository, and some of
them have attributes in more than one repository.

Databank1 contains information about all
attributes with the exception of Current
ResponseTime (CRT) and CurrentAvailability
(CA). In the services from Monitor1 and Monitor2,
the information about what attributes have
information is included too. In addition to the CRT
and CA, there is also information about the
AverageResponseTime (ART) in some services.

If the priority of repositories (i.e., their order of
appearance) is Monitor1, Monitor2, DataBank1,
given the service AirportWeatherCheck (which is
located in all the repositories), ART, CRT, and CA
will be taken from the Monitor1, and the other
attributes, from the DataBank1.

However, if the order was Monitor2, Monitor1,
and DataBank1, the CRT would be taken from the
Monitor2, ART and CA, from the Monitor1, and
the rest, from the DataBank1. The users can test
the scenarios described before or test other ones
using the WeSSQoS prototype.

Fig. 10. Ranking results using Euclidean distance

Fig. 11. Ranking results considering mandatory requirements

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

Open Framework for Web Service Selection Using Multimodal and Configurable Techniques 679

ISSN 2007-9737

8 Conclusions and Future Work

In this paper we presented WeSSQoS, a
framework for ranking available WSs through the
evaluation of their QoS with respect to the stated
NFRs. In terms of the criteria introduced in
Section 2, we can conclude that the proposal has
the following advantages:

- Architectural style. WeSSQoS is developed as
a Service Oriented System itself. Following
SOA principles, users can add new services
related to ranking algorithms, repositories and
normalization procedures, if they are compliant
with the expected service definitions.

- Quality attributes. WeSSQoS is independent of
the Quality Model or ontology used to define
quality attributes. The system interface allows
users to select from a well-known predefined
set of attributes based on [5], and also add any
kind of quality attributes from any quality
model. As many frameworks, WeSSQoS is
able to work with either static or dynamic
quality attributes, although it’s important to
mention that this distinction is implicit in the
way the data are retrieved.

- QoS data. WeSSQoS is able to retrieve quality
attributes from either quality descriptions in

service definition (WSDL) or by monitoring
systems. The usage of a common interface
(proxy) to retrieve data in a uniform way from
these sources provides extensibility to add new
kinds of repositories, independently of the
approach used to obtain the data.

- Multinormprocedure. WeSSQoS is able to work
with any kind of normalization procedure that is
implemented using the defined interface.
Eventually, we could use arbitrarily complex
procedures, e.g., aggregators of results
through choreography of other WSs defining
different normalization procedures.

- Multialgorithm. WeSSQoS is able to work with
any kind of ranking algorithm that is
implemented using the defined interface.
Eventually, we could use arbitrarily complex
algorithm, e.g., aggregators of results through
choreography of other WSs that define
different algorithms.

- Multirepository. WeSSQoS allows the user to
include several repositories of WSs with
independence of the technology used.
Furthermore, it provides a mechanism to
combine the QoS data when the same service
is present in more than one repository.
Currently, the user is responsible for selecting
those repositories that are compatible with
each other, e.g., repositories should use a

Fig. 12. Scenario for WeSSQoS tests

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

680 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

common terminology to refer to the same
quality attribute.

- Prototype available. WeSSQoS is available at
http://gessi.lsi.upc.edu/wessqos/. The current
version has been tested and validated as
explained in Section 7.

In Section 5 we dealt with the issue concerning
WS repositories’ priority policy, the main idea of
this is to integrate in a general repository the WSs
coming from all chosen repositories in a
prioritized way. It is worth noting that WS
integration is used in repositories combination
and it is not part of WS composition, this topic is
out of the scope of the paper.

As future work, we identified several research
lines and improvements that could be performed
in order to increase the current framework’s
capabilities:

- Perform tests in large web service
ecosystems to ensure the correctness and
suitability of the framework to rank web
services in real situations.

- Increase the number of dynamic quality
attributes retrieved by the monitoring system.

- Design different sophisticated mechanisms to
combine data from several repositories and
unify these strategies under a common
interface in order to build it as a service.

- Automate analysis and evaluation of ranking
algorithms and normalization procedures.

Acknowledgements

This work was partially supported by the Spanish
project TIN2013-44641-P. Oscar Cabrera Bejar is
a Ph.D. student at the UPC using a CONACYT
grant.

References

1. Taylor, S., Iqbal, M., & Nieves, M. (2011). ITIL
Version 3 Service Strategy. The Office of
Government Commerce.

2. Papazoglou, M. (2007). Web Services: Principles
and Technology. Pearson-Prentice Hall.

3. Menasce, D. (2002). QoS issues in web services.
Internet Computing, IEEE, Vol. 6, No. 6, pp. 72–75.

4. Robertson, S. & Robertson, J. (2012). Mastering
the Requirements Process: Getting Requirements
Right. Pearson Education.

5. Ameller, D. & Franch, X. (2008). Service level
agreement monitor (SALMon). Seventh
International Conference on Composition-Based
Software Systems, ICCBSS’08, IEEE, pp. 224–
227.

6. Al-Masri, E. & Mahmoud, Q.H. (2009). A broker
for universal access to web services. Seventh
Annual Research Conference on Communication
Networks and Services, CNSR'09, IEEE, pp. 118–
125.

7. Yu, T. & Lin, K.J. (2005). Service selection
algorithms for Web services with end-to-end QoS
constraints. Information Systems and E-Business
Management, Vol. 3, No. 2, pp. 103–126.

8. Yu, T. & Lin, K.J. (2005). A broker-based
framework for QoS-aware web service
composition. IEEE International Conference on E-
Technology, e-Commerce and e-Service, EEE'05,
IEEE, pp. 22–29.

9. Wang, X., Vitvar, T., Kerrigan, M., & Toma, I.
(2006). A QoS-aware selection model for semantic
web services. Service-Oriented Computing
(ICSOC 2006), Springer, pp. 390–401.

10. D'Mello, D.A., Ananthanarayana, V.S., & Santhi,
T. (2008). A QoS broker based architecture for
dynamic web service selection. Second Asia
International Conference on Modeling &
Simulation, AICMS’08, IEEE, pp. 101–106.

11. Wang, H.C., Lee, C.S., & Ho, T.H. (2007).
Combining subjective and objective QoS factors for
personalized web service selection. Expert
Systems with Applications, Vol. 32, No. 2, pp. 571–
584.

12. Wang, P., Chao, K.M., & Lo, C.C. (2010). On
optimal decision for QoS-aware composite service
selection. Expert Systems with Applications, Vol.
37, No. 1, pp. 440–449.

13. Mohanty, R., Ravi, V., & Patra, M.R. (2010). Web-
services classification using intelligent techniques.
Expert Systems with Applications, Vol. 37, No. 7,
pp. 5484–5490.

14. Tao, Q., Chang, H.Y., Gu, C.Q., & Yi, Y. (2012). A
novel prediction approach for trustworthy QoS of
web services. Expert Systems with Applications,
Vol. 39, No. 3, pp. 3676–3681.

15. Cai, H., Hu, X., Lü, Q., & Cao, Q. (2009). A novel
intelligent service selection algorithm and
application for ubiquitous web services
environment. Expert Systems with Applications,
Vol. 36, No. 2, pp. 2200–2212.

16. Sha, L., Shaozhong, G., Xin, C., & Mingjing, L.
(2009). A QoS based web service selection model.
International Forum on Information Technology

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

Open Framework for Web Service Selection Using Multimodal and Configurable Techniques 681

ISSN 2007-9737

and Applications 2009, IFITA'09, IEEE, pp. 353–
356.

17. Alrifai, M., Risse, T., Dolog, P., & Nejdl, W.
(2009). A scalable approach for QoS-based web
service selection. Service-Oriented Computing
(ICSOC’08) Workshops, Springer, pp. 190–199.

18. Huang, A.F., Lan, C.W., & Yang, S.J. (2009). An
optimal QoS-based Web service selection scheme.
Information Sciences, Vol. 179, No. 19, pp. 3309–
3322.

19. Lin, C.F., Sheu, R.K., Chang, Y.S., & Yuan, S.M.
(2011). A relaxable service selection algorithm for
QoS-based web service composition. Information
and Software Technology, Vol. 53, No. 12, pp.
1370–1381.

20. Gao, Z.P., Chen, J., Qiu, X.S., & Meng, L.M.
(2009). QoE/QoS driven simulated annealing-
based genetic algorithm for Web services
selection. The Journal of China Universities of
Posts and Telecommunications, Vol. 16, pp. 102–
107.

21. Salton, G., Wong, A., & Yang, C.S. (1975). A
vector space model for automatic indexing.
Communications of the ACM, Vol. 18, No. 11, pp.
613–620.

22. Barba Romero, S. & Pomerol, J. (2000).
Multicriterion Decision in Management. Principles
and Practice. Kluwer Academic Publishers.

23. Peña, V.H., Lai, T.L., & Shao, Q.M. (2008). Self-
normalized processes: Limit theory and Statistical
Applications. Springer.

24. Knappe, R. (2005). Measures of semantic
similarity and relatedness for use in ontology-
based information retrieval. Doctoral dissertation,
Roskilde University.

25. Bernstein, A., Kaufmann, E., Kiefer, C., & Bürki,
C. (2005). Simpack: A generic java library for
similarity measures in ontologies. University of
Zurich.

Oscar Cabrera is a Ph.D. student in Computer
Science at the Universitat Politècnica de
Catalunya, UPC, Barcelona, Spain. He obtained
his M.Sc. degree in Computing in the Software
Engineering area from the National Center for
Research and Technological Development
(CENIDET), Cuernavaca, Morelos, Mexico. He is
a member of the GESSI research group at UPC.
His current research lines include service-
oriented computing, current trends in smart cities,
context modeling, quality models, and information
technology in software development.

Marc Oriol is a Ph.D. student in Computer
Science at the Universitat Politècnica de
Catalunya, UPC, Barcelona, Spain. He obtained
his M.Sc. degree in Computing from the same
university. He is a member of the GESSI
research group at UPC. His current research
lines include service-oriented computing, quality-
of-service, and monitoring.

Xavier Franch is Associate Professor and Head
of the GESSI research group at the Universitat
Politècnica de Catalunya, UPC, Barcelona,
Spain. He obtained his Ph.D. and M.Sc. in
Informatics from this University. His current
research lines include service-oriented
computing, requirements engineering, software
quality, and software architecture, among others.

Jordi Marco is Associate Professor and member
of the GESSI research group at the Universitat
Politècnica de Catalunya, UPC, Barcelona,
Spain. He obtained his Ph.D. and M.Sc. in
Computing from this University. His current
research lines include service-oriented
computing, conceptual modeling, container
libraries, and computer graphics.

Lidia López is a researcher of the GESSI
research group at the Universitat Politècnica de
Catalunya, UPC, Barcelona, Spain. She obtained
her Ph.D. and Engineer degree in Informatics
from this University. Her current research lines
include service-oriented computing, goal-oriented
modeling, and open source software.

Olivia Graciela Fragoso Díaz is a researcher in
the Software Engineering area at the National
Center for Research and Technological
Development (CENIDET), Cuernavaca, Morelos,
México. Her areas of interest are web services
selection, web services for e-learning, software
reusability, and processes for software
development.

René Santaolaya Salgado is a researcher in the
Software Engineering area at the National Center
for Research and technological development
(CENIDET), Cuernavaca, Morelos, México. His
areas of interest are web services, software
reusability, and integrated environments for
software development visual programming.

Article received on 10/08/2014; accepted on 01/11/2014.

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 665–682
doi: 10.13053/CyS-18-4-2057

682 Oscar Cabrera, Marc Oriol, Xavier Franch, Jordi Marco, Lidia López, Olivia Graciela Fragoso Díaz, and René Santaolaya

ISSN 2007-9737

