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Abstract. The problem of determining optimal tolls 
established on a subset of arcs in a multicommodity 
capacitated transportation network is presented. The 
problem is formulated as a bilevel optimization problem 
where the upper level consists of an administrator who 
establishes tolls in some arcs of a network, while the 
lower level is represented by a group of users who 
travel along the shortest paths with respect to the travel 
cost. The objective is not only to increase the tolls, but 
also to maintain an optimal flow on the arcs of the 
network in order to maximize the leader’s profit. If the 
leader sets very high toll values, the followers will be 
discouraged from using the tolled arcs, so the profit 
obtained from that decision is not going to be 
convenient for the leader. A methodology to solve this 
problem using optimization software at the lower level 
and the metaheuristic Scatter Search at the upper level 
is proposed. 

Keywords. Bilevel programming, scatter search, toll 
optimization problem. 

1 Introduction 

The importance of transportation for the economic 
and productive growth of any organization or 
country is unquestionable. An area that has 
acquired a great relevance within this subject is 
the one related to highway tolls. Tolls help to 
reduce congestion and lessen the cost of 
maintenance for the organization in charge of a 
particular highway because users of this 
infrastructure are the ones who pay for it. 

Existing literature related to highway tolls is 
very extensive. Nevertheless, a great majority of 
papers focuses basically on congestion reduction 
and demand regulation, however, without 

considering studies on toll setting for maximizing 
benefits. 

It is evident that congestion is an important 
and increasingly growing problem in any 
transportation network. On the other hand, the 
efforts made so far to attack this issue have not 
been successful mainly because once a strategy 
for congestion reduction is proposed, it is not 
guaranteed that the new road capacities would be 
appropriately used. Efforts to motivate people to 
stop using their vehicles and start using 
alternative transportation means have also been 
ineffective [1]. Most of the papers dedicated to 
congestion reduction in transportation networks 
solve the problem by balancing the flow of 
vehicles in highways as in [2]; the problem with 
this approach is that there is just one 
administrator who makes the decision based only 
on his own criteria, and in most cases this fact 
affects network users. In [3] a review of the 
evolution of the models and methods for the 
problem of estimating traffic flow balance in urban 
zones is presented, and at the same time this 
paper shows the scope and limitations of the 
current traffic models.  

Also, much attention has been given to 
demand regulation. For example, in [4, 5] 
negative effects entailed by traffic jams like 
contamination are highlighted. In order to 
decrease pollution levels, researchers have 
considered the importance of proposing new 
regulations which address this fact. 

Moreover, highway pricing is a very simple 
concept that extends a common practice of using 
prices to reflect shortage of a certain resource 
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and to assign this resource for its more efficient 
use. This idea is very well-known and practically 
applied in any sector of economy. A case study of 
the lines concession in Singapore in 1975 is the 
pioneering application of toll setting in 
transportation networks. But in spite of its 
success, in [6] it is explained that due to big 
structural differences, the Singapore example is 
not seen as good for cities in Western Europe or 
North America. Nevertheless, the Singapore 
scheme offers evidence of highway pricing 
effects. The initial policy was to collect a fee from 
vehicles entering downtown between 7:30 and 
9:30 a.m. This policy demonstrated to be 
inadequate since the traffic simply moved outside 
the periods of concession. Very soon this period 
was extended until 10:15 a.m. including as well a 
period in the afternoon. The impact of this new 
scheme was impressive from the beginning 
because it obtained a reduction of 24700 
automobiles during rush hours. 

Putting together the ideas for setting tolls in 
highways and not affecting network users in an 
indiscriminate way, the toll optimization problem 
arises. This problem was introduced in [7], where 
an authority set tolls in some arcs of a 
congestion-free network aiming to maximize the 
revenue considering that the users would select 
their routes based on the minimum cost. In that 
problem, both the authority and the users make 
their decisions in a sequential non-cooperative 
way. 

The toll optimization problem is NP-hard [7, 8] 
which motivates the development of heuristics 
and metaheuristics algorithms for solving it. A 
path-based heuristic algorithm is proposed in [9, 
10], where the authors developed four algorithms 
and compared the obtained results in order to 
determine which algorithm had better 
performance. These algorithms are based on a 
penalization method, a gradient approximation 
method, Quasi-Newton, and a direct resolution 
method. Referring to the metaheuristics 
algorithms proposed to solve this problem, we 
found only two papers: [11], which present a Tabu 
search algorithm, and [12], where a Genetic 
algorithm is introduced. These algorithms try to 
allocate highway tolls on a transportation network 

aiming to maximize profit without considering 
congestion in the network. 

By noting the importance of considering 
congestion in the arcs of a transportation network, 
we analyze the problem according to this 
approach. Only four algorithms presented in [10] 
have been developed to solve arc capacitated toll 
optimization problem. In this paper, we solve the 
optimization model introduced in [10] by 
developing a metaheuristic procedure based on 
Scatter Search by using the implementation 
presented in [13] interacting with the commercial 
optimizer CPLEX, obtaining better results than 
those presented in [10]. 

The lower level considered in the problem 
tackled in [10] will be modeled as a minimum cost 
flow problem that, as the rest of the models for 
transportation problems, has been widely studied, 
for example, in [14, 15]. 

The rest of the paper is organized as follows. 
Section 2 shows the structure of a bilevel program 
and the problem to be solved. In Section 3 the 
formulation used to solve the problem is stated. 
Section 4 gives a general description of the 
optimization tools used to solve the problem. In 
Section 5 the computational experiments and 
results are presented. Finally, Section 6 gives 
conclusions and outlines future work. 

2 Bilevel Programming 

Bilevel programming problems are hierarchical 
optimization problems that involve two non-
cooperative decision makers. In this kind of 
problems, a decision maker may be able to 
influence the behavior of the other one without 
taking a complete control on his actions, see [16]. 
The importance of bilevel programming is based 
on the fact that decision making in any large 
organization rarely is done from a single point 
of view. 

Multilevel systems share the following 
characteristics: the existence of interactive 
decision making between different hierarchical 
levels, each subordinated level carries out its 
policies only after a superior level makes its 
decisions, each level optimizes its own benefit 
independently, but they are affected by the 
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actions of the other levels, the external effects on 
the problem of a decision maker are reflected in 
the objective function and in a feasible set 
of solutions. 

Multilevel programming was defined for the 
first time in the 1970s by Bard [17] as a 
generalization of mathematical programming. In 
that work he showed how two levels of decision 
can be used to analyze the dynamics of a 
regulated economy with a case study of 
agricultural development of the north of Mexico 
[18].  

If only two levels of decision are considered, 
this case receives the name of bilevel 
programming. The foundations are presented in 
[19] and an overview is given in [20]. In order to 
be able to mathematically formulate the problem, 
it is assumed that the leader has control on the 
vector 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛 and the follower has control on 
the vector 𝑦 ∈ 𝑌 ⊆ 𝑅𝑚. The leader starts selecting 
a vector 𝑥 trying to minimize 𝐹(𝑥, 𝑦(𝑥)), which can 
be subject to certain constraints. The component 
𝑦(𝑥) indicates that the leader’s problem is implicit 
in 𝑦 variables. After observing the decision made 
by the leader, the follower reacts by selecting the 
𝑦 that minimizes his objective function 𝑓(𝑥, 𝑦) 
satisfying a set of constraints. 

This problem is defined as follows: 
min       𝐹(𝑥, 𝑦) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐺(𝑥, 𝑦) ≤ 0 for 𝑥 ∈ 𝑋     
min   𝑓(𝑥, 𝑦)   
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑔(𝑥, 𝑦) ≤ 0  for 𝑦 ∈ 𝑌, 

where 𝐹, 𝑓: 𝑅𝑛 × 𝑅𝑚  →  𝑅1,  𝐺: 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑝, and 
𝑔:𝑅𝑛 × 𝑅𝑚 → 𝑅𝑞 . The sets 𝑋 and 𝑌 may have 
additional constraints on their variables, such as 
no negativity or integrality of the variables. This 
formulation may be handled to generate new 
forms for the problem, for example, changing the 
min operator by max according to the 
specifications of a particular problem. 

The problem of highway toll allocation 
considering congestion in the arcs may be 
formulated as a bilevel optimization problem. In 
this problem the upper level consists of an 
administrator that establishes tolls for the network 
aiming to maximize its income, whereas the lower 
level is represented by a group of users who 
travel in the shortest paths with respect to a 

generalized cost. In order to be able to obtain a 
bilevel model, a constraint of the type argmin has 
been added to the objective function of the 
follower that optimizes the flows in the arcs of the 
transportation network once tolls are allocated. By 
considering this, we try to find a balance between 
the established tolls and the number of users who 
travel on these roads. It is important to mention 
that the flows are restricted due to the capacity 
corresponding to an arc; it does not matter if the 
arc is tolled or toll free, it will have a maximum 
capacity associated to it. 

It is important to remark that multilevel 
programming, in particular, bilevel optimization is 
different from bi-objective optimization. Thus, the 
concepts related to the Pareto front are not valid 
for the problem studied here. In fact, there are 
many papers that discuss that optimal bilevel 
solutions are not in the Pareto front of the bi-
objective version of the same problem. On the 
other hand, bilevel solutions are given in the 
Inducible Region. Some references supporting 
the idea described above are [21-25]. 

3 Problem Formulation 

As mentioned above, the highway toll optimization 
problem can be approached from the point of 
view of a bilevel programming problem with a 
leader and a follower which interact in a 
multicommodity network 𝐺 = (𝐾, 𝑁, 𝐴) defined by 
a set of commodities 𝐾 (given in the origin-
destination form), a set of nodes 𝑁 and a set of 
arcs 𝐴. The set or arcs is partitioned in subset 𝐴1 
which represents the arcs with tolls and its 
complementary subset 𝐴2, representing the toll 
free arcs. Each arc 𝑎 ∈ 𝐴 is provided with a 
generalized cost 𝑐𝑎 which represents the 
associated cost of traveling through each arc. 
Therefore, we consider that each arc 𝑎 ∈ 𝐴 in the 
network has a limit 𝑞𝑎 in its capacity simulating 
congestion on that arc. There is also a parameter 
𝑛𝑘 that represents the existing demand for each 
commodity between the origin and destination 
nodes associated with the commodity 𝑘 ∈ 𝐾. 
Finally, the decision variable 𝑡𝑎 associated to the 
toll arcs 𝑎 ∈ 𝐴1 represents an extra cost to be 
determined to travel through these arcs. The 
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other set of decision variables are 𝑥𝑎
𝑘 which 

represent the flows between the arcs to fulfill the 
demands of the existing commodities. 

Considering that the tolls 𝑡𝑎 cannot exceed a 
pre-established maximum value of 𝑡𝑎

𝑚𝑎𝑥 and that 
the flows 𝑥𝑎

𝑘 must be an optimal solution of the 
lower level which is parameterized by the toll 
vector 𝑡𝑎 decided at the upper level, this problem 
can be formulated as a bilevel program with linear 
constraints as follows:  

 max
𝑡,𝑥

∑ ∑ 𝑡𝑎

𝑎∈𝐴1

𝑥𝑎
𝑘

𝑘∈𝐾

  
 (1) 

𝑠. 𝑡. 𝑡𝑎 ≤ 𝑡𝑎
𝑚𝑎𝑥  ∀𝑎 ∈ 𝐴1, (2) 

 𝑡𝑎 ≥ 0  ∀𝑎 ∈ 𝐴1, (3) 

 𝑥𝑘 ∈ 𝜑(𝑡)  ∀𝑘 ∈ 𝐾, (4) 

 ∑ 𝑥𝑎
𝑘 ≤ 𝑞𝑎

𝑘∈𝐾

  
∀𝑎 ∈ 𝐴, (5) 

where 𝜑(𝑡) defined in (4) represents the solution 
set given by the following family of equations: 

𝜑(𝑡) = argmin
�̅�

∑ (𝑐𝑎 + 𝑡𝑎)�̅�𝑎 + ∑ 𝑐𝑎

𝑎∈𝐴2

�̅�𝑎

𝑎∈𝐴1

 (4.1) 

𝑠. 𝑡. − ∑ �̅�𝑎

𝑎∈𝑖−

+ ∑ �̅�𝑎

𝑎∈𝑖+

= 𝑏𝑖
𝑘 ∀𝑖 ∈ 𝑁, 

(4.2) 

 �̅�𝑎 ≥ 0 ∀𝑎𝐴. (4.3) 

Equation (1) is the leader’s objective function 
which tries to maximize the total profit obtained 
from the sum of the products of the tolls 𝑡𝑎 and 
the users’ flow 𝑥𝑎

𝑘 through the arc 𝑎 for all the 
commodities. However, the set of lower 
constraints given by the family of equations (4) 
enforce the follower to assign flows to the shortest 
paths with respect to the current tolls, that is, the 
follower’s objective is to minimize the total cost of 
the paths selected by the users, and it is defined 
by (4.1). The constraints (4.2) at the lower level 
are in charge of the flow conservation and the 
non-negativity in the flows given by (4.3). Finally, 
the constraint (5) is added to prevent exceeding 

the capacities on the arcs with the assigned flows 
considering all the commodities. 

The inequality defined by (5) complicates the 
problem even more. In the absence of this 
constraint the lower level problem can be solved 
by considering all the commodities separately, 
this is, we can solve exactly |𝐾| minimum cost 
flow problems independently and then add the 
travel costs. But now, this constraint correlates all 
the commodities. This important issue is analyzed 
in [10]. 

4 Solution Methodology 

Scatter Search is an evolutionary metaheuristic 
that has been successfully applied to solve hard 
optimization problems. It is based on formulations 
and strategies developed in the 60s, but it was 
not until 1977 when it was officially proposed by 
Glover as a method in its own right. In [26], 
Scatter Search is described as “a method that 
uses a succession of coordinated initializations to 
generate solutions”. 

As described in [26, 27] and some other 
implementations based on this framework, the 
methodology includes the following basic 
elements: 

- Generation of a population P, 
- Extraction of a reference set R, 
- Combination of elements from R and update 

of R. 

The dimension and structure of the solution set 
in different evolutionary algorithms may differ. 
Genetic Algorithms, for example, handle the 
whole created population (typically 100 solutions), 
Memetic Algorithms work with a small (and 
sometimes structured) population, see [28], and 
Scatter Search works with a subset of 10 to 20 
solutions from the set of created solutions. This 
subset called reference set R is built from the 
population P (generated by the diversification 
generation method) with only a few solutions from 
P. The way the reference set is initialized, 
updated and rebuilt is a crucial aspect in Scatter 
Search performance. If the construction of a 
reference set is made based only on the solution 
quality, the reference set will be formed by 
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selecting the best b solutions in P. Nevertheless, 
a desired characteristic in general search 
procedures and particularly in Scatter Search is 
an adequate balance between intensification 
and diversification.  

The next step in the Scatter Search 
methodology is combination of elements in the 
reference set. In order to accomplish this, two or 
more elements from R are chosen in a systematic 
way with the purpose of creating new solutions. 
This is achieved through the construction of 
subsets of solutions from R by applying the 
combination method to the solutions contained in 
each one of these subsets. This combination is 
intended to be intelligent trying to create a better 
solution than those in the subset. At this point, it is 
possible that as a result of the combination 
method an infeasible solution is created. In this 
case, the combination method must have a 
procedure to restore feasibility. As new solutions 
are being created, these will gain membership to 
the reference set not only by their quality, but by 
their degree of diversity. The general procedure 
may iterate several times to achieve a better 
quality in the created solutions. The way Scatter 
Search combines solutions and updates the set of 
reference solutions used for the combination 
establishes the difference among this 
methodology and other population-
based approaches. 

In order to solve the problem, in this paper we 
analyzed the implementation developed in [13] of 
the metaheuristic Scatter Search which was taken 
as a basis to solve the upper level problem where 
the leader seeks to determine the optimum toll 
combination to maximize the benefits in a 
transport network. The optimizer CPLEX was 
used to solve the problem at the lower level, 
where the optimal flows in the transport network 
are determined with the objective of minimizing 
the costs of traveling through the network. 

The considered algorithm started by 
generating P, an initial set of diverse solutions for 
the toll variables of the upper level, in a random 
but controlled form in order to guarantee that the 
generated initial solutions are within the pre-
established ranks (in this case between 0 and 
𝑡𝑎

𝑚𝑎𝑥). For generating these solutions, the 
algorithm starts dividing the ranks of each 

variable (between 0 and 𝑡𝑎
𝑚𝑎𝑥) in 4 sub-ranks of 

same size. The next one of these sub-ranks is 
randomly selected and a solution within the 
selected sub-rank is generated. 

Once the initial set of solutions has been 
generated, the method proceeds to improve these 
solutions. Considering that the solution generation 
step constructs solutions that are within the 
allowed ranks only, the improvement method will 
always start to work with a feasible solution. The 
improvement procedure consists in the Nelder-
Mead Simplex Method proposed in [29], which is 
a classic optimizer for unconstrained nonlinear 
problems. This method requires an input 
parameter that specifies the number of 
evaluations of the objective function. A main 
feature of this method is that the bigger the 
number of evaluations, the better is the quality of 
solutions. 

The next step consists in extracting the best 
generated solutions in order to form the reference 
set. The 50% of this set must be formed by 
solutions selected attending to their quality with 
respect to the leader’s objective function, and the 
other 50%, by their diversity. For obtaining this, 
the solutions are sorted in a decreasing order and 
the first half of the desired amount for the 
reference set is selected (for example, if it is 
desired to form a sub-group of reference of size 
10, the top 5 solutions of the list are selected) and 
they are deleted from the initial set P. Next, the 
minimum Euclidean distance between the 
remaining solutions in the initial set P and the 
solutions selected for the reference set is 
computed. The solution with the maximum of the 
minimum computed distance is selected, added to 
the reference set, and deleted from the initial set 
P. Once this is done, the process is repeated until 
it completes the desired size of the reference set 
which, as a result of this construction, will contain 
the solutions with the greater quality and diversity. 

Once this has been done, subsets of the 
reference set are generated and then the 
combination method is applied to all these 
subsets. This combination method consists in 
creating 3 test solutions for each pair of solutions 
of the reference set. The first test solution is 
computed as  

𝐶1.  𝑥 = 𝑥′ − 𝑑, 
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the second test solution is computed as  
𝐶2.  𝑥 = 𝑥′ + 𝑑, 

and the third test solution is computed as  
𝐶3.  𝑥 = 𝑥′′ + 𝑑, 

where 𝑑 = 𝑟
𝑥′′−𝑥′

2
 and r is a random number 

within the interval (0, 1). 

After the new solutions have been generated 
by the combination method, they are processed 
by the improvement method and the best 
resulting solution is selected. This solution will 
replace the worst quality solution in the reference 
set because it has better quality. This cycle is 
repeated until the reference set no longer 

Table 1. Objective function values obtained by each method for instances of Network 1 

Inst Gradient approx. Quasi-Newton Direct Method SS-CPLEX 

1 162.850 162.880 162.360 180.990 
2 274.890 274.890 274.340 274.950 
3 109.850 109.850 108.870 199.990 
4 150.860 150.840 150.320 146.550 
5 112.860 112.860 112.040 133.840 
6 203.950 203.960 202.820 199.973 
7 41.970 41.960 41.650 41.976 
8 104.950 104.950 104.110 125.990 

Table 2. Objective function values obtained by each method for instances of Network 2 

Inst Gradient approx. Quasi-Newton Direct Method SS-CPLEX 

1 1342.24 1342.76 1341.84 1328.98 
2 7184.85 7184.80 7184.42 7112.13 
3 1577.95 1577.91 1577.66 1686.03 
4 420.70 420.77 420.26 1022.00 
5 764.93 764.96 763.89 1514.00 
6 2350.86 2350.88 2,350.36 3004.49 

Table 3. Objective function values obtained by each method for instances of Network 3 

Inst Gradient approx. Quasi-Newton Direct Method SS-CPLEX 

1 1456.80 1456.83 1456.03 1631.64 
2 2247.87 2247.85 2246.89 2611.99 
3 3891.83 3891.87 3891.45 3263.98 
4 5621.80 5621.82 5621.11 11339.61 
5 3433.72 3433.79 3432.77 3419.90 
6 544.87 544.89 543.91 868.59 
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changes and all the solutions in the reference set 
have been processed by the combination method.  

At this point the diversification method is used 
to reconstruct half of the reference set and the 
search continues.  This procedure is repeated for 
a pre-established number of iterations and once 
this number is reached, the method stops. Some 
related papers revised by us for this research 
are [30, 31]. 

It must be mentioned that each time a new 
solution is generated for the variables at the 
upper level (toll values), these variables are 
introduced as parameters to the lower level and 
the optimal flows are computed using these toll 
values and the original costs associated to the 
arcs of the network (keeping feasibility for the 
solutions for the bilevel problem). These new 
flows are then used to measure the quality of the 
generated solutions when the upper level 
objective value is computed.  

5 Computational Results 

In order to evaluate the algorithm proposed for 
solving the bilevel model considered in this paper, 
three different multicommodity transportation 
networks were considered. For the numerical 
experimentation eight examples for the first 
network and six examples for the second and 
third network, respectively, were solved. Finally, 
with the objective to show that the proposed 
methodology is able to solve larger instances for 
the problem without any complications, the last 
example consisted in solving a variation from the 
second network where an additional commodity 
was considered. 

The first graph represents a transportation 
network with 7 nodes and 12 arcs (7 toll arcs and 
5 toll free arcs). The second graph is composed 
by 20 nodes and 35 arcs (15 toll arcs and 20 toll 
free arcs). The third graph is formed by 25 nodes 
and 40 arcs (20 toll arcs and 20 toll free arcs). 
The parameters of the graphs considered in each 
example are the same as the ones used in [10], 
listed in the appendices of the referenced paper. 

The program that we developed to solve this 
problem was coded in C language and compiled 
with Microsoft Visual Studio 2010. All the 

examples were executed on a personal computer 
HP Compaq 6000 Pro with a Pentium Dual-Core 
processor at 3.00 GHz and 2.00 GB RAM under 
the operating system Windows 7. 

As mentioned in the previous section, the 
methodology designed to solve the upper level 
problem is the metaheuristic Scatter Search. In 
[22], a C implementation for this methodology was 

Table 4. Percentage of increase for the examples 
considered for Network 1 

Instance Increase 

1 11.12% 
2 0.02% 
3 82.06% 
4 -2.86% 
5 18.59% 
6 -1.95% 
7 0.01% 
8 20.05% 

 
Table 5. Percentage of increase for the examples 

considered for Network 2 

Instance Increase 

1 -1.03% 
2 -1.01% 
3 6.85% 
4 142.89% 
5 97.92% 
6 27.80% 

 

Table 6. Percentage of increase for the examples 
considered for Network 3 

Instance Increase 

1 12.00% 
2 16.20% 
3 -16.13% 
4 101.71% 
5 -0.40% 
6 59.41% 
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developed and taking advantage of this, we 
considered it for this research. The CPLEX 11.1 
software optimization libraries from ILOG were 
used in order to exactly solve the lower 
level problem. 

In this research, 21 instances were solved in 
order to validate the analyzed methodology. To 
simplify the analysis we divided the examples as 
follows: 

- Network 1 conformed by 12 arcs: 8 instances. 
- Network 2 conformed by 35 arcs: 6 instances. 
- Network 3, conformed by 40 arcs: 6 

instances. 
- Network 4 is a variation of Network 2 

considering four commodities: 1 instance. 

The purpose of considering the first three sets 
of instances (not the last case) is to compare 
directly the results against the ones obtained in 
[10] where the performance of four different 
algorithms was measured and the corresponding 
results were presented. The four algorithms were 
the penalization method, the algorithm based in 
the gradient’s approximation, the Quasi-Newton 
algorithm and the direct algorithm based on the 
Nelder-Mead’s optimization method. 

The results obtained in this paper as well as 
the results obtained by the Scatter Search 
methodology described in Section 4 are shown in 
Tables 1, 2, and 3. It is worth mentioning that the 
numbers marked in bold correspond to the best 
known value for that specific instance. 

It can be seen from the tables presented 
above that the leader’s objective function values 
were improved in 14 of 20 cases; and in 5 of 6 
cases the proposed algorithm did not improve the 
best known result, but it obtained a close leader’s 
objective function value compared against the 
results obtained in [10], this is a gap less than 3% 
for those 5 instances. 

In Tables 4 to 6 the percentages of increase 
obtained by the bilevel method based on Scatter 
Search and CPLEX (for each of the different 
examples considered) with respect to the best 
result obtained in the previous work are shown. A 
negative value implies that the value we reached 
does not improve the one presented in [10]. 

The average obtained for the increase of the 
leader’s objective function value is 28.66% for the 

examples tested in this paper with respect to the 
best existing results. We emphasize that for 
instance 4 of Network 2 we got the maximum 
increase by improving the current best leader’s 
objective function value by 142.89%.  

As it was mentioned at the beginning of this 
section, we also measured the time required to 
obtain the objective function value for the 
capacitated toll optimization problem for each of 
the considered examples. Also, the time 
consumed by the optimizer for solving the lower 
level problem at each step in the developed 
algorithm is presented. These results are shown 
in Tables 7, 8, and 9. Furthermore, the 
computational time required by the methods 
proposed in [10] is also presented in these tables. 

A notorious increase in time required for 
solving the examples by the proposed 
methodology based on Scatter Search and 
CPLEX can be expected due to the nature of the 
metaheuristic for solving bilevel optimization 
problems. It can be appreciated from the last 
column of Tables 7, 8, and 9 that obtaining an 
optimal solution for the follower’s problem 
demands on average the 53.7% of the total time. 
We computed the average of the differences 
between the times required for the tested 
examples by using the methodology proposed 
here against the results obtained in [10], and our 
result is 1137.08 seconds (18.95 minutes).  

As it was mentioned before, the problem 
studied in this paper is NP-hard. Hence the 
behavior of exact methods will be affected as the 
size of instances increases. Particularly, the time 
required by the algorithm described in this paper 
is increased in a polynomial way as the size of an 
instance increases. On the other hand, the other 
three algorithms do not show this important 
characteristic due to a substantial increase of 
their times. 

Finally, for Network 4 (a variation of Network 2 
with one extra commodity) the obtained leader’s 
objective function value was 1368.657 requiring a 
total computational time of 1935.79 seconds and 
909.82 seconds in CPLEX, which shows that our 
considered algorithm is not very sensitive to the 
number of commodities as the other algorithms 
seem to be. 
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6 Conclusions and Future Work 

As a result of this research, we can conclude that 
it is possible to maintain a profitable toll road 
system against competition from toll free roads, 
as long as right tools and good planning are used. 

As we observed, although for each origin-
destination pair there is at least one toll free path, 
benefits were always obtained; this indicates that 
users are motivated to use a tolled infrastructure.  

It was also observed that the resolution 
method (based on the metaheuristic Scatter 
Search and the CPLEX optimizer) proposed in 

Table 7. Required time (in seconds) to solve the instances considered for Network 1 

Inst Gradient approx. Quasi-Newton Direct Method Scatter Search CPLEX time 

1 2.107 2.023 2.950 924.02 498.96 
2 2.449 2.433 3.235 910.80 500.94 
3 1.573 1.426 2.035 961.92 557.91 
4 3.414 3.173 3.415 900.93 531.55 
5 2.006 1.940 2.002 876.60 525.96 
6 2.178 2.156 3.782 879.62 395.83 
7 1.308 1.277 1.259 1057.77 560.62 
8 3.065 2.899 1.959 1101.60 638.93 

Table 8. Required time (in seconds) to solve the instances considered for Network 2 

Inst Gradient approx. Quasi-Newton Direct Method Scatter Search CPLEX time 

1 601.00 517.00 723.00 1026.11 584.82 
2 781.00 748.00 917.00 2904.06 1335.87 
3 492.00 437.00 714.00 1726.40 1018.58 
4 278.00 220.00 439.00 1315.63 710.44 
5 644.00 591.00 835.00 1173.20 574.87 
6 831.00 806.00 980.00 1685.45 859.58 

Table 9. Required time (in seconds) to solve the instances considered for Network 3 

Inst Gradient approx. Quasi-Newton Direct Method Scatter Search CPLEX time 

1 1004.00 985.00 1054.00 2964.25 1659.98 
2 525.00 498.00 893.00 1635.63 801.44 
3 439.00 421.00 922.00 2227.21 1224.96 
4 1723.00 1755.00 1480.00 1666.80 883.40 
5 764.00 785.00 761.00 1939.22 1047.17 
6 89.00 84.00 244.00 2428.83 1262.98 
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this paper to solve the problem of determining 
tolls for the roads gave significant improvements 
over the methods proposed in previous research 
which was taken as the basis for our research (an 
increase of 28.56% among all examples tested). 
Moreover, it was demonstrated that Scatter 
Search is a very robust and efficient optimization 
technique, free from complications for larger-size 
instances. 

An important point to consider is the 
determination of the upper bound for rates in toll 
arcs, because if this value is established in a 
wrong way, there could be a case where the 
model becomes very restricted and does not get 
the maximum benefit from the network (in a case 
when a very low toll is set) or that the network is 
underutilized forcing customers to go through toll 
free roads (in a case when a very high toll is set).  

On the other hand, if it is true that the benefits 
(in terms of the value achieved by the objective 
function) when using this methodology are 
significantly higher, an increase in the time to 
obtain the results must be considered (around 19 
minutes in average for each example). It is 
recommended to perform a cost/benefit analysis 
for each particular situation: in some occasions 
for solving this problem it might be necessary to 
sacrifice some benefits in favor of getting results 
in a less time period or to sacrifice time to obtain 
greater benefits. 

It is important to mention that the problem 
considered in this research is more complicated 
to solve than the original toll optimization problem 
due to the capacity constraint which relates all the 
commodities (it can be seen as a bilevel problem 
with multiple followers). This issue motivated us to 
propose a metaheuristic algorithm that performs 
analysis of neighborhoods in order to find better 
solutions for the capacitated problem. 

Concerning scalability of the developed 
method for solving real instances, the information 
on the web page of Capufe (Mexican agency in 
charge of highways) indicates that the real 
Mexican highway system consists of 52 tolled 
roads. Hence, Scatter Search will have a similar 
performance than the one showed in Network 3, 
due to the fact that the size of instances does not 
increase very much. 

For further research, we propose the following 
improvements and recommendations: 

- To use data from real cases to observe the 
behavior of the model proposed in this paper. 

- To use other metaheuristics to compare their 
performance against Scatter Search. 

- To optimally solve the lower level problem 
with another equivalent technique. This 
approach has been successfully applied in 
other bilevel problems, e.g. [32]. 

- To reduce the time required by this method by 
trying to streamline the code or parallelize a 
particular method in Scatter Search. 

-  To develop new models to solve the problem 
of assigning toll roads to compare them with 
the model considered in this research and in 
previous work.  
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