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Abstract. Particle Swarm Optimization (PSO) is a non-
direct search method for numerical optimization. The 
key advantages of this metaheuristic are principally 
associated to its simplicity, few parameters and high 
convergence rate. In the canonical PSO using a fully 
connected topology, a particle adjusts its position by 
using two attractors: the best record stored for the 
current agent, and the best point discovered for the 
entire swarm. It leads to a high convergence rate, but 
also progressively deteriorates the swarm diversity. As 
a result, the particle swarm frequently gets attracted by 
sub-optimal points. Once the particles have been 
attracted to a local optimum, they continue the search 
process within a small region of the solution space, 
thus reducing the algorithm exploration. To deal with 
this issue, this paper presents a variant of the Random 
Sampling in Variable Neighborhoods (RSVN) 
procedure using a Lévy distribution, which is able to 
notably improve the PSO search ability in multimodal 
problems. 

Keywords. Swarm diversity, local optima, premature 
convergence, RSVN procedure, Lévy distribution. 

Hacia la diversidad de la bandada: 
procedimiento RSVN usando una 

distribución de Lévy  

Resumen. Particle Swarm Optimization (PSO) es un 
método de búsqueda no directo para la optimización 
numérica. Las principales ventajas de esta meta-
heurística están relacionadas principalmente con su 
simplicidad, pocos parámetros y alta tasa de 
convergencia. En el PSO canónico usando una 
topología totalmente conectada, una partícula ajusta su 
posición usando dos atractores: el mejor registro 

almacenado por el individuo y el mejor punto 
descubierto por la bandada completa. Este esquema 
conduce a un alto factor de convergencia, pero también 
deteriora la diversidad de la población 
progresivamente. Como resultado la bandada de 
partículas frecuentemente  es atraída por puntos sub-
óptimos. Una vez que las partículas han sido atraídas 
hacia un óptimo local, ellas continúan el proceso de 
búsqueda dentro de una región muy pequeña del 
espacio de soluciones, reduciendo las capacidades de 
exploración del algoritmo. Para tratar esta situación 
este artículo presenta una variante del procedimiento 
Random Sampling in Variable Neighborhoods (RSVN) 
usando una distribución de Lévy. Este algoritmo es 
capaz de mejorar notablemente la capacidad de 
búsqueda de los algoritmos PSO en problemas 
multimodales de optimización. 

Palabras clave. Diversidad de la bandada, óptimos 
locales, convergencia prematura, procedimiento RSVN, 
distribución de Lévy. 

1 Introduction 

The PSO metaheuristic [1, 2] is a well-known 
Swarm Intelligence method, which is able to solve 
challenging real-parameter problems from a 
distributed perspective, without a centralized 
control of a specific agent. Each organism in the 
swarm (hereinafter called particle) adjusts its 
position by using a combination of an attraction to 
the best solution that they individually have found, 
and an attraction to the best solution that any 
particle has found in its neighborhood [3], 
imitating those who have a better performance. 
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Following the above reasoning, the swarm 
overflies the solution space detecting promising 
regions. The features of this search method for 
dealing with global optimization problems include 
the improved ability of solving complex problems, 
high convergence speed and good generality for 
different problems [4]. 

Ironically the high convergence rate inherent 
to PSO algorithms using a fully connected 
topology (which means that a particle gets 
information of entire swarm) is the main cause of 
deteriorating the swarm diversity. As a result, the 
population is often attracted to stable points that 
are not necessarily global optima [5]. This 
behavior causes premature convergence of the 
algorithm, in which the particles are grouped 
about suboptimal solutions with little chance of 
escaping from this configuration. Once the 
particles have converged prematurely, they 
continue converging within extremely close 
proximity of one another so that the global best 
and all personal bests are within a very small 
region of the solution space [6], heavily limiting 
the exploration of new regions. 

Several algorithms have been proposed in the 
literature to overcome this problem. For instance, 
niching or multimodal methods have been 
developed to reduce the undesirable effects of 
genetic drift [7]. They are able to compute not just 
one, but many local or global solutions in a single 
run, preserving the population diversity and also 
allowing parallel convergence. Inspired on 
niching, Chen and Montgomery [8] proposed a 
simple strategy to reduce crowding in PSO-based 
algorithms, which leads to significant performance 
improvements in multimodal search spaces. 
Unfortunately, this strategy is ineffective for 
solving unimodal problems. In Section 3 we 
provide a more detailed review of existing 
approaches for handling premature convergence, 
resulting from the progressive deterioration of the 
diversity. 

Another research direction is oriented to 
particle interaction. Perhaps the most important 
variation of the standard PSO is the inception of 
the lbest swarm model or local topology [9]. Here 
a particle gets information of only a subset of the 
whole population. Consequently, multiple swarms 
may coexist and thus many global attractors are 
used to guide the search. It is the main difference 

with respect to the gbest or fully connected 
topology where particles obtain information from 
any agent in the artificial population. The 
“advantage” of the lbest model in comparison to 
the gbest model is its slow convergence rate, 
which helps to avoid premature convergence 
states. Nevertheless, it is the slower rate of 
convergence of the lbest model that is most 
responsible for the general disregard of it as an 
alternative up to this point [3]. 

 In summary, many attempts to increase the 
diversity in the artificial population perform well for 
multimodal search spaces, but they are unable to 
efficiently solve unimodal problems. On the other 
hand, the much faster convergence of the gbest 
model seems to indicate that it produces superior 
performance, but this may be misleading [3] for 
solution search spaces having large number of 
optima. Obviously it is desirable to formulate new 
approaches capable to solve both unimodal and 
multimodal problems, but preserving the high 
convergence speed distinctive in PSO algorithms 
using a fully connected topology. 

 Recently the authors of this work introduced 
a relatively simple method called Random 
Sampling in Variable Neighborhoods (RSVN) for 
controlling the swarm diversity [10, 11]. The main 
idea of this procedure is to restructure the 
population from the selection of random samples 
uniformly distributed in several neighborhoods, 
whenever a stagnation or premature convergence 
is detected. This paper introduces two main 
improvements in the RSVN algorithm: (i) we 
replace the uniform distribution for a Lévy 
distribution allowing better exploration in the 
sampling task, and (ii) we incorporate two new 
operators for recombination and selection. Finally, 
we obtain a suitable mechanism for controlling the 
swarm diversity, outperforming other algorithms 
reported in the literature, for both unimodal and 
multimodal problems. 

The rest of the paper is organized as follows: 
in the next section a theoretical background of 
standard PSO is discussed. In Section 3 we 
provide a review of PSO algorithms designed to 
handle non-progress states. In Section 4 the 
RSVN procedure is described. Section 5 gives 
details about the proposal, whereas Section 6 
reports simulations and statistical analysis for 
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benchmark problems. Finally, conclusions and 
research aspects are presented in Section 7. 

2 Particle Swarm Optimization 

The PSO metaheuristic is a robust non-direct 
global-search method for solving challenging 
continuous optimization problems. It involves a 
set of agents (particles) known as swarm which 
explore the space trying to locate promising 
regions [1, 2]. Swarm particles are interpreted as 
solutions for the optimization problem and they 
are codified as 𝑛-dimensional vectors. In the case 
of canonical PSO, each particle 𝑋𝑖 explores the 
space using its own velocity 𝑉𝑖, a local memory of 
the best position it has obtained 𝑃𝑖 and knowledge 
of the best solution 𝐺 found in its neighborhood. 
For a graphical illustration of this idea, Fig. 1 
shows the rules for updating the particle trajectory 
at each step 𝑡 of the search process. 

In the standard algorithm, particle’s velocities 
require to be clamped at a maximum value 𝑉𝑚𝑎𝑥; 
without this clamping the swarm is prone to 
entering in a state of explosion (i.e., the state 
where the velocity components and positional 
coordinates careen toward infinity) [12]. However, 
estimating this parameter is a complex task since 
very large spaces require larger values to ensure 
a correct exploration, while smaller search spaces 
require small values avoiding the swarm 
explosion. 

In addition, PSO requires specification of two 
positive factors 𝑐1 and 𝑐2 denoting the cognitive 
and the social factors, respectively. The 
acceleration coefficients determine the magnitude 
of the forces in the direction of the personal best 
record 𝑃𝑖 and the neighborhood best solution 𝐺𝑖. It 
also should be mentioned that the behavior of the 

PSO metaheuristic changes radically with these 
coefficients values [13], which could cause 
stagnation or cyclic behavior in particle’s 
trajectory. 

Equations 1 and 2 show how to update 
particle’s position and velocities based on the 
above components. Here 𝑘 indexes the current 
cycle, 𝜙1~𝑈(0, 𝑐1) and 𝜙2~𝑈(0, 𝑐2) are two 
random numbers with uniform distribution, 
whereas 𝜔 denotes the inertia weight designed by 
Shi and  Eberhart [14] to replace the parameter 
𝑉𝑚𝑎𝑥 by adjusting the influence of the previous 
particle velocities on the optimization process. 

The introduction of this inertia weight 
guarantees an apposite balance between local 
and global search. Higher weights will facilitate 
the exploration of new regions of the solutions 
space, while lower weights will facilitate the local 
search. But the incorrect choice of this factor 
could negatively affect the algorithm performance, 
so it is recommended to adjust it dynamically 
during the progress of the search procedures [11]. 

𝑉𝑖𝑡+1 = 𝜔𝑉𝑖𝑡 + 𝜙1(𝑃𝑖 − 𝑋𝑖𝑡) + 𝜙2(𝐺 − 𝑋𝑖𝑡) (1) 
 

𝑋𝑖𝑡+1 = X𝑖𝑡+ 𝑉𝑖𝑡+1 (2) 

Another feature introduced to guarantee, in a 
certain sense, a proper balance between 
exploration and exploitation is known as 
constriction. It was designed by Clerc and 
Kennedy [12] for preventing explosion, ensuring 
the algorithm convergence and eliminating 𝑉𝑚𝑎𝑥. 
In the Clerc’s work different ways to implement 
the constriction coefficient (𝜒) are discussed. The 
constriction termed Type 1 is perhaps the 
simplest method; it is derived from factors 𝑐1 and 
𝑐2 as Equation 3 suggests. 

𝜒 =
2

�2 − 𝜑 − �𝜑2 − 4𝜑�
,𝜑 =  𝑐1 + 𝑐2          (3) 

It was observed that when 𝜑 < 4, then the 
swarm would slowly “spiral” toward and around 
the global-best solution found during the 
execution with no guarantee of convergence, 
whereas for 𝜑 > 4 convergence would be quick 
and guaranteed. Commonly the acceleration 
coefficients 𝑐1 and 𝑐2 are set to 2.05 implying that 

 
 
 
 
 
 
 
 
 

Fig. 1. PSO rules for particle trajectory in each step 
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𝜑 = 4.1, so the constant 𝜒 is approximately 
0.729822. A comparison study of both methods 
demonstrated that the constriction is in fact a 
special case of the algorithm with inertia weight in 
which the parameters have been determined 
analytically [10]. 

For better understanding of this asseveration, 
let’s consider Equation 4 where the rule for 
updating the velocities of particles in the swarm is 
modified, by the inception of the constriction 
coefficient as suggests the Type 1 implementation 
discussed above. Notice that the previous velocity 
as well as the differentials 𝜙1(𝑃𝑖 − 𝑋𝑖) and 
𝜙2(𝐺 − 𝑋𝑖) are multiplied by 𝜒 = 0.729822. 
Assuming that the coefficients 𝑐1 and 𝑐2 are fixed, 
we can conclude that 𝜔 = 0.7298 and 𝑐1 = 𝑐2 ≈
1.4961. Taking this into account, the constricted 
swarm will converge without specifying any 𝑉𝑚𝑎𝑥 
at all. 

𝑉𝑖𝑡+1 = 𝜒�𝑉𝑖𝑡+ 𝜙1(𝑃𝑖 − 𝑋𝑖𝑡) + 𝜙2(𝐺 − 𝑋𝑖𝑡)� (4) 

Conversely, experiments reported in [14] 
concluded that a more prudent approach is to 
clamp velocities components of particles anyway. 
For example, 𝑉𝑚𝑎𝑥 could be taken as the half of 
the range of each problem variable. As a result, 
we obtain a PSO algorithm with no-problems 
specific parameters (only the particles number 
and generations are required). Actually, this 
canonical optimizer using the inertia weight 
(analytically determined as it was explained) will 
be adopted in all the simulations described in next 
sections. 

2.1 Swarm Organization 

A key aspect that should be discussed is how to 
define the particle’s neighborhoods in order to 
select the global-best particle at each cycle. Here, 
topological neighborhoods of a swarm particle are 
referring to the protocol in the particle’s 
communication. The most popular approaches 
are grouped in two major groups: the gbest or 
global topology, and the lbest models or local 
topology.  

In the first one, agents use global knowledge 
obtained from the whole swarm; which means 
that at each step the best solution 𝐺 is updated as 

the particle having the best fitness value, from the 
entire population. From a geometric point of view, 
this model may be conceptualized as a fully 
connected graph. In general, the gbest PSO is 
more accurate for solving unimodal problems [3], 
showing a high convergence rate. But it often 
shows a poor performance in multimodal 
problems, since the swarm tends to prematurely 
converge towards sub-optimal solutions in a few 
iterations. 

In the case of lbest topology, a particle shares 
information with a limited subset of the swarm. It 
induces a partition of the global population in 
multiple sub-populations, where each of them has 
its own topological global-best record. More 
precisely, the lbest model involves not just a 
single global best registry, but several topological 
global-best solutions 𝐺𝑖 are presented. There 
exist many implementations of the lbest model, 
but perhaps the most widely used is the lbest ring 
topology, where each particle is able to interact 
with its immediate neighbors (using the population 
indices to identify the left and right neighbor of 
each particle). Fig. 2 illustrates the interaction 
among particles in a gbest model, and also in an 
lbest model using its simplest implementation: a 
ring topology. 

The lbest topology has the advantage of 
allowing parallel search, thus subpopulations 
could converge to diverse regions of the solution 
space. This desirable feature resulted in a more 
thorough search strategy [13]. Overall lbest 
converges more slowly than the gbest topology, 
being less vulnerable to the attraction of local 
optima. In [9] several communication structures 

 
Fig. 2. Particle’s interaction: a) in the gbest model the 
particles are fully connected and they share 
information among all individuals; b) in the lbest ring 
topology each particle only interacts with its 
immediate neighbors 
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such as circles, wheels, starts, etc. were 
extensively studied. 

From this research, the relative superiority of 
the von Neumann structure was concluded. It has 
the parallelism of lbest, but uses 4 nodes for the 
individual’s communication. Hence, the graph is 
more densely connected that the lbest strategy 
using a ring topology, but still less connected than 
gbest. Despite this result, it is known that the 
correct selection of a specific topology is 
conditioned by the problem properties, but in most 
cases this knowledge is unknown in advance. 

3 Handling Stagnation and Premature 
Convergence States: a Brief Review  

In this section we provide a concise review of 
some PSO-based algorithms which were specially 
designed for preserving the swarm diversity 
during the optimization progress. These models 
allow handling potential stagnation and premature 
convergence situations, thus offering in many 
cases a proper escaping alternative from local 
optima. 

3.1 Bare Bones Particle Swarm 

Bare Bones Particle Swarm (BBPSO) was 
designed by Kennedy as a PSO-based model for 
dynamic problems. Here, dependence on velocity 
is replaced by sampling from a Gaussian 
distribution. This approach is supported by the 
fact that particles converge to a weighted average 
between their personal best and neighborhood 
best positions [15]. Hence, in order to understand 
the particles’ behavior and also to identify the 
similarity features with respect to other stochastic 
population-based optimizers, Kennedy [16] 
proposed a modified algorithm without using the 
velocity formula in the update equation as follow: 

𝑥𝑖~𝑁 �
𝐺 + 𝑃𝑖

2 , |𝑃𝑖 − 𝐺|� (5) 

where 𝐺 is the best informer in the neighborhood 
of the 𝑖-th particle and 𝑃𝑖 is the personal best peak 
discover by the individual. Gaussian bare-bones 
works quite well, imitating the performance of 
PSO on some problems, but proving less effective 

on other [17]. On closer examination, what 
appears to be a bell curve actually has a kurtosis 
which increases with iteration, and the distribution 
has fatter tails than the Gaussian generator.  

It has been suggested that the origin of this 
lies in the production of “bursts of outliers” [18]. In 
fact, Kennedy discovered that if burst events are 
added to Gaussian bare-bones, the performance 
is notably improved. The conjecture, thus, is that 
the fat tails in the position distribution of canonical 
PSO enhance the ability of the swarm to move 
from sub-optimal locations [13]. From this 
observation it is clear that the Gaussian generator 
may be replaced by a more explorative 
distribution. 

3.2 Comprehensive Learning PSO 

Comprehensive Learning PSO (CLPSO) [19] was 
specifically designed for optimizing complex 
multimodal problems. In this implementation, the 
social component from the velocity equation is 
removed. Also, the velocity of each particle 
component has the chance to be influenced by 
the best record of every other particle, thus 
encouraging the diversity of the swarm. The 
expression for updating the velocity is 
summarized in Equation 6, where 𝑓𝑖(𝑑) defines 
the personal-best position that will be used for 
updating the 𝑑-th dimension of the velocity of the 
𝑖-th particle. 

𝑉𝑖𝑡+1 = 𝜔𝑉𝑖𝑡 +  𝜙1�𝑃𝑓𝑖(𝑑) − 𝑋𝑖𝑡� (6) 

A learning probability 𝐿𝑃𝑖 ∈ [0.05,0.5] decides 
whether a velocity will be updated using its own 
personal-best or not. More explicitly, a set of 
particles for updating the velocity component of 
each particle (called exemplars) is selected by 
using a uniform random number in (0,1) for each 
dimension of the current particle. If this random 
number is greater than 𝐿𝑃𝑖 then the corresponding 
velocity dimension will be updated using its own 
personal-best position computed during the 
search, otherwise other personal-best record will 
be used. 

In the latter version, two particles are 
randomly chosen from the swarm (excluding the 
current one), and then the one with better 
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personal value is used for updating the current 
dimension. This process is iteratively repeated for 
each dimension of the 𝑖-th particle. In summary, 
CLPSO performs well for multimodal problems, 
but it has poor performance against other 
algorithms on unimodal or relatively simple 
multimodal functions. 

3.3 Opposition Based PSO 

The main idea of OPSO [20] is to use an 
opposition based learning method and a dynamic 
Cauchy mutation operator to help avoid local 
optima and accelerate the convergence of the 
PSO algorithm. Opposition based learning 
method was introduced by Tizhoosh [21] and it 
has proven to be a convenient principle for 
solving global optimization problems. When 
evaluating a solution 𝑥 to a given problem, we can 
suppose the opposite solution of 𝑥 to get a better 
solution 𝑥′. By doing this, the distance of 𝑥 from 
optima solution can be reduced. Besides, 
boundaries should be updated dynamically for 
controlling the step size of opposition. The 
minimum (𝑎𝑗∗) and maximum (𝑏𝑗∗) values of each 
dimension in current population are used for 
computing the opposite solution instead of a 
predefined interval [𝑎, 𝑏]. Equation 7 shows how 
to compute the opposition-based method.  

𝑂𝑥𝑖
𝑗 = 𝑎𝑗∗ + 𝑏𝑗∗ − 𝑥𝑖

𝑗 (7) 

In OPSO the opposite swarm particle is 
calculated according to a probability 𝑝𝑜, then 𝑛 
fittest particles from the current swarm and the 
opposite swarm are selected as survivors. Also, 
at each cycle the best particle is mutated using a 
dynamic Cauchy mutation operator [20], trying to 
update the global best particle in the swarm. 
Simulations shown that OPSO has faster 
convergence on simple unimodal functions, and 
better global search capability on multimodal 
functions compared to the standard PSO. 
However, there are still fewer cases where OPSO 
falls in the local optima. 

3.4 Attraction-Repulsion PSO 

As an attempt of controlling the swarm diversity 
from particles movements and trying to overcome 
the problem of premature convergence, in [22] the 
authors propose the Attractive and Repulsive 
PSO (ARPSO). This PSO-based algorithm 
alternates between phases of attraction and 
repulsion. As a result, it defines the attraction 
phase merely as the basic PSO algorithm, where 
particles will attract each other due to the 
information flow of good solutions among 
particles, while in the repulsion phase the 
velocity-update formula of particles is inverted as 
follows: 

𝑉𝑖𝑡+1 = 𝜔𝑉𝑖t − 𝜙1(𝑃𝑖 − 𝑋𝑖t) − 𝜙2(𝐺 − 𝑋𝑖t) (8) 

In the repulsion phase an individual particle is 
no longer attracted to, but instead repelled by the 
best known particle position 𝐺 and its own 
previous best position 𝑃𝑖; whereas in the 
attraction phase the swarm is contracting, and 
consequently the diversity decreases. More 
explicitly, when the diversity drops below a lower 
threshold 𝑑_𝑙𝑜𝑤 the algorithm switches to the 
repulsion phase, where the swarm expands due 
to the above inverted update-velocity Equation 9. 
On the other hand, when a diversity of 𝑑_ℎ𝑖𝑔ℎ is 
reached, the ARPSO switches back to the 
attraction phase. The diversity measure used in 
ARPSO is defined as 

𝑑𝑖𝑣(𝑆) =
1

|𝑆| ∗ |𝐿|����𝑝𝑖𝑗 − 𝑝𝚥� �
2

𝑁

𝑗=1

|𝑆|

𝑖=1

 (9) 

where 𝑆 denotes the swarm, |𝑆| is the swarm 
size, |𝐿| is the length of the longest diagonal in 
the search space, 𝑁 is the dimensionality of the 
problem, 𝑝𝑖𝑗 is the 𝑗-th value of the 𝑖-th particle, 
while 𝑝𝚥�  is the j-th value of the average point 𝑝. It 
is remarkable that this diversity measure is 
independent of the swarm size, the dimensionality 
as well as the search range in each dimension. 
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3.5 Quadratic Interpolation Based PSO 

The QPSO method [23] introduces a quadratic 
crossover operator in the basic algorithm, with the 
hope to increase the diversity. This operator is a 
nonlinear multi-parent crossover operator which 
makes use of three swarm particles (parents) to 
produce a new agent (offspring) which lies at the 
minimum of the quadratic curve passing through 
the three selected individuals. The 𝑗-th dimension 
of the new individual is determined as Equation 
10 suggests, where 𝑎 denotes the particle having 
minimum evaluation, while 𝑏 and 𝑐 are two 
randomly selected particles from the swarm. 

𝑥�𝑖
𝑗

=
�𝑏𝑗2 − 𝑐𝑗2�𝑓(𝑎) + �𝑐𝑗2 − 𝑎𝑗2�𝑓(𝑏) + �𝑎𝑗2 − 𝑏𝑗2�𝑓(𝑐)

2[(𝑏𝑗 − 𝑐𝑗)𝑓(𝑎) + (𝑐𝑗 − 𝑎𝑗)𝑓(𝑏) + (𝑎𝑗 − 𝑏𝑗)𝑓(𝑐)]  

(10) 

At that point, the offspring particle 𝑥� replaces 
the worst individual in the swarm, regardless of its 
quality. In this way the search is not limited to a 
region around the current best location, but is in 
fact more diversified in nature. Empirical results 
show that, for a reduced benchmark suite, QPSO 
is able to preserve the swarm diversity. Also, the 
authors observed that QPSO is quite competent 
for solving problems of dimensions up to 50, 
which leads to a highly desirable property. 

4 Controlling Swarm Diversity through 
a Novel Reorganization Procedure  

As it was discussed above, many modifications to 
the gbest model have been introduced with the 
aim to preserve the population diversity, providing 
an alternative to escape from local optima. It thus 
prevents such states where the objective function 
does not suffer improvements. In most cases the 
gbest model is the selected optimizer because it 
shows high convergence rate against other 
algorithms. Although such approaches frequently 
are able to outperform the original PSO, they 
report poor performance for a considerable 
subset of benchmark functions [11]. Hence, there 

is a need to incorporate more competent models 
in order to enhance the PSO search process. 

Having this idea in mind, in [10, 11] the 
authors introduced a procedure for controlling the 
swarm diversity. It is called Random Sampling in 
Variable Neighborhoods (RSVN). The key idea of 
this procedure is to restructure the swarm from 
the selection of random samples uniformly 
distributed in 𝑀𝑀 neighborhoods, generated around 
the best solution found so far. More explicitly, the 
proposed RSVN algorithm has two steps: the first 
one is related to the detection of premature 
convergence or stagnation states, while the 
second is oriented to the swarm reorganization. In 
next subsections we explain this method in detail. 

4.1 Detection of Non-Progress States 

One of the causes of premature convergence in 
the basic PSO is the poor swarm diversity [22]. 
When PSO falls into a local optimum all 
individuals are grouped around this solution, that 
is why diversity is gradually lost among particles, 
making it more difficult to find better solutions. 
Diversity can be used to monitor the swarm 
behavior, i.e., the degree of convergence or 
divergence [24]. 

The first step of the RSVN procedure consists 
of detecting potential non-progress states, that is, 
stagnation or premature convergence situations. 
In these states the swarm is unable to find better 
solutions, and thus the optimization of the 
evaluation function doesn’t report significant 
progress in consecutive cycles. However, how to 
efficiently detect these non-progress states? 

Several diversity measures have been 
developed for detecting possible states of 
premature convergence. For example, in [25] the 
authors studied several diversity measures 
including a) the swarm radius, b) the average 
distance around the swarm center, c) the 
normalized average distance around the swarm 
center, d) the average of the average distance 
around all particles in the population, and e) 
swarm coherence (defined as the swarm center 
divided by the average speed of all particles in the 
swarm). 

In the PSO-RSVN-𝛼 algorithm, the radius of 
the swarm is adopted as a diversity measure. 
Equation 11 mathematically formalizes the 

Computación y Sistemas Vol. 18 No. 1, 2014 pp.79-95 
ISSN 1405-5546 

http://dx.doi.org/10.13053/CyS-18-1-2014-020 



86 Gonzalo Nápoles, Isel Grau, Marilyn Bello, and Rafael Bello 

normalized expression of this measure, where 
||X|| denotes the Euclidean norm,  𝑋𝑚𝑖𝑛 and 
𝑋𝑚𝑎𝑥 are the end points on which each 
dimension of the particle 𝑋𝑖 is defined (for 
simplicity in the notation we assume the same 
domain for all dimensions), whereas 𝑆 denotes 
the swarm. Hence, the closer to zero the swarm 
radius, the more crowded the particles, implying 
poor exploration ability. 

𝜌(t) = 
max

1 ≤ 𝑖 ≤ |S|
�X𝑖

(𝑡) − G�

|𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛|
 (11) 

Fig. 3 shows the behavior of two diversity 
measures for Shifted Rosenbrock’s function (see 
benchmark description in [26]). More explicitly we 
explore the swarm radius (upper group of points) 
and also the average distance around the swarm 
center (lower group of points). In this example, a 
gbest model with inertia weight and standard 
parameters is used. Observe how the swarm 
diversity is gradually lost throughout the evolution 
of the search process. 

Then the PSO-RSVN-𝛼 algorithm restructures 
the population if the diversity measure is less than 
a fixed threshold 𝛼. However, this approach may 
be ineffective for problems where particles are not 
able to easily discover promising regions. In other 
words, in stagnation states the particle swarm is 
not necessarily crowded in a small region of the 
search space, which is the main difference with a 
population that is prematurely attracted to a local 
optimum. In such cases the swarm is not able to 

detect a local solution and thus the objective 
function doesn’t have significant improvement. 

For instance, let’s analyze the Shifted Rotated 
High Conditioned Elliptic Function [26]. It is a very 
difficult unimodal problem where the optimum was 
shifted and also the problem was rotated. Fig. 4 
illustrates the behavior of the average distance 
around the swarm center; notice that the swarm 
diversity is lost in a few iterations, but 
subsequently this degradation remains “stable” 
during the rest of the search. But in our 
simulations the evaluation of the global-best 
particle doesn’t show any improvement, which 
means that probably the population suffers from a 
stagnation state. 

In order to detect potential stagnation 
configurations, in [11] the PSO-RSVN-𝑃 
implementation is introduced. This method uses a 
simple and low time-consuming criterion: the 
particle swarm is in a stagnation state if the 
objective function remains without improvements 
in 𝑃 iterations. Notice that it could be also 
effectively used to detect premature convergence 
states. In this sense a central drawback should be 
solved: how to select an appropriate approach for 
automatically detecting a specific non-progress 
state without previous knowledge of the objective 
function landscape? 

In this paper we use a hybrid strategy where 
a non-progress state (whatever it is) is declared if 
(1) the average distance around the swarm center 
is less than a threshold 𝛼, or (2) the objective 
function remains without improvements in 𝑃 
cycles. It should be additionally remarked that in 
the present work the swarm radius is replaced by 

 
Fig. 3. Swarm diversity measures applied to the 
well-known Shifted Rosenbrock’s problem 

 
Fig. 4. Simulation of the average distance around the 
swarm center for the problem F3 
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the average distance around the swarm center, 
since in [25] Olorunda and Engelbrecht 
demonstrated that this measure is less sensible to 
the effects of outliers, thus it is more robust. 
Precisely the first proposal attempting to improve 
the PSO-RSVN algorithm is related to this simple 
modification. 

4.2 Particle Swarm Reorganization 

Once premature convergence signals are 
detected it is necessary to take some action to 
allow the algorithm to escape from this state. 
Here several approaches may be adopted. For 
example, in [6] Evers and Ghalia utilize a scheme 
based on Simulated Annealing [27] for moving the 
global-best attractor in the swarm, i.e., the 
position of the global-best individual found so far. 
Although it reported large improvements for a 
relatively simple set of problems, in some 
problems it is difficult to locate a better particle 
using local search, and even when once found, 
the swarm is poorly diversified. For this reason it 
is clear that another research direction to deal 
with the issue is required. 

Reorganizing the population is also a feasible 
alternative. Diversification increases the chances 
to escape from the local optimum but if the swarm 
is not properly reorganized, it may converge 
toward the same solution or indiscriminately move 
away from promising areas that were detected 
[11] which instead of benefiting could affect the 
search performance. More recently, we 
developed a simple but effective procedure called 
Random Sampling in Variable Neighborhoods 
(RSVN). It tries to restructure the swarm when a 
premature convergence or stagnation state is 
detected. 

This algorithm has two central steps: (1) the 
generation of some samples uniformly distributed 
around the global-best individual found so far, and 
(2) the elitist selection of the survivors that should 
be present in the following population. It induces 
further diversity over the swarm, increasing the 
chance to find better solutions. The operators of 
the RSVN algorithm are described as follow. 

Equation 12 shows how to generate a sample 
𝑥𝑖 belonging to the 𝑘-th neighborhood, where 𝐺 is 
the global-best individual found so far at current 
iteration, while 𝑅 denotes the particle’s range, that 

is, 𝑅 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛. For simplicity we consider 
the same domain for all dimensions of the 
problem. In addition, this equation involves a 
parameter 𝜉𝑘 ∈ (0,1] representing the 𝑘-th 
neighborhood proportion with respect to the size 
of the search space. It is calculated as 𝜉𝑘 = 𝑘/𝑀𝑀, 
where 𝑀𝑀 is the number of partitions. Following 
this logic, in each neighborhood a set of samples 
Ψ𝑘 is generated. It will be remarked that closest 
neighborhoods provide local search or 
exploitation, while largest ones ensure better 
exploration. 

   𝑥𝑖𝑘~𝑈(𝐺 − 𝜉𝑘𝑅,𝐺 + 𝜉𝑘𝑅) (12) 

Once the set of samples has been generated 
at each neighborhood, a strong elitist selection 
process takes place in order to efficiently 
restructure the particle swarm. It means that for 
each set of samples Ψ𝑘 a good enough subset Φ𝑘 
is then selected as a survivor of the next 
population. Here good enough particles refer to 
individuals having better evaluation of the 
objective function, but a different strategy may be 
adopted. Thus, selected agents will comprise the 
reorganized swarm. This scheme is summarized 
as follows: 

𝑆 = Φ1⋃Φ2⋃…⋃ΦM = �Φ𝑘

M

𝑘=1
∶ Φ𝑘  ⊆ Ψ𝑘,∀𝑘 .      

(13) 

Obviously the global-best particle found at the 
current iteration should be also preserved as 
survivor in the next population, thus it must 
replace the worst particle in the reorganized 
swarm. Due to its simplicity, elitist properties and 
relatively low computational cost, the RSVN 
procedure summarized here could be easily 
adapted and integrated into other population 
based search methods. 

Actually, the PSO-RSVN-𝑃 variation has been 
successfully used for learning the weight matrix of 
a Fuzzy Cognitive Map characterizing the 
biological behavior of HIV proteins [28]. This 
scheme is also capable to predict the resistance 
of protease mutations to existing drugs, largely 
outperforming conventional classifiers such as 
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Neural Networks, Support Vector Machine or 
Decision Trees. 

5 Improving the RSVN Procedure 

Despite the success of the RSVN method for 
handling non-progress states, we consider that 
this procedure could be enhanced. For example, 
is the uniform distribution in the sampling process 
the best choice? For dealing with such issues, 
this section introduces two modifications to the 
RSVN algorithms. First, the uniform distribution 
used in the random sampling process is replaced 
by a Lévy distribution; it allows exploring the 
search space more efficiently. In addition, we 
introduce a new operator based on Differential 
Evolution [29] to recombine the sets of samples, 
in order to guarantee better diversification. 

Several studies reported that the flight 
behavior of some animals and insects in nature is 
related to the Lévy distribution [30, 31]. For 
example, some species of eagles such as Golden 
Eagles or Aquila Chrysaetos explore their territory 
by flying in a random manner much like the Lévy 
flights [31] in order to locate the prey. In general, 
algorithms employing Lévy distribution have a 
long fat tail; then they are more capable of 
escaping from local solutions [17, 32]. That's why 
this distribution seems to be a proper alternative 
for replacing the uniform generator in the 
sampling process. 

The Lévy probability distribution is a class of 
probability distribution having an infinite second 
moment and governing the sum of these random 
variables [33, 34]. Formula 14 shows the form of 
this distribution. It is symmetric with respect to 
𝑦 = 0 and has two parameters 𝛾 and 𝛼, where the 
first factor represents the scaling factor satisfying 
𝛾 >  0, whereas 0 < 𝛼 < 2 is used for controlling 
the shape of the distribution. 

𝐿𝛼,𝛾 =
1
𝜋
� 𝑒−𝛾𝑞𝛼
∞

0

cos(𝑞𝑦)𝑑𝑞   , 𝑦 ∈ ℝ           (14) 

The analytic form of the integral is unknown 
for general 𝛼, but is well-known for a few cases 
(for 𝛼 = 2 it is equivalent to Gaussian distribution, 
whereas for 𝛼 = 1 it is equivalent to Cauchy 

distribution). Fortunately in [35] the authors 
present a numerical algorithm for generating Lévy 
random numbers. In present work, we make use 
of this method to compute numbers with Lévy 
distribution, where the value for 𝛼 is set to 0.8. 

Equation 15 summarizes the samples 
generation rule using the new probability 
distribution. Observe that the search ranges were 
also modified since in Equation 12 we can’t 
guarantee that generated samples are feasible 
(they are not necessarily within the domain range) 
and hence particles require being restricted. It 
could cause a situation where many individuals 
are enclosed in a small region around the 
boundary. To overcome this disadvantage we 
define 𝑅1 = 𝐺 − 𝑋𝑚𝑖𝑛 and 𝑅2 = 𝑋𝑚𝑎𝑥 − 𝐺 which 
definitely ensure generating feasible samples. 

𝑥𝑖𝑘~𝐿(𝐺 − 𝜉𝑘𝑅1,𝐺 + 𝜉𝑘𝑅2) (15) 

As a second modification of the RSVN 
algorithm, this work introduces a recombination 
operator based on Differential Evolution rules. Let 
Ψ be the set of all swarm particles that were 
sampled in neighborhoods of the global-best point 
at the first stage of the original RSVN procedure. 
Also suppose that |Ψ| = |𝑆|, then the set Φ of 
mutants is now computed by reproducing 
collected samples as Formula 16 suggests. This 
operator is inspired on the well-known differential 
strategy DE/current-to-rand/1 without crossover 
[29], which introduces a perturbation on the 
search mainly based on the knowledge of 
collected samples, complementing the swarm 
reorganization mechanism. 

𝑥𝑖′ = 𝐺 + 𝐹(𝑎1 − 𝑎2),   𝑎1, 𝑎2 ∈ Ψ (16) 

In the above equation, 𝑎1 and 𝑎2 are two 
randomly selected agents taken from the set of 
samples Ψ, whereas the factor 0 < 𝐹 ≤ 1 is used 
for controlling the differential amplification. Small 
values for this factor (e.g. 𝐹 < 0.2) become better 
exploitation, but large values (e.g. 𝐹 > 0.8) ensure 
higher exploration. For simplicity, this work 
assumes that the value for the parameter 𝐹 is 
fixed to 0.5. As a result of this process, a set Φ of 
mutants having the same cardinality of Ψ is 
obtained, that is, the number of particles in the 
swarm.  
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At the end, the selection of survivors takes 
place, which means that the updated swarm will 
be composed by |𝑆| − 1 agents taken from the set 
𝑆′ = Ψ ∪Φ, having the best fitness value. 

Obviously the global-best particle should be 
included in the next swarm, with the goal of 
preserving the search knowledge obtained during 
the optimization steps. 

Table 1. Average error computed for unimodal, basic multimodal and expanded problems (F1-F14) over 30 runs 

ID GBest LBest BBPSO arPSO QPSO OPSO CLPSO RSVN LSVN 

F1 9.701E-1 6.331E-1 3.79E-15 1.031E-1 2.396E+0 2.748E+0 3.611E-3 8.670E-7 1.973E-9 

F2 9.770E+2 3.793E+2 1.12E-13 6.362E+2 7.407E+2 3.685E+2 2.202E+1 5.760E-4 6.456E-7 

F3 2.031E+6 1.248E+6 1.666E+5 8.366E+5 1.570E+6 1.377E+6 2.015E+6 3.213E+5 1.114E+5 

F4 7.867E+3 4.690E+3 1.140E-5 7.719E+3 6.846E+3 5.007E+3 3.265E+1 2.163E-1 3.232E-2 

F5 2.070E+3 3.395E+3 2.50E-11 2.152E+3 2.381E+3 1.975E+3 3.147E+2 1.475E+3 3.837E+2 

F6 2.514E+3 4.347E+3 1.142E+0 1.973E+3 2.784E+3 1.483E+3 4.739E+2 9.790E+0 4.299E-1 

F7 1.330E+3 1.398E+3 1.263E+3 1.330E+3 1.346E+3 1.345E+3 1.286E+3 1.298E+3 4.976E+0 

F8 2.017E+1 2.054E+1 2.036E+1 2.177E+1 2.016E+1 2.042E+1 2.037E+1 2.036E+1 2.039E+1 

F9 39.92E+1 2.916E+1 6.533E+0 4.046E+1 3.712E+1 3.912E+1 3.317E+1 3.980E+0 2.004E-1 

F10 7.050E+1 4.972E+1 2.368E+1 6.891E+1 7.030E+1 6.366E+1 3.906E+1 2.666E+1 1.767E+1 

F11 7.450E+0 6.471E+0 5.006E+0 7.035E+0 7.020E+0 7.028E+0 8.306E+0 5.285E+0 5.109E+0 

F12 9.613E+3 3.539E+2 5.225E+2 1.279E+4 1.533E+4 1.145E+4 3.148E+3 6.442E+3 4.507E+2 

F13 1.751E+0 1.246E+0 6.607E-1 1.937E+0 1.560E+0 1.550E+0 3.790E+0 7.421E-1 4.892E-1 

F14 3.719E+0 3.265E+0 3.148E+0 3.538E+0 3.442E+0 3.276E+0 3.577E+0 2.952E+0 2.616E+0 

Table 2. Average error computed for the composed multimodal functions (F15-F25) over 30 runs 

ID GBest LBest BBPSO arPSO QPSO OPSO CLPSO RSVN LSVN 

F15 4.210E+2 3.838E+2 3.104E+2 4.397E+2 4.726E+2 4.240E+2 5.556E+2 2.301E+2 2.350E+2 

F16 1.970E+2 1.564E+2 1.428E+2 1.722E+2 1.741E+2 2.029E+2 1.869E+2 2.663E+2 1.286E+2 

F17 1.800E+2 2.142E+2 1.457E+2 2.014E+2 2.026E+2 1.888E+2 2.008E+2 1.355E+2 1.422E+2 

F18 7.210E+2 3.897E+2 7.128E+2 6.875E+2 8.945E+2 7.831E+2 3.532E+2 7.518E+2 6.664E+2 

F19 6.470E+2 4.203E+2 8.662E+2 7.715E+2 9.592E+2 7.571E+2 3.551E+2 5.248E+2 7.176E+2 

F20 8.345E+2 5.331E+2 6.634E+2 6.557E+2 7.034E+2 7.827E+2 3.546E+2 5.934E+2 6.149E+2 

F21 1.201E+3 1.072E+3 8.933E+2 1.106E+3 1.043E+3 1.001E+3 5.227E+2 7.765E+2 4.955E+2 

F22 8.446E+2 7.726E+2 7.882E+2 8.012E+2 8.398E+2 7.033E+2 8.156E+2 7.123E+2 7.891E+2 

F23 9.629E+2 8.257E+2 1.100E+3 9.935E+2 1.060E+3 9.983E+2 6.070E+2 8.951E+2 7.982E+2 

F24 7.466E+2 2.681E+2 4.069E+2 5.399E+2 6.750E+2 9.066E+2 2.301E+2 3.767E+2 2.000E+2 

F25 1.810E+3 1.822E+3 1.735E+3 1.811E+3 1.809E+3 1.681E+3 1.774E+3 1.623E+3 4.255E+2 
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6 Simulations and Statistical Analysis  

In this section we compare the performance of the 
proposed algorithm (PSO-LSVN1) with respect to 
eight well-known variants: a gbest PSO with 
inertia weight, an lbest PSO using a Ring 
Topology and inertia weight, Bare Bones PSO, 
Attraction-Repulsion PSO, Quadratic Interpolation 
PSO, Opposition based PSO, and also we include 
the original PSO-RSVN. For all the cases the 
parameters’ settings discussed in the original 
references are assumed. As well, all the PSO 
variants use an inertia weight fixed to 𝜔 = 0.7298, 
where the coefficients 𝑐1 and 𝑐2 are fixed to 1.496. 

In case of the PSO-RSVN and PSO-LSVN 
variants, we set the diversity threshold 𝛼 = 1.0E −
5, the allowed number of objective evaluations 
without progress 𝑃 = 100, whereas for the 
sampling method ten variable neighborhoods 
(𝑀𝑀 = 10) are taken. In each simulation the 
number of particles in the swarm is 50. Likewise, 
all the algorithms are stopped when 100.000 
evaluations of the evaluation function are reached 
or when the computed error is less than 1.0E-20. 

As a benchmark suite, we have selected the 
25 test problems of dimension 10 reported at the 
CEC’2005 special session on real parameter 
optimization [26]. This collection is composed by 
5 unimodal functions (F1-F5) and 20 multimodal 
problems including 7 basic functions (F6-F12), 2 
expanded  problems (F13-F14) and also 11 hybrid 
functions where each one (F15 to F25) has been 
defined through compositions of F10 out of the F14 
previous functions. All functions were shifted to 
guarantee that their optima can never be located 
in the center of the search space.  

Tables 1 and 2 summarize the averaged error 
computed over 30 trails for each algorithm, with 
respect to the benchmark suite. For better 
understanding these simulations are conducted 
as follows: Table 1 refers to unimodal, basic 
multimodal and expanded problems, whereas in 
Table 2 we detail the behavior of all the studied 
algorithms for the composed multimodal 
functions.  

1 Here PSO-LSVN refers to a gbest model using the improved 
RSVN procedure introduced before, leading to the main 
contribution of this work. 

As a brief characterization of these results we 
can perceive that BBPSO and PSO-LSVN 
reported lowest errors (7050.20859 and 
4702.9709) in comparison to other approaches. 
But we cannot conclude anything yet. In a deeper 
study of these algorithms, several statistical tests 
to explore significant differences among them are 
used. Depending on the concrete type of data 
employed, statistical tests can be arranged into 
two classes: parametric and non-parametric [36]. 
Unfortunately, parametric tests are based on 
assumptions (independence, normally, 
homoscedasticity) which are most probably 
violated when analyzing the global performance 
of stochastic algorithms based on computational 
intelligence [37, 38]. 

Then we need to apply non-parametric tests. 
As a first step, the Friedman procedure (Friedman 
two-way analysis of variances by ranks) [39] is 
computed, for detecting significant differences 
between two or more algorithms. In other words, it 
is a multiple comparisons test detecting whether 
at least two of the samples represent populations 
with different median values or not, in a set of 𝑛 
samples (𝑛 ≥ 2). Table 3 illustrates the mean rank 
computed for the test. Using a confidence interval 

Table 4. Results achieved by the Wilcoxon test 

Algorithm1 Algorithm2 p-valuea Hipotesis 

PSO-LSVN BBPSO 0.002 Rejected 
 PSO-RSVN 0.011 Rejected 
 CLPSO 0.045 Rejected 
 LBest 0.009 Rejected 
 OPSO 0.000 Rejected 
 arPSO 0.000 Rejected 
 GBest 0.000 Rejected 
 QPSO 0.000 Rejected 

PSO-RSVN BBPSO 0.904 Accepted 

 CLPSO 0.840 Accepted 

 LBest 0.115 Accepted 

 OPSO 0.000 Rejected 

 arPSO 0.000 Rejected 

 GBest 0.000 Rejected 

 QPSO 0.000 Rejected 
a Using the Monte Carlo signification. 
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of 95%, the Friedman test suggests rejecting the 
null hypothesis H0 (𝑝-value=0.00 < 0.05), which 
means that there exist highly significant 
differences between at least two methods across 
benchmark. But how can these algorithms be 
determined? 

At the second step it is necessary to prove 
that the proposed algorithm is involved in the 
highly significant differences reported by the 
Friedman test. To do that, we compute the 
Wilcoxon signed rank test [40] with the intention 
to identify significant difference between pairs of 
algorithms.  The Wilcoxon test attempts to answer 
a simple question: do two samples represent two 
different populations? Table 4 shows the 𝑝-values 
computed by this procedure. Using a significance 
level of 0.05, corresponding to the 95% 
confidence interval, the Wilcoxon test suggests 
rejecting the null hypothesis H0 (𝑝-value < 0.05) 
for pairs involving the new algorithm PSO-LSVN. 
It definitively confirms that there exist highly 
significant differences between POS-RSVN and 
others algorithms, where the new algorithm is the 
winner since PSO-RSVN has the lowest mean 
rank according to Table 3. 

In addition, in experiments reported in Table 4 
we included others algorithms reporting good 
performance such as the original PSO-RSVN, 
while remaining pair-wise comparisons were 
omitted for better analysis of statistical outcomes. 
Also, the omitted pair-wise samples do not 
suggest any relevant information demonstrating 
the comparative superiority of our proposal. Then, 
from computed results a relevant conclusion 

came out: the Wilcoxon test reveals that there 
exist no enough reasons for rejecting the null 
hypothesis H0 (which means that 𝑝-value > 0.05) 
for the following pairs: PSO-RSVN vs. BBPSO, 
PSO-RSVN vs. CLPSO, and PSO-RSVN vs. 
Lbest. However, the simplicity and robustness of 
BBPSO make this approach a preferable choice 
for handling problems with a large number of 
multimodal optima. 

In general, the PSO-LSVN method introduces 
three new parameters that should be fixed by the 
experts: the threshold 𝛼 for the average distance 
around the swarm center, the number of 
evaluations of the objective function without 
progress, and the number of neighborhoods 𝑀𝑀. 
The first factor is a real-value used as a low 
threshold for the diversity measure. The wrong 
selection of this parameter could be significant for 
the algorithm performance: too high values will 
affect the PSO-LSVN exploitation ability, due to 
the fact that false premature convergence states 
could be detected, whereas too low values could 
never detect an existing premature convergence 
state. Empirical results showed that values from 
1.0E-2 to 1.0E-8 are a good choice. 

Another central user-specify parameter is the 
allowed number of evaluations without progress; it 
is relatively easy to set and will be automatically 
calculated depending on the maximal number of 
evaluations for the algorithm execution (e.g. 
𝑃 = 𝑛/10). The reader should notice that it will be 
used if the swarm diversity remains stable but the 
objective function does not suffer any 
improvement. As a final point, the number of 

Table 3. Mean Rank achieved by the Friedman test 

Algorithm Mean Rank a Std deviation 
PSO-LSVN 2.16 2.224E+4 

BBPSO 3.28 3.325E+4 
PSO-RSVN 3.36 6.415E+4 

CLPSO 4.60 4.030E+5 
LBest 5.08 2.495E+5 
OPSO 6.12 2.752E+5 
arPSO 6.36 1.670E+5 
GBest 7.00 4.059E+5 
QPSO 7.04 3.138E+5 

a Monte Carlo signification (𝑝-value) = 0.000 
Fig. 5. LSVN simulation: the average distance around 
the swarm center for the Rastrigin’s problem 
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neighborhoods controls the partitions’ number 
used in the sampling stage. The recommended 
values for this parameter are either 𝑀𝑀 = 5 or 
𝑀𝑀 = 10. In fact, it could be successfully fixed to 
𝑀𝑀 = 10 in all the cases. 

For better understating of the behavior of the 
swarm reorganization process, Fig. 5 illustrates 
the average distance around the swarm center for 
the Shifted Rastrigin’s Function during the 
optimization process. It is a multimodal, shifted, 
separable benchmark having a huge number of 
local optima. Of course this problem could be a 
challenge for any optimization problem, since a 
large number of local optima could induce 
premature convergence states. In fact, it should 
be perceived that the swarm diversity is gradually 
lost, but it is restored using the reorganization 
scheme implemented in the PSO-LSVN 
algorithm. 

 

Of course, only guarantying proper swarm 
diversity we can’t ensure to avoid local optima. 
But preserving the global diversity in the artificial 
population helps PSO-based algorithms to 
discover better peaks, hence enhancing the 
metaheuristic performance. Moreover, most 
attempts to do that perform quite well for 
multimodal problems, but the global convergence 
rate is seriously affected when unimodal or even 
relatively simple multimodal functions are 
optimized. Actually, another conclusion from 
experiments is that the proposed PSO-LSVN is 
capable to efficiently optimize both unimodal and 
multimodal benchmark. 

As a future work the authors will be enrolled 
in a deeper study of the effects on varying the 
parameters over the algorithm behavior. Besides, 
it is relevant to survey the algorithm performance 
when the dimensionality of the search space 
increases, and hence increases the total number 
of local optima. To finish this section, we present 
the reader an open question: could the basis of 
the LSVN procedure be a starting point to 
formulate a new metaheuristic? 

7 Conclusions 

Particle Swarm Optimization has proven to be an 
effective search method for solving challenging 
real-valued optimization problems. However, PSO 

algorithms using a gbest model or fully connected 
topology frequently are attracted to local solutions 
causing premature convergence, as a result of 
the progressive lost of the population diversity. 
Also, stagnation configurations are frequent, 
where particles are unable of discovering better 
optima, but the particle swarm diversity remains 
“stable” during the algorithm execution. To deal 
with these undesirable drawbacks, several 
approaches have been introduced, mainly 
oriented to increase the diversification in the 
artificial population. 

In this paper we proposed a modification of 
the RSVN procedure, which was designed to deal 
with non-progress configurations. Here the key 
idea of the RSVN procedure is to improve the 
diversity of the artificial population from the 
selection of samples around the global-best point 
found during the search.  

The modifications introduced in this paper are 
mainly oriented to replace the uniform distribution 
by a Lévy generator, and to incorporate a novel 
operator for recombining the selected samples. 
Summarizing, these variations allows the PSO-
LSVN algorithm to perform better exploration 
during the sampling process, thus leading to a 
reasonably improved particle swarm. 

We also conducted statistical analyses which 
confirm that there exist highly significant 
differences between the proposed PSO-LSVN 
and the other algorithms selected for comparison. 
From our point of view these results are a direct 
consequence of the strategy for detecting non-
progress configurations, as well as the scheme 
for reorganizing the swarm.  

It should be also remarked that the LSVN 
procedure induces a reduced extra-computational 
cost since it is activated in some iterations thus 
preserving the high convergence rate of the PSO 
metaheuristic. Although LSVN requires specifying 
three parameters that may be easily fixed by 
users, future work will be focused on extending 
the statistical analysis to the effects of parameters 
on the PSO-LSVN performance. As well, its 
behavior when the dimensionality of the search 
space increases will be studied across 
benchmark. 
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