
A Semantically-based Lattice Approach for Assessing Patte rns
in Text Mining Tasks

John Atkinson, Alejandro Figueroa, and Claudio Pérez
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Abstract. In this paper, a new approach to automatically
assessing patterns in text mining is proposed. It
combines corpus based semantics and Formal Concept
Analysis in order to deal with semantic and structural
properties for concepts discovered in tasks such as
generation of association rules. Experiments show
the promise of our evaluation method to effectively
assess discovered patterns when compared with other
state-of-the-art evaluation methods.
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Un enfoque de lattice basado en
semántica para evaluar patrones en

tareas de minerı́a de textos

Resumen. En este artı́culo, se propone un nuevo
enfoque para la evaluación automática de patrones
en minerı́a de textos. Éste combina semántica
basada en corpus y Análisis Formal de Conceptos
con el fin de manejar propiedades estructurales y
semánticas para conceptos descubiertos en tareas
tales como generación de reglas de asociación. Los
experimentos muestran los resultados promisorios de
nuestro método para evaluar efectivamente patrones
descubiertos cuando se compara con otros mtodos de
evaluación de la literatura.

Palabras clave. Minerı́a de textos, lattices
conceptuales, análisis semántico, reglas de asociación.

1 Motivation

Despite the effort of the different text mining
approaches to measure interestingness, for
example, in association rules, there is no evidence
that this actually leads to valuable patterns. For
text mining [8, 7] patterns also need to be assessed
in terms of interestingness or novelty [1]. However,
due to the nature of the natural language texts, this

task poses several problems regarding with text
analysis. Hence traditional interestingness metrics
cannot be applied.

Text Mining can potentially benefit from
successful evaluation techniques from Data
Mining and Web mining [7]. However, data mining
methods cannot be immediately applied to text
data for text mining as they assume a structure in
the source data which is not present in free text.
Hence the assessment of the patterns discovered
from texts has almost been a neglected topic in the
majority of the text mining approaches.

A major problem is that current text mining
methods do not always discover real interesting
patterns (i.e., association rules). This may be
partially due to the fact that no domain users
are involved in the evaluation, domain knowledge
is not usually considered and further semantic
relationships measuring interestingness are very
rare. Patterns evaluation for text mining has
been a neglected topic so the few existing
approaches fall into two groups: those which
are domain-independent [3, 1] and those which
use external resources such as lexicons and
ontologies. One of the drawbacks with the first one
is that it does not take advantage of domain models
in order to assess implicit relationships within the
generated patterns so as to assess their novelty.
Whereas, the second kind of approach is highly
dependent on the existence and organization of
electronic concept resources such as ontologies
and thesaurus.

Accordingly, in this paper, a new approach
which combines structural and semantic features
is proposed in order to accurately assess the
real interestingness of patterns discovered (i.e.,
association rules) by a traditional text mining task.
The model uses structural knowledge extracted
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from domain model by using Formal Concept
Analysis (FCA) methods [3, 4] in order to assess
the novelty of patterns and has it augmented
with semantically-based knowledge via Latent
Semantic Analysis (LSA) [1, 5] which is applied to
enable partial matching in FCA [4].

The paper is organized as follows: section 2
discusses the main approaches to evaluate
interestingness in some specific Text Mining task
(i.e., association rules generation), in section 3 the
combined model for pattern evaluation which uses
FCA and LSA is presented, section 4 describes
and discusses the main experiments using the
model and state-of-the-art metrics and human
experts, and finally section 5 draws the main
conclusions of the work.

2 Patterns Evaluation in Text Mining

A major problem with state-of-the-art evaluation
metrics to assess discovered patterns in data
mining is that they all have been designed to
deal with structured relational data (i.e., support,
confidence, surprisingness, etc). Instead, in text
mining the data are unstructured and so they
cannot be easily interpreted by computers. The
lack of structure raises the difficulty of uncovering
the implicit knowledge inside the documents.
Furthermore, there is a huge amount of involved
linguistic implicit and explicit knowledge (i.e.,
lexical, syntactical, semantic, etc) which makes it
very difficult to identify what a pattern should look
like and to evaluate its degree of novelty. Thus,
there are plenty of well-established text mining
approaches but just a few approaches concerned
with real knowledge discovery from texts in which
finding novel stuff is a key issue.

A promising early approach which indeed dealt
with quantitative pattern evaluation for text mining
measured the degree of novelty of rules discovered
from texts extracted from Web collections based
on existing lexical and semantic information in the
general-purpose lexical database WordNet. The
evaluation involves assessing the coverage of a
rule (i.e., number of items covered by the rule in a
training set), and the semantic interestingness. For
this, items of the rule’s antecedent and consequent
are evaluated according to the semantic distance
between them in WordNet. The working
assumption here is that the longer the semantic
distance is, the more novel the relation is, and

therefore, the rule. Resulting experiments show
that the system evaluation somewhat correlates
with human judgments.

Nevertheless, this evidence shows that a
discovery task which depends on general-purpose
conceptual resource may produce misleading
results because of the lack of domain-specific
knowledge: unconnected terms–longer
distances–may lead to interesting patterns even if
they do not exist in the knowledge base [5, 8, 10].

Overall, the notion of novelty or interestingness
of these approaches relies on a specific
organization of conceptual resources, whether
they are domain-independent (e.g., WordNet)
or specific-domain (e.g., UMLS in the medical
domain). However, the effectiveness of the
methods is affected in terms of robustness as the
discovered knowledge is highly dependent on the
existing information, and the particular semantic
acquisition task in mind.

A more robust strategy which builds knowledge
models from scratch, measures the interestingness
degree of association rules [3] based on the
distance between antecedent and consequent of
the rule based on a concept lattice built by
using Formal Concept Analysis (FCA) methods [4].
FCA is a theory of data analysis that identifies
conceptual structures among data sets and
produces graphical visualizations of the inherent
structures among data that can be understood
as knowledge model (i.e., ontology). It is an
exploratory method for data analysis and provides
non-trivial information about input data of two basic
types-concept lattice and attribute implications. A
concept is a cluster of similar objects (similarity
is based on presence of same attribute values);
concepts are hierarchically organized (specific vs.
general).

For this FCA-based rule evaluation approach,
a lattice hierarchy is used to compute conceptual
distance between concepts. A concept is usually
composed of two parts: extension and intention.
Extension covers all the objects belonging to
the concept whereas the intention covers all the
objects’ valid attributes for a concept. In FCA, a
triple (G,M , I) is called a context where G and M

are sets and I ⊆ G × M . The elements of G and
M are called objects and attributes respectively.
The context is often represented by a cross-table
of objects (i.e., documents) versus attributes (i.e.,
terms or words).
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For this approach, the knowledge model (K)
represents generalization relationships between
concepts composed of terms extracted from a text
corpus. For any concept A,B ∈ K, A ⊆ B iff any
instance of A is also an instance of B. Formally,
the lattice (K,⊆) is a directed graph containing K

vertices, and the relation ⊆ defines the edges of
the graph [3].

Using this concept lattice, the degree of
interestingness of a rule is measured in terms of
the probability of going from one term k1 to other
term k2 contained in a concept of the lattice model
k what is called conformity, with these terms
appearing in the antecedent and consequent part
of the rule. Formally, the conformity of a rule k1 →

k2 according to model (K,⊆) is the probability of
transition for finding a path from k1 to k2 in the
model (K,⊆). A connection between terms is
regarded to as uninteresting as long as this is a
direct ’translation’ of the relationship between K1

and K2 hence longer paths are preferred. For
example, if the term “fruit” is more general than
“apple” (apple ⊆ fruit), then the rule “apple ⇒

fruit” will have a high conformity and therefore it
becomes ’uninteresting’.

Fig. 1. A simplified Concept Lattice

This strategy uses the ACLOSE algorithm to
generate association rules [8, 7]. Using these
rules, the created knowledge model is used to
determine the interestingness degree of each rule.
A sample model to assess pattern is seen in figure
1, where each edge between nodes (i.e., concepts)
represents a generalization relationship (i.e., k1 is
a set of k2). For the example in which terms
are extracted from text documents, conformity is
then computed keeping two kinds of relations in
mind: that between “a” and “c” where there exists
a path between the nodes (figure 1), and that
between “c” and “d” where there is no path at all
connecting them. Here, the conformity value for

a− c is greater than for c− d, so the generalization
relationship between “a” and “c” is stronger than
for “c” and “d”, hence the c − d rule may express
a more interesting pattern. This is mainly due to
the existence of a model that connects the nodes
“a” and “c‘”, whereas for the c − d, no path that
connects them was even found.

A main drawback of this evaluation method is
that human supervision is still required to build
and adjust the domain model when necessary. On
the other hand, creating concept lattices strongly
relies on exact matching of inclusion relationships
between objects. Hence only exact attributes
are considered when creating a concept in the
lattice which may discard a significant number of
approximately similar concepts [5].

3 A Multi-Strategy Approach to
Patterns Evaluation

One of the key issues with patterns evaluation
when building knowledge models (i.e., lattices) is
its restricted kinds of semantic relationships. This
can be partially due to the way the concepts are
created. In the case of lattices, creating concepts
strongly depends on exact properties of set
inclusion which may discard semantically similar
terms which are not in the set built for the concept.
On the other hand, purely semantic distance
evaluation based on LSA does not allow us
to establish specific generalization/specialization
relationships which makes difficult to compute
structure-based metrics such as conformity or
novelty.

For this, our work combines lattice-based models
and LSA-based similarity metrics in order to
provide approximate matching using semantic
distances of sets when creating knowledge
models and it, in turn, enables a more effective
mechanism for assessing patterns in the form of
association rules. Thus, this research contributes
a new multi-strategy approach to assess patterns
using automatically created semantically-based
knowledge models as follows:

— Providing a multidimensional semantic
space: contextual meaning of words in a
corpus can be inferred from occurrences
across text documents via semantic analysis.
Multidimensional vector obtained from this
task can then be used to compute semantic
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similarity/distance between terms when
creating domain models.

— Providing knowledge models by building
lattices: discovered patterns can be assessed
by measuring distances in the underlying
hierarchical concept structure in terms of
generalization/specialization connections [3].
Unlike other approaches, lattice construction
is extended to include LSA-based semantically
similar attributes when creating concepts
which in turn, may make rule evaluation more
effective as the concept creation becomes
more robust.

From now on, this two-phase strategy which
uses corpus-based semantics is called a Semantic
Concept Lattice (SCL), which allows for the
approximate creation of concepts in a lattice-like
knowledge model. Thus, our approach is
also capable of determining implicit similarity
relationships which cannot be usually captured by
structural methods such as FCA (i.e., synonyms).
The overall procedure can be seen in algorithm 1
which requires preprocessing, knowledge models
generation tasks before evaluating association
rules.

Algorithm 1. Building semantic lattices and evaluating
patterns

1: Let T a given input training text corpus
2: Let P a set of association rules to be assessed
3: T ′ ← Text Preprocessing using T

4: S ← Creating Semantic Spaces (i.e., vectors) with
LSA for T ′

5: L← Generating the Semantic Concept Lattice using
T ′ and S

6: Evaluate P according to the Conformity measure
on L

3.1 Generating Association Rules

Using simple terms extracted from a text corpus,
frequent closed itemsets and association rules are
automatically generated by using the ACLOSE

and APRIORI algorithms respectively [7]. Usual
terms included combinations of Noun−Adjective,
Noun − ProperName. It is important to highlight
that while complex linguistic structures might be
extracted from the text to represent the rules, lattice
creation restricts its inclusion sets to only contain
terms.

3.2 Text Preprocessing

In this stage, some basic preprocessing tasks for
handling natural language texts were carried out
including: Stopwords removal (i.e., non-relevant
words are removed from the text corpus in
order to avoid inferences of highly frequent words
when computing LSA spaces), Lemmatization (i.e.,
involves the reduction of the words in a corpus to
their respective lexemes), Part-of-Speech (POS)
tagging (i.e., words in a corpus are marked as
corresponding to a particular part of speech or
lexical category), Features Extraction (i.e., relevant
terms are looked for in order to get a representative
set of features representing the documents).

3.3 Generating Knowledge Models

Semantic and domain models are created based
on LSA and FCA, in order to build our Semantic
Concept Lattice (SCL):

— Creating Semantic Spaces with LSA:

Latent Semantic Analysis (LSA) is a kind
of mathematical technique that generates a
high-dimensional semantic space (aka. a
set of semantic vectors) from the analysis
of a huge text corpus. Specifically, words,
sentences or paragraphs can be represented
by these semantic vectors. The ultimate
goal of LSA is to find a data mapping which
provides information well beyond the lexical
level and reveals semantical relations between
the entities of interest [5].

This latent structure is obtained by extracting
and inferring relations of expected contextual
usage of words in passages of texts. A first
step represents the text as a matrix in which
each row stands for a unique word and each
column stands for a text passage or other unit.
Each cell contains the frequency with which
the word of its row appears in the passage
denoted by its column. Next, the cell entries
are subjected to a preliminary transformation
in which each cell frequency is weighted by
a function that expresses both the word’s
importance in the particular passage and how
much information the word type carries in
the domain of discourse. Next, LSA applies
Singular Value Decomposition (SVD) methods
[5] to the matrix so that reconstructed matrices
in fewer dimensions are said to capture the
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latent structure of the terms co-occurring in
texts.

By keeping track of the patterns of
occurrences of words in their corresponding
contexts, LSA is able to recover the latent
structure of the meaning space, this is, the
relationship between meanings of words: the
larger and the more consistent their overlap,
the closer the meanings.

Specifically, by using a text corpus, LSA
produces a set of highly-dimensional
semantic vectors representing knowledge
at the lexicosemantic level for each term of a
document. These terms will become part of
the concepts when creating a lattice. Vectors
are obtained by a combination of matrix-based
operations on the occurrences of terms and
based on SVD. This vector representation
can then be used to measure a semantic
closeness between two term vectors t1 and t2
in a semantic space S as follows:

Similarity LSA(t1, t2,S) = cosine(~t1, ~t2)
(1)

— Generating the Semantic Concept Lattice:

In order to create our Semantic Concept
Lattice (SCL), concepts are built from
terms extracted from a corpus, for which
an adaptation of FCA methods was used
[3]. Our approach considers lexicosemantic
knowledge provided by LSA in order to
add close terms into a concept of a lattice
without using any domain resource as seen in
algorithm 2. Note that a lattice uses a kind of
hierarchical relationship (i.e., a − subset− of )
which cannot be determined by pure LSA
as semantic closeness is symmetrical. Thus
it is not possible to determine the named
relationship or even its direction. In order
to deal with this, LSA semantic vectors for
each terms forming a concept, are introduced
in order to measure the similarity between
terms being added by FCA when creating the
concepts.

In the algorithm, NEIGHBORS computes
the upper neighbors of a concept (G,M)
in which G becomes the set of objects
(i.e., documents) and M becomes the set of
attributes (i.e., terms or features). It can be

Algorithm 2. Creating a Semantic Concept Lattice
(SCL)

CREATE SCL(T’,S):
with T ′ and S representing (G,M)
and the LSA semantic vectors
respectively:
1: Let L be LATTICE (G,M , I) where (G,M) and

(G,M , I) are the concept and context respectively
2: c← (∅′, ∅′′)
3: insert(c, L)
4: for all x ∈ NEIGHBORS (c, (G,M , I)) do
5: lookup(x,L)
6: if NotFound and Similarity LSA(x, c,S) >

Threshold LSA then
7: insert (x,L)
8: end if
9: x∗ ← x∗ ∪ {c}

10: c∗ ← c∗ ∪ {x}
11: c← next (c,L)
12: if NotFound then
13: exit
14: end if
15: end for
16: SCL← L

used to recursively compute all the concepts
in L of a context by starting from the smallest
concept (∅′, ∅′′) of the lattice. Every concept
c has two lists associated with it: the list of c∗

of its upper neighbors and the list of c∗ of its
lower neighbors.

One object may be shared by two different
concepts as their upper neighbor. While the
algorithm processes each of the two concepts
their shared upper neighbor must be detected
in order to get the relationships right. For
this purpose all concepts are stored in L.
Each time the algorithm finds a neighbor, it
looks for it (lookup(..)) in L to find previously
inserted instances of that concept. In case the
concept is found, the existing lists of neighbors
are updated. Otherwise, if the LSA similarity
on the semantic space S between the new
concept and x exceeds some threshold, the
previously unknown concept is entered into
the lattice.

The algorithm inserts concepts into L and
looks them up at the same time: next(c,L)
asks for the smallest concept that is greater
than c with respect to the total order ≺. To
make sure all concepts that are inserted are
also considered for their upper neighbors,
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the total order ≺ must relate to the partial
lattice order ≤ in the following way: c1 < c2
implies c1 ≺ c2. This way, recently inserted
neighbors are greater than the actual concept
with respect to ≺ and will be considered later
by next(..).

Thus, given two terms (t1 and t2) to be
incorporated into a lattice, the term t1 may
be included in a subset of t2 (with t1 being
not necessarily an exact matching of the other
term) only if the LSA similarity between both
exceeds certain threshold (thresholdLSA).
This lattice so created is called a Semantic
Concept Lattice (SCL).

Thus, if the semantic threshold (thresholdLSA)
was maximum (1.0), it would mean that a very flat
and uninteresting structure will be created (see first
lattice of figure 2) as conformity will be uniform for
all the terms of the hierarchy.

Fig. 2. SCL for thresholdLSA values of 1.0, 0.9 and 0.8
respectively

When reducing the thresholdLSA down to 0.9
and 0.8, second and third lattice of figure 2 are
obtained respectively in which distances between
the terms are much clearer so that if they appear in
some association rules their conformity would be
lower, and therefore they become potentially more
interesting. On the other hand, for thresholdLSA

values under 0.6, the generated concept structure

tends to be the same as lattice creation methods
which do not use semantic distances [3]. This may
be due to the fact all the input terms are candidates
to be part of a concept so the inclusion relation
becomes a major issue.

3.4 Evaluating Association Rules

The interestingness degree of each discovered rule
is assessed by using the automatically created
SCL. For this, each rule is measured in terms of
its conformity value which is based on two basic
tasks:

1. Computing Conformity:

For each term in the SCL, conformity is
computed against the rest of the terms of the
lattice. Conformity represents the degree
of generalization/specialization of two terms
in a concept structure so that the longer
the distance between them, the lower their
conformity is, and therefore, the relationship
becomes interesting.

2. Generating a Conformity Ranking:

Each assessed rule according to its semantic
conformity is ranked by starting from the most
interesting one (lower conformity) to the less
interesting one (higher conformity). Thus
effectiveness of an evaluation can be seen as
the position of each rule on this ranking.

4 Experiments and Results

We assessed the effectiveness of our patterns
evaluation approach by building a computer
prototype and carrying out a series of adjusting
and final experiments. Final results were compared
with some state-of-the-art metrics for patterns
evaluation and they were then correlated with
human judgment.

Note that our patterns evaluation approach
is domain-independent but for experimentation
purposes we used a corpus of nearly 100, 000
documents extracted from the Web and the
Corpus BioText Data1. Natural Language
Processing tools such as Part-of-Speech (POS)
taggers and stemmers were obtained from GENIA
and SNOWBALL2, respectively. In order to

1http://biotext.berkeley.edu/data.html
2http://snowball.tartarus.org/
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create our Semantic Concept Lattice (SCL),
the tool Concepts3 was applied and extended.
Furthermore, LSA-based vectors were obtained
using the Infomap4 library.

4.1 Setting Experiments

For preprocessing and training purposes, a k−fold

(k = 10) cross-validation method was used for
documents extracted from the original corpus so
as to set and adjust parameters for our model
which included thresholdLSA, depth of the lattice,
etc. In addition, values of traditional metrics
such as support/confidence (i.e., minsupport and
minconfidence) were systematically looked for
so that ACLOSE and APRIORI algorithms were
applied to generate relevant association rules [7].

By manually examining association rules
generated by state-of-the-art algorithms, the most
relevant patterns were obtained for minsupport
and minconfidence values under 1.0 and 0.1,
respectively. Furthermore, thresholdLSA values
were set by analyzing the quality of the knowledge
lattice being created in terms of the conformity of
the discovered rules.

Experiments show that for threshold values
between 0.0 and 0.3, the SCL becomes irrelevant
as it only contains one hierarchical level, so that the
assessed rules will be given a uniform conformity.
The average depth of the SCL built for different
threshold values showed that for a threshold
value of 0.4, the highest depth of the lattice
was obtained (approx. 3). In this scenario, the
most interesting rule seems to be “segments” →

“transmembrane, Orientation” which is assessed
in the first place. On the other hand, rules such
as “protein” → “Arf, GTPase-activating” are
evaluated in the last position of the ranking hence
it becomes ’uninteresting’. For thresholdLSA

values of 0.5, two different positions are generated
in the ranking in the first position for two rules
respectively: “segments” → “transmembrane,
Orientation” and “fur” → “Max-Planck-Institut,
Zuchtungsforschung”. On the contrary, rules
“protein” → “Arf, GTPase-activating” and
“two-hybrid analysis” → “cerevisiae, screening”
are evaluated in the last place.

For a different set of generated rules, table
1 shows rankings for thresholdLSA values under

3http://www.st.cs.uni-sb.de/∼lindig/src/concepts.html
4http://infomap-nlp.sourceforge.net/

0.2 which clearly affects the evaluation ranking
of the model. For example, for thresholdLSA

value of 0.2, the rule “crassa” → “Neurospora”
is evaluated in the first place whereas the rules
“virus” → “Vaccinia” and “actin” → “cerevisiae” are
located in the last position of the ranking. Hence
better relevant rules are obtained from the SCL for
thresholdLSA of 0.2, in terms of a deeper level in
the structure and different positions in the ranking.

Table 1. Ranking for different rules in the SCL for
increasing values of thresholdLSA < 0.2

Threshold
Rule 0.0 0.1 0.2
profilin → cerevisiae 3 3 4
actin → cerevisiae 3 3 5
glucan → Golgi 4 4 2
homolog → Drosophila 2 2 3
virus → Vaccinia 1 3 5
crassa → Neurospora 4 1 1
genome → Arabidopsis 4 1 4

4.2 Final Experiments

In order to evaluate the effectiveness of the
proposed approach, previous settings were used
to adjust the model and compare it against
other state-of-the-art association rules evaluation
metrics. For this, k − fold cross-validation
was used with the original corpus being the
testing set. Furthermore, obtained evaluations
were correlated with human judgment so as to
investigate the effectiveness of the interestingness
automatic evaluation.

Association rules were generated from a
combination of 104 features on POS tags such as
proper name, name and adjective, given a final
set of 153 different terms. A set of 25 random
rules were finally obtained and the thresholdLSA

value was set to 0.4 based on previous setting
experiments.

Final evaluation and comparisons were
carried out by using the following state-of-the-art
evaluation metrics:

M1: uses typical metrics such as support and
confidence.

M2: uses the conformity metric based on simple
lattices [3].
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Table 2. Ranking association rules using different evaluation metrics

Method Expert
Rule M1 M2 M3 M4 E1 E2

aggregation → Huntington, disease-associated 4 3 23 1 1 2
nuclear → cerevisiae, pore 1 2 12 1 2 2
protein → wild-type 4 2 13 1 2 3
multidrug → Pdr5p, ABC 4 2 10 1 1 1
archaeal → jannaschii, aIF6 4 3 7 1 1 1
substrate → amino 3 1 24 2 3 3
mammalian → C, Class 4 2 25 2 3 1
amino→substrate 3 2 11 2 5 5
Two-hybrid analysis, system→cerevisiae 4 2 4 2 2 5
cerevisiae→Saccharomyces 4 2 5 2 2 2
stalk→cerevisiae, ribosomal 4 3 6 2 1 1
cells→parental, Chemical 4 2 8 2 2 2
motif→Walker, nucleotide-binding 4 2 9 2 5 5
fungus→mushroom-producing, Schizophyllum 4 3 12 2 5 1
pore→cerevisiae, nuclear 4 2 12 2 1 1
genetic data→ DSC1/MBF 4 2 14 2 5 5
stalk→cerevisiae, ribosomal 4 2 16 2 4 3
high→cerevisiae, mobility 4 2 17 2 3 2
system→cerevisiae, Two-hybrid analysis 4 2 18 2 4 5
intermediate→covalent, Biochemical 4 3 19 2 5 4
jannaschii→archaeal, aIF6 4 3 20 2 1 4
domain→LexA, DNA-binding 4 2 22 2 5 5
albican→Candida, strains 4 3 1 2 3 4
box→A, ATP-binding 4 2 2 2 5 5
bacterium→Gram-negative, Escherichia 4 1 3 3 1 1

M3: uses the semantic dissimilarity between
antecedent and consequent of a rule based
on information provided by pure LSA with no
external or domain models.

M4: uses our SCL method to measure the
conformity of the generated rules.

At the same time, each rule was also assessed
by two human experts (E1 and E2) who measured
the degree of interestingness of the rules in
the same scale as the models. However, for
clarity’s sake, it was ’normalized’ to a scale ranging
from 1 (very interesting) to 5 (uninteresting).
Evaluation made by the four automatic methods
and the humans can be seen in table 2.

The table shows that evaluation method
(metrics) M1 assesses in the first position the
rule “archaeal” → “jannaschii, aIF6”, whereas
the same rule is seen as very interesting by
both experts. It may be due to the fact that

metrics M1 uses only statistical-based metric to
assess rules which may be not very useful to
assess interestingness/novelty. On the other hand,
metrics M2 generates three different evaluations,
having in the first place the two rules “bacterium”
→ “gram-negative, escherichia” and “substrate” →

“amino”, whereas the experts assessed 7 rules in
a first place (out of 9 different rules).

Metrics M3 evaluates in a first place the rule
“albican” → “candida, strains”. However, the same
rule is regarded to as not that interesting by both
experts (range 3 and 4). Rules evaluated using our
metrics (M4) are within the three different positions
of the ranking which suggests several coincidences
in some places. Hence our model seems to better
evaluate (i.e., higher positions) those rules that
might be more interesting. Since there is no
absolute real notion of the interestingness degree,
evaluation and ranking produced by the four metric
were correlated with human experts for the same
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set of rules. For this, the Spearman correlation (r)
was computed for all the assessments as seen in
table 3.

In general, a promising and positive correlation
was observed between experts and our metrics as
compared with the rest of the evaluation methods
(p < 0.01, t = 3.461). Furthermore, the pure
lattice-based evaluation method showed almost
no association with the real assessment. Our
approach (M4) shows a fair predictive ability for
evaluating patterns, although one expert was more
demanding in the evaluation than the other one.
This may mainly be due to that E1 has more than
20 years of experience so he got more background
knowledge to assess the patterns.

On the other hand, the pure LSA-based metrics
(M3) is better correlated with experts than the
lattice-based approach (M2) but worse than our
evaluation method (M4). A lower correlation of
metrics M2 can also be due to the fact that
the metrics considers only structural relationships,
so that the when there are implicit semantic
connections between terms, the metrics fails to
detect them.

Table 3. Correlation between experts and evaluation
metrics

Metrics
Expert M1 M2 M3 M4

E1 0,01 -0,05 0,01 0,32
E2 -0,02 -0,04 0,07 0,25

5 Conclusions

In this paper, a new metrics that combines
lattice-based methods and corpus based
semantics is proposed to automatically assess
the interestingness degree of association rules.
It allows the approach to filter and effectively
rank patterns finally delivered to users making
decisions. The model uses LSA to allow for
an approximate matching of set inclusion when
building concept structures in the form of lattices.
It makes the approach more robust to include
implicit semantic relationship which does have
not necessary generalization/specialization links.
Our strategy builds a Semantic Concept Lattice in
order to measure conformity of association rules.
Assessment of interestingness using SCL was

well correlated with human judgment as compared
with other evaluation methods. Furthermore, the
model benefits from its resource-independent
and semantically-based nature which can make it
domain independent.

Overall, results suggest that our evaluation
approach is indeed effective to assess the
interestingness degree of simple discovered
patterns in text mining in comparison with other
evaluation methods and human performance. In
addition, combining lattice-based creation methods
and corpus based semantics is very promising
to assess discovered patterns as compared with
both methods separately (LSA and lattice-based
methods).
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