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Abstract. In this paper, a research about the usability, 

advantages and disadvantages of using Compute 
Unified Device Architecture (CUDA) is presented, 
implementing an algorithm based on populations called 
Particle Swarm Optimization (PSO) [5]. In order to test 
the performance of the proposed algorithm, a hide 
watermark image application is put into practice. The 
PSO is used to optimize the positions where a 
watermark has to be inserted. This application uses the 
insertion/extraction algorithm proposed by Shieh et al. 
[1]. This algorithm was implemented for both sequential 
and CUDA architectures. The fitness function—used in 
the optimization algorithm—has two objectives: fidelity 
and robustness. The measurement of fidelity and 
robustness is computed using Mean Squared Error 
(MSE) and Normalized Correlation (NC), respectively; 
these functions are evaluated using Pareto dominance. 

Keywords. Parallel particle swarm optimization, 

watermarking, CUDA, image security. 

Algoritmo paralelo PSO para una 
aplicación de marcas de agua  

en un GPU 

Resumen. En este artículo se presenta una 

investigación de la usabilidad, ventajas y desventajas 
de usar Compute Unified Device Architecture (CUDA) 
implementando un algoritmo basado en poblaciones, 
Optimización por Cúmulo de Partículas (PSO) [5]. Para 
probar el rendimiento del algoritmo propuesto, se 
realizó la implementación de una aplicación de marcas 
de agua ocultas. El PSO es usado para optimizar las 
posiciones donde la marca de agua debe ser insertada. 
Esta aplicación usa el algortimo de inserción/extracción 
propuesto por Shieh et al. [1]. El algortimo completo fue 
implementado para las arquitecturas secuenciales y 

CUDA. La función de optimización —usada en el 
algoritmo de optimización— es la unión de dos 
objetivos: fidelidad y robustez. La medición de la 
fidelidad y robustez es procesada usando el Error 
Cuadrático Medio (MSE) y la Correlación de 
Normalización (NC) respectivamente; estas funciones 
son evaluadas usando dominancia de Pareto.  

Palabras clave. Optimización por cúmulo de partículas 

en paralelo, marcas de agua, CUDA, seguridad en 
imágenes. 

1 Introduction 

The digital age introduced a new way to share 
information (files, audio, video, image, etc.), and 
there is no guarantee that someone else may use 
it without authorization, that is why watermarking 
appeared as an innovative way to protect 
information. 

Digital watermarking is presented when a 
pattern is inserted in an image, video or audio file, 
it helps to copyright the information in the files. In 
the case of image watermarking, it is divided in 
two groups: visible and invisible watermarks. 

A visible watermark is a visible semi-
transparent text or image overlaid on the original 
image. It allows the original image to be viewed 
but still provides copyright protection by marking 
the image as its property. Visible watermarks are 
more robust against image transformation 
(especially if one uses a semi-transparent 
watermark placed over the whole image). Thus 
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they are preferable for strong copyright protection 
of intellectual property in digital format [2]. 

An invisible watermark is an embedded image 
that cannot be perceived with human eyes. Only 
electronic devices (or specialized software) can 
extract the hidden information to identify the 
copyright owner. Invisible watermarks are used to 
mark a specialized digital content (text, images or 
even audio content) to prove its authenticity [2]. 
Evolutionary computation, a subfield of Artificial 
Intelligence, uses models based on populations to 
solve optimization problems. Basically, these 
models were inspired by the mechanisms of 
natural evolution. Another set based on biological 
models and classified as bioinspired algorithms 
includes Ant Colony and Swarm-based 
algorithms. These are a different way to solve 
problems based on the behavior of animals or 
systems whose evolution lasts for centuries. 

In recent years, new and cheaper technologies 
such as CUDA architecture have emerged with 
the concept of massive parallelism for general-
purpose problems. The advantage of this 
technology is that every person with a personal 
computer has the possibility of taking advantage 
of the massive parallelism to accelerate 
procedures. 

The process of watermarking can be applied to 
copyright any sort of digital information. In some 
fields like financial banking, it is necessary to 
perform a process involving a big quantity of 
information as soon as possible. On one hand, 
this is a reason to look for a new and cheaper 
technology such as CUDA to accelerate the 
process. On the other hand, the need to improve 
the watermarking process against modifications 
such as cropping, rotation, flipping, scaling, 
changing colors, etc., was the reason to use an 
optimization process. The idea of using PSO as 
an optimization algorithm comes forward owing to 
the fact that it has few parameters to adjust. 

The rest of the paper is organized as follows. 
Section 2 offers an explanation of how the 
watermarking algorithm works and the metrics 
used to evaluate the watermarked image quality. 
In Section 3, an overview of the PSO algorithm is 
presented. Section 4 shows the optimization 
algorithm used in this work. In Section 5, tests 
and results are presented and analyzed. Finally, a 
discussion concerning advantages and 

disadvantages of using GPUs as a technology to 
implement algorithms based on populations is 
presented. 

2 Methods 

With a vast volume of information flowing on the 
Internet, watermarking is widely used to protect 
the information authenticity. The need to copyright 
a huge quantity of digital files spending the less 
possible amount of time and avoiding information 
loss were the reasons to propose the use of an 
algorithm for watermarking —Shieh algorithm—, 
Particle Swarm Optimization as an optimizer, and 
finally a GPU —based in CUDA architecture— to 
accelerate the process. 

2.1 The Watermarking Algorithm 

Shieh et al. [1] have proposed an algorithm to 
insert and extract watermark based on Discrete 
Cosine Transformation (DCT). This 
transformation is used due to the fact that it is not 
necessary to have the original cover to extract the 
watermark. Dealing with a huge number of 
images, it would be very expensive to store all 
cover images for the watermark extraction. Figure 
1 shows an adjustment of the Shieh algorithm 
used in this work. 

Once the original image is loaded in memory 
and after the DCT, the ratio values are calculated 
using DC and AC coefficients. Next step 
calculates the relation between the image content 
and the embedding frequency bands (polarities). 
Then, the watermark image is inserted in the 
selected bands of each 8x8 block. Quantization is 
used as an attack to the watermarked image, and 
it is necessary for the optimization process. 
Finally IDCT is computed and the watermarked 
image is obtained (see [3] for more details about 
the CUDA implementation). 

2.1.1 Watermarking Metrics 

In order to evaluate the performance of a 
watermark algorithm to hide the information, 
some metrics have been proposed. The 
watermark algorithm has to be capable to hide the 
mark data and to prevent distortions of the image. 
In order to propose a simpler way to measure the 
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fitness and the robustness spending the shortest 
time possible, the MSE and the NC were used. 

 Watermark Fidelity. Fidelity represents the 
similarity of the watermarked image with the 
original image. Thus, mean squared error 
(see Equation 1) was utilized to measure 
fidelity. It ought to be close to zero to have a 
good correspondence between the non-
watermarked and the watermarked image.  
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 Watermark Robustness. Robustness 
represents the resistance of the watermark 
against attacks (compression, rotation, 
scaling, among others) done on the 
watermarked image. The normalized 
correlation NC (see Equation 2) is used to 
measure robustness. It applies the logical 
operation exclusive disjunction, also called 
exclusive or. Bitwise operations are faster 
therefore, reduce the runtime. The NC value 
must be close to zero between the original 
watermark (W) and the extracted watermark 
(W’), to prevent a watermark image 
information loss. 
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The exclusive or calculation is shown in 
Table1. 

The NC and the MSE are computed for each 
8x8 block as shown in Fig. 2. This was carried out 
with the purpose of dividing, as much as possible, 
the data in GPU. When measuring the MSE in 
each block, just 64 comparisons are necessary, 
they are executed at the “same time” in the other 
blocks. In the sequential process, 512x512 
evaluations one after another are needed for a 
512x512 image size. The same case was applied 
for the NC: instead of being calculated for the 
whole image (as in the sequential form), it was 
computed for each block. 

 
Fig. 1. Watermarking algorithm 

 

Fig. 2. Block organization to calculate MSE and NC 

Table 1. Exclusive OR 

W W’ Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
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2.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a 
population-based stochastic optimization 
technique developed by Eberhart and Kennedy in 
1995 inspired by social behavior of bird flocking or 
fish schooling [10]. 

PSO shares many similarities with evolutionary 
computation techniques such as Genetic 
Algorithms (GA). The system is initialized with a 
population of random solutions and searches for 
optima by updating iterations. However, unlike 
GA, PSO has no evolution operators such as 
crossover and mutation. In PSO, potential 
solutions, called particles, fly through the problem 
space by following the current optimum particles. 
It has been successfully applied to many 
problems in several fields such as biomedicine [7] 
and energy conversion [4]. Image analysis is one 
of the most frequent applications and it is 
performed for biomedical images [9], microwave 
imaging [6, 8], among others. 

2.2.1 Basic PSO Algorithm  

Each particle keeps track of its coordinate in the 
problem space, which is associated with the best 
solution (fitness) achieved so far (this fitness 
value is stored). This value is called pbest. 
Another “best” value that is tracked by the particle 
swarm optimizer is the best value, obtained so far 
by any particle in the neighborhood of a given 
particle. This location is called lbest. When the 
particle takes all the population as its topological 
neighbors, the best value is a global best and is 
called gbest. 

At each time step, the PSO concept consists 
of changing the velocity (acceleration) of each 
particle toward its lbest and gbest locations. 
Acceleration is weighted by a random term, with 
separate random numbers being generated for 
acceleration toward lbest and gbest locations. 

After finding the two best values (lbest and 
gbest), the particle i updates its velocity and 
position with Equations 3 and 4, where i = 1, 2, 
3…NS. 

  (   )

   ( )      (  ( )    ( ))

      (  
 ( )    ( )) 

(3) 

  (   )    ( )    (   ) (4) 

ϕ1 and ϕ2 are positive constants called 
acceleration coefficients, NS is the total number 
of particles in the “swarm”, r1 and r2 are random 
vectors, each component is generated within 
[0,1], and g represents the index of the best 
particle in the neighborhood. The other vectors 
Xi=[x1, x2,…, xiD] ≡ position of the i-th particle; Vi = 
[v1, v2,…,viD] ≡ velocity of the i-th particle; Bi ≡ 
best historical value for the i-th particle found, Bi

g
  

≡ best value found for the i-th particle in the 
neighborhood [5]. For details about the CUDA 
implementation see [3]. 

2.3 The Optimization Algorithm 

The objective of optimization is to find the best 
frequency band set to insert the watermark within 
the image. Different frequency bands are tested 
through the iterations of the algorithm finding out 
the best solution. At the end of the execution the 
application has as results the watermarked image 
and a matrix with the whole best positions 
(frequency bands) to insert the complete 
watermark. 

The algorithm in charge of doing the 
watermark optimization is the PSO, and at the 
same time it uses Pareto dominance to evaluate 
the fitness function through the MSE (fidelity) and 
NC (robustness). This process is detailed as 
follows. 

1. Using the DCT idea to split the image in 8x8 
blocks, each block is used as a swarm. An 
image of 512x512 has 4096 blocks; hence 

Algorithm 1. Basic PSO Algorithm 

1: Initialize particles population 
2: while do not get the max number of iterations or 

the optimal solution do 
3:  Calculate the fitness for each particle i 
4:  Update Bi if pbest is better than the last one 
5:  Calculate Big i of the neighbors 
6:  for each particle i do 
7:   Calculate Vi according to 3 
8:   Update Xi   according to 4 
9:   Update best global solution (gbest) 
10:  end for 
11: end while 
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each block will be a swarm. The number of 
particles by swarm is specified as a 
configuration parameter of the algorithm. 

2. Each particle has a position vector. The 
vector size depends on the number of 
watermark bits used to be inserted in each 
block of the image. If the watermark size is 
128x128 and if it is divided uniformly into 
4096 blocks of the image, then 4 bits are 
inserted in each block. Each position 
corresponds to a band in the 8x8 block where 
the watermark bits are inserted. 

At the beginning, all the swarms are initialized 
randomly (each swarm must have the same 
particle number). If 4 bits are to be inserted, 4 
bands are required, and then 4 random numbers 
must be created between 1 and 63. This means 
that each particle will consist of 4 bands (position 
vectors). 

 
If each swarm has 5 particles, every particle 

has a set of 4 bands used to originate 5 different 
solutions. To generate solution 1, all the particles 
with index 1 are taken from every swarm and 
joined; to generate solution 2; all the particles with 
index 2 are taken from every swarm and joined, 
and so on. This procedure is shown in Fig. 3. 

3. After the insertion and extraction operations, 
the MSE (see Equation 1) and the NC (see 
Equation 2) are calculated. Based on MSE 
and NC, the fitness value is estimated. 

4. One of the particles must be selected as the 
best global. Among the best options 
generated, one of them is chosen to be the 
best global. To choose the local best, the 
particle is considered to add up the MSE and 
the NC. If the new value is closer to zero than 
the old one, the new particle replaces the old 
one; otherwise the old one continues in the 
process. 

5. In the last step, the velocity and the new 
position of the particles are calculated 
according to Equations 3 and 4. This 
generates the new bands and new iteration 
begins. Fig. 4 shows the whole algorithm. 

 

Fig. 4. The optimization algorithm 

 

Fig. 3. Generation of solutions taking particles P1 and 

P2 from the different swarms, bands B1, B2, B3 and B4 
generate the corresponding solution 



386 Edgar García Cano and Katya Rodríguez 

Computación y Sistemas Vol. 17 No.3, 2013 pp. 381-390 
ISSN 1405-5546 

3 Test and Results 

All tests were executed on two different servers 
with the features shown in Tables 2 and 3. 

In order to test the implementations, Fig. 5 
shows the original image used in the algorithm 
and Fig. 6 shows the watermark image. For the 
experiments, the size of the images is 515x512 
and they are in gray scale. 

3.1 Results of the Algorithm 

Tables 4 and 5 show the runtime of the 
watermarking optimization. Parts A and B show 
five experiments with different number of 
iterations using the sequential and CUDA 
versions. These experiments were performed to 
compare the amount of time used for the 
algorithm and the quality of the results based on 
the idea that the operations executed in the GPU 
must be faster than the ones computed in the 
CPU. 

Part C of Tables 4 and 5 show the runtime for 
the sequential implementation with 10 and 30 

iterations, but without random number generation. 
This was made to compare CUDA runtime and 
check if CUDA implementation is faster than the 
sequential implementation without random 
numbers generation. 

Using random numbers in the sequential 
version produced a remarkable difference in time. 
The use of those numbers consumes a big 
quantity of time due to its necessity to spend time 
in the CPU to generate different numbers. For the 
sequential version, random numbers are 
generated using the C function drand48 that 
returns a pseudo-random number in the range 
[0.0,1.0). On the GPU, random numbers are 
generated using a library called curand. 

In the case of the GPU (Part D of Tables 4 and 
5), random numbers are generated directly in the 
constant GPU memory; there is no need to 
transfer them from the host to the device. This is 
why the difference, in terms of runtime, between 
the option with random numbers and the option 
without random numbers in CUDA is minimal. 

Reviewing the values (Tables 4 and 5) of the 
initial fitness and the final fitness, it is noteworthy 
that the sequential version gives better results 
than the ones obtained from the GPU. For all the 
cases, the runtimes indicate that GPU is faster 
than CPU, even when all data have been loaded 
or when static numbers in the CPU version are 
used. Thus, it is possible to set up that, at least 
for this version of the application, if the user wants 
a good optimization for the watermarking, the 
sequential version must be used. However, if the 
user needs a quick approximation, the GPU 
version must be applied (for other results see [3]). 

Table 2. CPU server features 

Server name Cores CPU type 

Uxdea 8 
Intel Xeon E5620 @ 

2.4GHz 

Geogpus 8 
Intel Xeon E5677 @ 

3.47GHz 

Table 3. GPU server features 

Server name Cores GPU 

Uxdea 240 Tesla C1060 

Geogpus 240 Tesla C1060 

 

 

Fig. 5. Original image (Barbara) 

 
Fig. 6. Watermark image (© 2012 

BancTec, Inc., All rights reserved) 
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Table 4. Runtime for PSO on Geogpus 

10 Iterations 

A 
Sequential 
(min) 

Initial 
fitness 

Final fitness 
 

CUDA (s) Initial fitness Final fitness 

1 53.7133 3.0079 0.24625 6.8422 5.3136 4.9884 

2 53.6950 5.7397 0.27473  6.6205 0.66101 0.33551 

3 53.6600 2.9303 0.25068 6.6103 0.82102 0.50254 

4 53.6517 3.5922 0.27855 6.6197 15.315 14.716 

5 53.6433 4.2929 0.2387 6.6786 1.9163 1.5937 

 53.6727  6.6743   
 

30 Iterations 

B 
Sequential 
(min) 

Initial 
fitness 

Final fitness 
 

CUDA (s) Initial fitness Final fitness 

1 161.35 2.4226 0.21096 18.126 1.7282 1.324 

2 160.6917 3.4672 0.2026  18.516 0.78431 0.39118 

3 160.635 5.8846 0.23375 18.081 0.81376 0.40794 

4 161.075 3.1447 0.19965 18.397 1.6347 1.2302 

5 161.35 3.3854 0.19588 18.113 1.4422 1.0504 

 161.0203  18.2466   
 

Sequential no random numbers 

C 10 Iterations 
Initial 
fitness 

Final fitness 
 

30 Iterations Initial fitness Final fitness 

1 26.228 4.7199 0.22448 72.8140 26.167 0.223 

2 26.108 5.1654 0.29945  72.6400 6.8238 0.23352 

3 26.208 2.4494 0.2621 72.8590 7.7055 0.21568 

4 26.279 10.571 0.26432 72.7310 1.9816 0.20543 

5 26.167 6.073 0.20027 73.0250 2.9215 2.9215 

 26.1980  18.2466   

 

CUDA no random numbers 

D 10 Iterations 
Initial 
fitness 

Final fitness 
 

30 Iterations Initial fitness Final fitness 

1 6.5794 2.8593 2.5458 17.7430 1.1509 0.75917 

2 6.5145 1.2957 0.97485  17.9710 7.8518 7.215 

3 6.6214 0.82386 0.49934 17.8740 0.85486 0.47526 

4 6.6271 5.2253 4.8637 17.6850 5.6334 5.2352 

5 9.8096 2.321 1.996 17.0650 0.49091 0.1239 

 7.2304  17.6676   
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Table 5. Runtime for PSO on Uxdea 

10 Iterations 

A 
Sequential 
(min) 

Initial 
fitness 

Final fitness 
 

CUDA (s) 
Initial 
fitness 

Final fitness 

1 75.0933 4.7145 0.288 17.696 2.429 2.1085 

2 75.1300 11.316 0.3058  17.754 0.9868 0.64933 

3 75.1467 5.4008 0.254 17.744 0.85646 0.53621 

4 75.1433 3.1818 0.2784 17.626 2.1421 1.8232 

5 75.0767 3.1201 0.2568 17.696 3.9049 3.6015 

 75.1180  17.7032   

30 Iterations 

B Sequential (min) 
Initial 
fitness 

Final fitness 
 

CUDA (s) Initial fitness Final fitness 

1 225.3833 3.8861 0.22232 48.535 0.70031 0.30285 

2 225.1 4.0846 0.20906  48.635 1.4996 1.1144 

3 225.2667 2.5326 0.20198 48.794 2.0107 1.6072 

4 224.8833 3.3661 0.2154 48.597 6.3867 5.4775 

5 225.3833 4.4556 0.21926 48.757 0.67997 0.28269 

 225.2033  48.6636   

Sequential no random numbers 

C 10 Iterations 
Initial 
fitness 

Final fitness 
 

30 Iterations Initial fitness Final fitness 

1 36.363 6.3162 0.24992 100.54 3.3363 0.21798 

2 36.664 3.0594 0.2729  100.64 2.3531 0.22367 

3 36.289 3.2031 0.26768 100.5 8.4095 0.20502 

4 36.302 2.9081 0.25941 100.59 3.1055 0.20916 

5 36.404 3.902 0.32894 100.51 5.426 0.22008 

 36.4044  100.556   

CUDA no random numbers 

D 10 Iterations 
Initial 
fitness 

Final fitness 
 

30 Iterations Initial fitness Final fitness 

1 17.347 1.041 0.72842 47.8740 0.66338 0.26873 

2 17.395 1.2237 0.90721  47.9710 7.859 7.255 

3 17.59 5.0348 4.1984 47.9920 2.8143 2.4339 

4 17.462 5.149 4.8263 47.8480 4.5469 4.1704 

5 17.577 1.1466 0.8309 48.1320 0.8529 0.46197 

 17.4742  47.9634   
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4 Conclusions 

Since there is no standard configuration for the 
blocks, threads or memory treatment in the GPU, 
it is necessary to make analysis and design of the 
procedures involved in a particular application to 
take advantage of parallelism. In order to use 
parallel programing in a GPU, it is necessary to 
shift from sequential to parallel thinking and to 
learn how to divide a huge problem into small 
ones (divide and conquer), attempting to obtain 
the best performance. For example, in the 
calculation of the NC, only 4 threads were 
required to perform comparison, but in the case of 
the MSE 64, threads working at the “same time” 
were used. Therefore, the configuration of the 
blocks and threads for an application on a GPU 
must be carefully analyzed. 

Different options to implement the PSO were 
analyzed, but the version that uses as much 
swarms as the number of blocks to divide an 
image in the DCT was implemented. The idea 
was to divide a big problem into smaller ones, 
which suited the parallel paradigm. As it has been 
established, there is no standard configuration in 
CUDA architecture, so the accordance between 
configuration and the need of the function was 
achieved. The PSO has to evaluate two vectors: 
velocity and position. Position depends on 
velocity that is why velocity is to be computed 
first. If there are 4096 swarms—4096 blocks—
and each swarm has five particles, then each of 
them needs to update the velocity vector. The 
number of operations to be calculated in a CPU is 
4096 (swarms) * 5 (particles) * 1 (operation) = 
20480 operations one after another. In the case of 
the same operations on the GPU, the same 
20480 operations are executed, but the difference 
is that there are 4096 swarms with 5 threads 
working in parallel computing one operation, 
hence there are 20480 threads working at the 
same time. If one thread in the CPU spends 1 
second per operation, the runtime will be 20480 s, 
but in the case of the GPU there are 20480 
threads working at the same time, and they spend 
1 second to finish the calculus. In the last 
example, the speed of the processor is not 
considered, neither CPU nor GPU, nor the 
upload/download of the data to/from the GPU. 

The velocity vector needs random numbers to 
be calculated (see Equation 1). In order to 
generate random numbers, a library called curand 
was used. This library is useful because it is easy 
to generate a lot of numbers in a short time; the 
problem comes with the memory. If there is a big 
quantity of these numbers generated and held in 
global memory, there might be a shortage of 
space to store other data. In one iteration of the 
PSO, two random numbers are used to calculate 
the velocity value. If there are 4096 blocks with 5 
particles each, 40960 random numbers for 
iteration are needed. There is another type of 
memory on the GPU, the constant memory. This 
memory is loaded in the GPU but it cannot be 
changed. This memory was considered to store 
the random numbers because they do not modify 
its value on the execution of the calculation of the 
velocity value. 

Another feature that has to be considered 
(from GPU to GPU) is the processor velocity. This 
is evident in the experiments because the 
Geogpus server is faster than the Uxdea server. 

The analysis done in the present work shows 
that the use of CUDA helps to improve the 
performance of the application and that an 
algorithm based on population can be 
implemented in it, as long as the developer is 
aware of the features of this technology. 

5 Future Work 

The first phase of this project is focused on the 
implementation with the elemental CUDA features 
of a basic algorithm based on population; 
however, the CUDA architecture may be better 
exploited. The second phase will be focused on a 
combination of other CUDA features, such as 
streams, page locked memory and mapped 
memory. The aim of the third phase is to improve 
operations on the CPU and MPI to distribute tasks 
(in this case different swarms) in a cluster by 
mixing other technologies, such as Open MP. 
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