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Abstract. LISCA is an unsupervised algorithm aimed
at assigning a quality score to each arc generated by
a dependency parser in order to produce a decreasing
ranking of arcs from correct to incorrect ones. LISCA
exploits statistics about a set of linguistically–motivated
and dependency–based features extracted from a large
corpus of automatically parsed sentences and uses
them to assign a quality score to each arc of a
parsed sentence belonging to the same domain of
the automatically parsed corpus. LISCA has been
successfully tested on two datasets belonging to two
different domains and in all experiments it turned out
to outperform different baselines, thus showing to be
able to reliably detect correct arcs also representing
domain–specific peculiarities.
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Selección de los arcos correctos
basada en información lingüı́stica para

análisis sintáctico de dependencias

Resumen. LISCA es un algoritmo no supervisado cuyo
objetivo es asignar un puntaje cualitativo a cada arco
generado por el analizador sintáctico de dependencias
con el fin de producir un ranking decreciente de los arcos
desde los correctos hasta los incorrectos. LISCA usa la
estadı́stica del conjunto de caracterı́sticas basadas en la
información lingüı́stica y dependencias que se extraen
del corpus grande de frases analizadas sintácticamente
por la computadora y las utiliza para asignar un puntaje
cualitativo a cada arco de la frase analizada que
pertenece al mismo dominio del corpus. LISCA se
probó exitosamente utilizando dos conjuntos de datos
de dos dominios distintos y en todos los experimentos
su rendimiento fue mejor que el de varios métodos de
referencia; ası́ se demostró su capacidad de detectar
los arcos correctos de manera confiable representando
también las caracterı́sticas especı́ficas de los dominios.

Palabras clave. Análisis sintáctico de dependencias,
arcos correctos.

1 Introduction

When applied to real–world texts (e.g. the web
or domain–specific corpora such as bio–medical
literature, legal texts, etc.), state–of–the–art
statistical parsing systems have a significant drop
of accuracy. However, if on the one hand creating
a manually annotated training set represents the
most safe way to improve the performance of a
parser or to adapt it to a domain different with
respect to the original training data, on the other
hand this is a highly expensive task in terms of
time and human effort. To overcome this problem,
over the last few years a growing interest has been
shown in exploring methods and techniques for
assigning a plausibility score to the output of a
parser. Depending on whether the scored output
is represented by a full syntactic parse or by
atomic syntactic constructions, these methods can
be divided in two main research scenarios.

The first is the case, among others, of the work
reported in [31, 12, 8, 20]. Automatically identified
reliable parses can be usefully exploited in different
applications and tasks, ranging from the domain
adaptation task in a self–training scenario [24] to
the minimization of human annotators’ efforts in
treebank construction [32].

In the second scenario, instead of identifying
reliable parses the goal is the detection of
correctly identified syntactic constructions: with
dependency–based parsers, this coincides with the
identification of correct arcs. This is the scenario
we will be dealing with in this paper. Approaches
proposed so far in the literature differ at the level
of the specific task they were meant to support
and the underlying methodology. Concerning
the supported task, the studies devoted to the
detection of correct arcs are typically carried out
with a view to: i) improving the accuracy of
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statistical parsers, as proposed in [18, 3, 29,
2, 26]; ii) adapting statistical parsers to domain
corpora outside of the data from which they were
trained, as proposed in [4, 30]; iii) supporting the
creation of hand–annotated syntactic resources
(i.e. treebanks) by identifying problematic areas for
human pre– and post–processing [1, 14, 13, 15].

From the methodological point of view,
depending on whether sets of rules, training
data or large amounts of automatically parsed
data are exploited by the correct arc detection
algorithm, approaches proposed so far can be
classified into three different classes according
to whether they are: i) rule–based, ii) supervised
or iii) unsupervised. The first is the case of [13]
and [15] who developed error detection methods
based on a “gold” grammar, i.e. by comparing
rules of the gold grammar with rules induced from
automatically parsed data with the final aim of
identifying anomalies in treebanks, or of [1] who
used a combination of rule–based and statistical
methods to detect treebank errors. [14] operate
instead in a supervised scenario by using n–grams
statistics extracted from “gold” data to detect
variations in treebanks which could represent
potential errors. [18], [3] and [2] developed a
classifier to detect errors or to identify correct
analyses in automatically parsed sentences:
they compare correct parses of a treebank
with incorrect trees automatically generated to
produce the training corpus for the error classifier.
Unsupervised approaches are adopted instead
by [29], [30] and [26] who apply the point–wise
mutual information score (or a function close
to it) to specific lexico–syntactic configurations
using statistics extracted from large automatically
parsed data to compute the reliability of arcs for
self–training purposes.

In this paper, we propose a new unsupervised
approach to assign a quality score to individual
arcs within the output of a dependency parser.
The unsupervised nature of the method permits
to avoid the development of sets of rules or
the creation of manually annotated treebanks.
Differently from other unsupervised approaches
operating on automatically parsed data, the
proposed approach is overtly devoted to the
ranking of arcs (from correct to incorrect ones)
whose evaluation is carried out in terms of the
accuracy of ranking rather than of its effectiveness
with respect to a specific task (e.g. the
improvement of the parser accuracy). Other

qualifying properties of our approach consist in
its relying on linguistic features encoded in terms
of dependency structures and in the definition
of a new arc quality score. The paper is
organised as follows: Section 2 describes our
algorithm for the ranking of arcs; Sections 3
and 4 present respectively the baselines and the
experimental set–up; achieved results are reported
and discussed in Section 5.

2 The LISCA Algorithm

The LISCA (LInguiStically–driven Selection of
Correct Arcs) algorithm takes as input a set
of parsed sentences and it assigns to each
dependency arc a score quantifying its reliability,
where a dependency arc is defined as a triple
(d,h, t), where d is the dependent, h is the
syntactic head or governor, and t is the type of the
dependency relation linking d to h. The assigned
quality score is then used to rank dependency
arcs by reliability. Note that, in principle, LISCA
can operate on the output of whatever dependency
parser.

LISCA operates in two different steps:
1) it collects statistics about a set of
linguistically–motivated features extracted from a
wide corpus of parsed sentences; 2) it calculates
a quality score for each dependency link of a
newly parsed sentence using the feature statistics
extracted from the corpus used during step 1).

2.1 Selection of Features

The features underlying LISCA are all aimed at
characterizing the arc being analyzed with respect
to structural (both global and local) properties of
the dependency tree including it. In particular,
a first set of features is aimed at positioning the
dependency arc within the tree, with respect to both
its hierarchical structure and the linear ordering of
words. This set of features based on the global
tree structure is complemented by local features,
represented respectively by dependency length,
direction and plausibility. Selected features are
said to be “linguistically–motivated” since they are
based on the dependency tree structure, and in
particular they are focused on structures widely
agreed in the literature to reflect the syntactic and
parsing complexity of sentences.
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2.1.1 Locating a Dependency Arc within the
Overall Tree Structure

This set of features is aimed at locating a
given dependency link within the overall sentence
structure. This is done by focusing on the
dependent d of the arc t being considered. A
first complex feature, aimed at locating t within the
hierarchical tree structure, combines the distance
of d from a) the root node, b) the closer leaf node,
and c) the furthest leaf node. To this specific
end, the dependency paths including t and going
from the root node to the closer and further leaf
nodes of d respectively are reconstructed. In both
cases, the shortest dependency path is selected,
whose length is measured by node counting. The
length of these two dependency paths is used as
a proxy for characterizing the positioning of the arc
t within the dependency structure, in particular for
reconstructing its depth of embedding.

This global feature is complemented by two
features focusing on local dependency sub-trees
and aimed at locating d with respect to the surface
linear ordering of words. The first feature refers
to the sub-tree headed by d and counts all its
immediate dependents, which are partitioned into
two classes according to whether they precede or
follow the head at the level of linear ordering of
words within the sentence: these two classes will
be hereafter referred to as “pre-dependents” and
“post-dependents” of d respectively. The second
feature refers to the sister nodes of d which are
reconstructed starting from the sub-tree governed
by the head h of d: again, sister nodes of d are
partitioned into two classes following their pre- or
post-d ordering.

This set of features can be seen as the
dependency–based counterpart of syntactic
complexity measures such as node-counting
algorithms that count the number of nodes in
the phrase markers of syntactic constructions:
this is the case of, e.g., local nonterminal count
in [16] or the depth algorithm in [34], as well
as of word–counting algorithms based on ratios
involving the length of constituents in terms of
words (see e.g. [19]).

2.1.2 Length and Direction of a Dependency Arc

This is a complex feature combining two different
information types: namely, dependency length
(henceforth, DL), i.e. the linear distance between

the syntactic head h and the dependent d
(computed in terms of intervening words), and
dependency direction (henceforth, DD), used to
distinguish between head–initial and head–final
dependency arcs. For any dependency relation
holding between the words wi and wj , if wi

is the head and wj is the dependent, then
the dependency length can be defined as the
difference i− j. With this measure, adjacent words
linked by a dependency link have an absolute
DL of 1. When i is greater than j, DL is a
positive number, meaning that the head occurs
after the dependent. When i is smaller than
j, DL is a negative number: this is the case
of a head–initial dependency link. Whereas at
the level of individual dependencies DD is a
purely qualitative difference, when referred to a
parsed corpus it represents a quantitative measure
reflecting the relative proportion of head-initial and
head–final dependencies in the collection of texts.

The measure of dependency length is widely
acknowledged in the literature to reflect the
structural complexity of a dependency structure.
[21] and [17], for instance, claim that the syntactic
complexity of sentences can be predicted with
measures based on the length of dependency
links, given the memory overhead imposed by
very long distance dependencies. It can also
be used to explain the mechanisms of children
language learning [27]. On the parsing side,
[10] proves that “the relative order of the words
and the distance between them will also strongly
influence the likelihood of one word modifying the
other”: more recently, [25] report that statistical
parsers have a drop in accuracy when analyzing
longer dependencies. Concerning DD, [33] and
more recently [22] consider this measure useful for
classifying languages typologically.

2.1.3 Dependency Arc Plausibility

Contrary to the previous ones focusing on
structural properties of the tree, this feature is used
to calculate the plausibility of a dependency arc
given the part-of-speech of d and h as well as of
the head father of h. This feature, which was first
used in [12] for detecting reliable parses (named
as “ArcPOSFeat”), turned out to be an effective
feature also for the detection of correct individual
dependency arcs.
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2.2 Computation Score

The quality score of a dependency arc (henceforth,
QS) results from the combination of the weights
associated with the features sketched in Section
2.1. For the specific concerns of this study, QS
is computed as a product of the individual feature
weights. Therefore, for each dependency arc a
within the set of dependency arcs A describing the
whole set of input sentences, QS is as follows:

QS(Ai) =

n∏
y=1

Weight(Ai, fy,S,C, r),

where Ai is the i–th dependency arc within A; n
is the number of features being considered; S is
the sentence including Ai as part of its dependency
representation; C is the set of characteristics with
respect to which the weight of individual features
is computed; r refers to the span used for defining
the sentence length range being considered; and
Weight(Ai, fy,S,C, r) is the computed weight for
the y–th feature.

Except for ArcPOSFeat, Weight(Ai, fy,S,C, r)
is defined as:

Weight(Ai, fy,S,C, r) =∏
∀c∈Cfy

(
F (V (fy), c, range(L(S), r))

|range(L(S), r), c|
),

where V (fy) is the value of the y–th feature
of Ai; L(S) is the length of the sentence S;
range(L(S), r) defines the sentence length range
covering values from L(S) − r to L(S) + r;
F (V (fy), range(L(S), r), c) is the frequency of
V (fy) within the set of all dependency links sharing
a given characteristic c with the arc Ai and
occurring in sentences whose length is in the range
range(L(S), r1); finally, |range(L(S), r), c| is the
number of arcs in A describing sentences whose
length is in the range range(L(Si), r) and sharing
the characteristic c.

For defining the weight associated with each
feature, in LISCA the following characteristics
c of d in Ai are taken into account:
namely, the part–of–speech and the lemma.
Whenever c is assigned the None value,
|range(L(S), r),None| thus corresponds to
the total number of arcs in A describing all
sentences with length in range(L(Si), r), and

1In all the experiments reported in this work, we set r=2.

F (V (fy), range(L(S), r),None) corresponds
to the frequency of V (fy) in the whole set of
arcs describing all sentences with length in
range(L(S), r).

Following [12], the ArcPOSFeat feature is
described as follows:

Weight(Ai,ArcPOSFeat,S,C, r) =

F ((Pd,Ph, t))

F ((Pd,X, t))
·

· F ((Pd,Ph, t))

F ((X,Ph, t))
·

· F (((Pd,Ph, t)(Ph,Ph2, t2)))

F ((Pd,Ph, t))
·

· F (((Pd,Ph, t)(Ph,Ph2, t2)))

F ((Ph,Ph2, t2))
·

· F (((Pd,Ph, t)(Ph,Ph2, t2)))

F ((((Pd,X, t))(X,Ph2, t2)))
,

where the triple (Pd,Ph, t) is the arc Ai in
which Pd and Ph are the part–of–speech of the
dependent d and of the head h respectively, and
t is the type of the dependency linking d to h; X
is a variable; F (x) is the frequency of x in A; and
((Pd,Ph, t)(Ph,Ph2, t2)) represents the sequence
of two consecutive arcs (going from d to the father
of h in Ai) within the dependency tree describing
S.

3 The Baselines

For the evaluation of LISCA, different increasingly
complex baseline models were selected.

The first baseline consists of a Random
Selection (henceforth, RS) of dependency arcs
from the test set. This baseline is calculated in
terms of the scores of the parsing systems against
the test set.

The second baseline, named Length Selection
(henceforth, LS), is represented by the ordering
of arcs by dependency length. This is a strong
unsupervised baseline since, as demonstrated
in [25], long dependency relations are harder
to analyse using statistical dependency parsers
than short ones. This is particularly true of
transition–based Shift–Reduce parsers (like the
one used in the reported experiments) which, still
according to [25], appear to be particularly reliable
in analysing short dependency relations, due to
the specific parsing algorithm that constructs a
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dependency tree by performing a sequence of
parser actions (or transitions) through a greedy
parsing strategy. From this, it follows that the
ranking of arcs by ascending length potentially
represents a highly competitive baseline.

The third and most advanced baseline, hereafter
referred to as dependency TRiplet (henceforth,
TR) baseline, is inspired by [29], [30] and [26].
The TR baseline is based on parse features,
in particular on triplets representing dependency
relations as (fd, fh, t), where fd refers to the
dependent, fh to the syntactic head and t is the
relation type linking d to h.

In this work, we used three different TR
baselines: i) Lexical dependency triplet
(henceforth, LTR) baseline, where fd and fh
are the word–forms of the dependent and of
the head; ii) Part–of–speech dependency triplet
(henceforth, PTR), where fd and fh represent the
part–of–speech (PoS) of d and h respectively, and
iii) a combination of LTR and PTR, named LPTR,
where lexical and PoS information are combined
together. Under this baseline, the ranking of
dependency arcs is obtained by assigning to each
dependency triplet a score calculated using the
normalized point–wise mutual information score
[6], defined as:

NPMI((fd, fh, t)) =
(log( p((fd,fh,t))

p((X,fh,t))p((fd)) ))

−log(p((fd, fh, t)))
,

where p(a) is the probability of the arc a and X
is a variable. The probability is computed using
frequencies extracted from a large automatically
parsed corpus. The LPTR baseline score is
computed as the product of the LTR and PTR
scores.

4 Experiments

The experiments were organised as follows.
First, a wide corpus representative of a new
target domain was automatically PoS tagged and
dependency–parsed. After this pre–processing
stage, the LISCA and baseline algorithms were
used to extract statistics from this corpus to be
exploited for assigning a quality score to each
arc of a newly parsed sentence belonging to
the same domain as the automatically parsed
target corpus. On the basis of the computed
quality scores, a ranking of dependency arcs by

decreasing reliability is obtained. The ranking of
arcs generated by LISCA and those produced by
the other baselines were compared and evaluated.

In particular, two sets of experiments were
devised to test the performance of LISCA on
corpora belonging to two different domains,
with the final aim of showing effectiveness and
robustness of the proposed arc ranking algorithm.

4.1 Experimental Setup

The two sets of performed experiments differ at the
level of the used datasets, represented respectively
by the chemical (CHEM) and biomedical (BIO)
datasets of abstracts originally developed for the
Domain Adaptation track of the CoNLL 2007
Shared Task [28]. The unlabelled CHEM data
consists of 10,482,247 tokens (396,128 sentences)
and the gold test set is made of 5,001 tokens
(195 sentences); the unlabelled BIO data consists
of 9,776,890 tokens (375,421 sentences) and
the gold test set is made of 5,017 tokens (200
sentences).

As parsing training data we used the CoNLL
2007 dependency–based version of Sections 2–11
of the Wall Street Journal (WSJ) partition of the
Penn Treebank (PTB) [23], for a total of 447,000
tokens and about 18,600 sentences. For testing
the parser performances, we used the test set
distributed in the Multilingual Track of the ConLL
2007 Shared Task, i.e. the subset of Section 23 of
WSJ consisting of 5,003 tokens (214 sentences).

For the linguistic pre–processing of the CHEM
and BIO corpora, we used the PoS–tagger
described in [11], and the dependency parser
DeSR using Multi–Layer Perceptron (MLP)
as learning algorithm [5] which represents
a state–of–the–art linear–time Shift–Reduce
dependency parser (following a “stepwise”
approach, [7]). Note that in both cases we relied
on the CoNLL 2007 corpora tokenization.

4.2 Evaluation Methodology

The performance of the LISCA algorithm was
evaluated with respect to the accuracy of ranked
arcs, expressed in terms of the “Labelled
Attachment Score” (LAS) obtained by the parser,
i.e. the percentage of tokens for which it predicted
correct head and dependency relation.

In particular, two types of evaluation were
devised both operating on the list of arcs ordered
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by decreasing reliability generated by the different
dependency ranking algorithms. Within the first
evaluation type the LAS score was computed for
increasingly wider top lists of k tokens, where k
ranges from 500 word tokens to the whole size of
the test set (with a step size of 500 word tokens,
i.e. k=500, k=1000, k=1500, etc.). In the second
type of evaluation the ranked list of 5,000–tokens
of the test set has been partitioned into sets of
500–tokens each, resulting into 10 groups: for each
group, the LAS score has been computed.

In both cases, the evaluation of the ranking
algorithms was carried out 1) by taking into account
all dependency relations generated by the parser
for the test set, and 2) by excluding the ROOT
arc. This double evaluation was devised to make
achieved results comparable with the LS baseline2.
This also explains why the plots reported in
subfigures 1(a), 1(b), 2(a) and 2(b), representing
the results achieved with the first configuration, do
not include the LS baseline.

5 Results and Discussion

Table 1 reports the accuracy of DeSR against the
PTB, BIO and CHEM test sets. By comparing the
results obtained on PTB with respect to CHEM
and BIO, it can be noted that the parser accuracy
decreases significantly. For both CHEM and BIO
domains, DeSR has a drop of about 7.5% of LAS
and of about 6% and 7% of UAS respectively. This
is due to the fact that the domains of CHEM and
BIO test sets differ significantly from the training set
of the parser. As already pointed out in Section 3,
the CHEM and BIO results reported here represent
the Random Selection (RS) baseline.

Table 1. DeSR results on PTB, CHEM and BIO

Test corpus LAS UAS
PTB 86.09% 87.29%
CHEM 78.50% 81.10%
BIO 78.65% 79.97%

Henceforth, the results obtained in both types
of evaluation will be reported in terms of LAS
only, since this represents the standard evaluation
metric for dependency parsing.

2This follows from the fact that dependency length cannot be
computed for the artificial ROOT node.

Figure 1 reports the results of the first type
of evaluation for all ranking algorithms (LISCA
and the baselines), i.e. with respect to the
increasingly wider top lists of k tokens. Plots in
the top row report the results achieved with the first
configuration, i.e. by considering all dependency
types including the ROOT arc. It is interesting
to note that all ranking algorithms perform better
than the Random Selection (RS) baseline, i.e. all
top lists (for each k value) show a LAS which
is higher than the accuracy of DeSR against the
test sets. This demonstrates that, besides RS,
all other considered baselines are competive. As
the plots in Figure 1 show, LISCA outperforms
all baselines for all the k token top lists in both
configurations (i.e. with and without ROOT ). For
instance, in the first top list (with k = 500) LISCA
shows an improvement with respect to the best
baseline of 7.6% and 6.6% (with and without the
ROOT respectively) for CHEM, and of 2.2% and
3% for BIO. Besides the improvement observed
with respect to the baselines, it is also worth noting
that in the first 500–token top lists for both CHEM
and BIO, LISCA shows a LAS higher than 95%
in all reported experiments, and that in the first
2,000–token top lists the LAS is lower but still high,
ranging between 90 and 91%, with an increment of
12–13% with respect to the accuracy of the parser
on the CHEM and BIO test sets (RS baseline).

Among all considered baselines, LS turned
out to be a strong baseline, outperforming all
the other baselines for CHEM (see subfigure
1(c)). This could also be seen as following
from a characterizing feature of the DeSR parsing
algorithm, i.e. its high reliability in analysing
short distance dependency relations. Concerning
the TR baselines, in all performed experiments
LPTR appears to perform better than the two
other baselines, i.e. PTR and LTR: among them,
LTR turned out to be always the worst performing
one. This comes out clearly in the first top
list (with k = 500): such a result might be
due to the specific behaviour of the point–wise
mutual information association score and to data
sparseness in the automatically parsed corpus (it is
a widely acknowledged fact that mutual information
scores are unreliable for low frequency events).

Consider now the second evaluation type: Figure
2 reports the LAS results for all ranking algorithms
with respect to each of the ten 500–tokens groups.
As in the previous case, histograms in the top row
report the results achieved by also considering the
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(a) LAS for CHEM with ROOT. (b) LAS for BIO with ROOT.

(c) LAS for CHEM without ROOT. (d) LAS for BIO without ROOT.

Fig. 1. First evaluation type: LAS of ranking algorithms achieved with the two different configurations

ROOT arc. Similarly to what observed previously,
Figure 2 shows that all ranking algorithms perform
better than the Random Selection (RS) baseline:
all bars in the first half of each histogram are
higher than the RS bar, while in the second half the
situation is reversed, i.e. the RS bar is taller than
the bars representing all other ranking algorithms.
Remarkably, the LAS of LISCA ranges from 95% to
96% in the first 500–token group, and from 92% to
92.6% in the second group for both CHEM and BIO
domains, thus showing an improvement of 13–17%
with respect to the RS baseline. On the other hand,
it can be observed that in the last 500–token group
RS has a LAS higher than LISCA of 30–45%, thus

demonstrating that LISCA is able to discriminate
between correct and incorrect arcs.

The monotonic decreasing trend of LISCA
shows its effectiveness in ranking dependency
arcs according to their reliability. As it can
be noted in Figure 2, differently from the other
baseline algorithms, in the first half of the histogram
each bar representing LISCA is shorter than the
previous one. It is also interesting to note that
LISCA outperforms the LS baseline even in the
first and last 500–token groups, where LS gathers
respectively very short and very long links which,
according to [25], represent excellent indicators of
the accuracy of the analysis. This is shown in Table
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(a) LAS for CHEM with ROOT. (b) LAS for BIO with ROOT.

(c) LAS for CHEM without ROOT. (d) LAS for BIO without ROOT.

Fig. 2. Second evaluation type: LAS of ranking algorithms achieved with the two different configurations

2, where the average length of all dependency links
(excluding the ROOT arc) for all baselines for each
500–token group is reported. For example, the
average length of the arcs ordered by LS baseline
is equal to 1 for the first four groups of both CHEM
and BIO, whereas in the last groups it is equal to
15.21 and 14.3 for CHEM and BIO respectively.
Interestingly, the average length of the arcs ordered
by LISCA for the CHEM and BIO top lists is close
to the average length of the whole CHEM and BIO
test sets (i.e. the average length reported in the
RS column): this fact can be seen as a proof
of the LISCA ability to capture domain–specific
peculiarities.

6 Conclusion

In this paper we presented LISCA, an
unsupervised linguistically–driven algorithm
aimed at assigning a quality score to each arc
generated by a dependency parser in order to
produce a decreasing ranking of arcs from correct
to incorrect ones. LISCA exploits statistics
about a set of linguistically–motivated and
dependency–based features extracted from a
large corpus of automatically parsed sentences
and uses them to assign a quality score to each arc
of a newly parsed sentence belonging to the same
domain of the automatically parsed corpus. This
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Table 2. Average length of all arcs (excluding the ROOT )
for all ranking algorithms within each 500–token group

Group LISCA LS PTR LTR LPTR RS
CHEM

1 2.61 1 7.22 3.38 5.64 3.2
2 2.55 1 4.01 2.82 4.31 3.2
3 2.28 1 1.92 3.69 2.52 3.2
4 2.44 1 2.05 3.22 2.70 3.2
5 2.05 1.11 2.88 3.26 2.77 3.2
6 2.38 2 2.68 2.93 2.65 3.2
7 2.69 2.21 3.31 2.72 3.05 3.2
8 3.22 3.29 3.57 3.03 3.45 3.2
9 3.97 5.88 2.45 2.77 3.23 3.2
10 7.95 15.91 2.73 4.16 2.04 3.2

BIO
1 3.26 1 7.25 2.89 5.48 3.13
2 2.13 1 3.26 3.22 4.23 3.13
3 2.57 1 2.42 3.65 2.66 3.13
4 2.08 1 2.87 3.18 2.60 3.13
5 2.38 1.19 2.51 3.35 3.06 3.13
6 1.99 2 3.49 2.81 2.89 3.13
7 2.72 2.18 2.94 2.79 2.86 3.13
8 2.91 3.24 2.22 2.86 2.76 3.13
9 4.16 5.44 2.64 3.06 3.17 3.13
10 7.06 14.30 2.53 3.48 2.04 3.13

approach is thus independent from the parsing
algorithm used.

LISCA has been tested on two datasets
belonging to domains differing from the parser
training set. The decreasing ranking produced
by LISCA for each dataset was compared and
evaluated against the ranking produced by a
number of competitive baselines. LISCA turned
out to outperform all the considered baselines
including i) the ordering of arcs by increasing
dependency length (LS) which represents a strong
unsupervised baseline in a dependency parsing
scenario due to the fact that long dependency
relations are harder to parse than short ones,
and ii) the dependency TRiplet (TR) baselines
successfully used in previous studies to select
reliable arcs to improve the parser accuracy.

One of the main qualifying features of LISCA
consists in its unsupervised nature: i.e. LISCA
does not need manually–annotated training data
whose construction is highly expensive and
time–consuming. Within unsupervised approaches
to the ranking of dependency arcs by reliability,

we have demonstrated that LISCA represents an
improvement with respect to approaches proposed
so far in the literature.

Table 3. Results of the pilot experiment of incorrect arc
detection

Arcs (% of total arcs) Incorrect arcs detected (% of
total incorrect arcs)

BIO CHEM
500 (10%) 289 (26.98%) 259 (24.09%)
1000 (20%) 472 (49.29%) 433 (40.28%)
1500 (30%) 608 (56.77%) 582 (54.14%)

Although this is beyond the scope of this paper,
it is worth pointing out here that a number of
different applications could in principle benefit
from the ranking of arcs produced by LISCA.
For instance, ranking algorithms are used to
improve the accuracy of a dependency parser in
a self–training scenario as proposed by [30], [29],
[9] and [26] or in an automatic error detection
and correction scenario as demonstrated by [18],
[3] and [2]. Moreover, the unsupervised nature
of LISCA relying on linguistic features extracted
from automatically parsed data could be usefully
exploited to capture domain–specific peculiarities
of the correct arcs generated by the parser as
well as to identify problematic linguistic areas
for parsers with respect to a given domain.
This property of LISCA makes it also a reliable
support for human annotators in the construction
of domain–specific treebanks, minimizing their
annotation efforts. Similarly, LISCA could be used
in the construction of treebanks for less–resourced
languages.

In order to empirically support this claim,
we carried out a pilot experiment aimed at
showing effectiveness and reliability of LISCA in
an application scenario: in particular, we used
LISCA for detecting incorrect arcs within the output
of a parser. The dependency arcs generated
by the parser for the CHEM and BIO test sets
were first ranked by increasing LISCA scores,
i.e. from the lower to the higher values. Such
ordering of arcs inversely reflects their reliability.
The experiment focused on the first 500, 1000
and 1500 arcs representing 10%, 20% and 30%
of each test set respectively. In Table 3, for
each group of arcs the number of incorrect arcs
detected by LISCA is reported, together with the
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corresponding percentage with respect to the total
number of parser errors in the whole test set. The
effectiveness of LISCA is shown by the results
obtained. For instance, in the first 1000 arcs
(i.e. in the 20% of the test set) the algorithm is
able to detect the 49.29% of the total incorrect
arcs occurring in BIO and 40.28% in CHEM. It
should be noted that these results are respectively
29.29 and 20.28 percentage points higher than
a random detection baseline. Such encouraging
results show that LISCA could be usefully exploited
in real application scenarios: this is the direction we
are currently working on.
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