
Computación y Sistemas Vol. 18 No. 2, 2014 pp. 345-358 
ISSN 1405-5546 

http://dx.doi.org/10.13053/CyS-18-2-2014-036 

A Gaussian Selection Method for Speaker Verification  
with Short Utterances 

Flavio J. Reyes Díaz, Gabriel Hernández Sierra, and José Calvo de Lara 

Advanced Technologies Application Center (CENATAV), La Havana, 
Cuba 

{freyes, gsierra, jcalvo}@cenatav.co.cu 

Abstract. Speaker recognition systems frequently use 

GMM-MAP method for modeling speakers. This 
method represents the speaker using a Gaussian 
mixture. However, in this mixture not all Gaussian 
components are truly representative of the speaker. In 
order to remove the model redundancy, this work 
proposes a Gaussian selection method to achieve a 
new GMM model only with the more representative 
Gaussian components. The results of speaker 
verification experiments applying the proposal show a 
similar performance to the baseline; however, the 
speaker models used have a reduction of 80% 
compared to the speaker model used as the baseline. 
Our proposal was also applied to speaker recognition 
system with short test signals of 15, 5 and 3 seconds 
obtaining an improvement in EER of 0.43%, 2.64% and 
1.60%, respectively, compared to the baseline. The 
application of this method in real or embedded speaker 
verification systems could be very useful for reducing 
computational and memory cost. 

Keywords. Speaker verification, Gaussian components 

selection, cumulative vector, short utterance. 

Método de selección de gaussianas 
para la verificación de locutores con 

señales cortas 

Resumen. Los sistemas de reconocimiento de 

locutores con frecuencia utilizan el método GMM-MAP 
para modelar locutores. Sin embargo, en estos 
modelos no todas las componentes gaussianas son 
representativas del locutor. Con el fin de eliminar dicha 
redundancia, proponemos un método de selección de 
gaussianas obteniendo un nuevo modelo con las 
componentes gaussianas más representativas. Los 
resultados experimentales muestran un rendimiento 
similar a la línea de base, no obstante los modelos 
obtenidos presentan una reducción del 80% respecto al 
modelo del locutor utilizado en la línea base. Los 
métodos propuestos son aplicados sobre señales de 

prueba más cortas, 15, 5 y 3 segundos; mejorando el 
EER de 0,43%, 2,64% y 1,60% respectivamente en 
comparación con la línea base. La aplicación del 
método propuesto en sistemas reales de verificación 
podría ser muy útil para reducir el costo computacional 
y la carga en memoria. 

Palabras clave. Verificación de locutores, selección de 

componentes gaussianas, vector acumulativo, 
señales cortas. 

1 Introduction 

State of the art approaches in speaker recognition 
are mainly based on statistical modeling of 
acoustic space. The usual approach is to train a 
Universal Background Model (UBM) through the 
estimation of a large number of Gaussian 
components, using as much data as possible 
from many different speakers of impostor’s 
population. Then, each speaker Gaussian mixture 
model (GMM) can be adapted from the UBM 
using much less data through Maximum a 
Posteriori (MAP) adaptation of the UBM means 
(GMM-MAP) [1], while variance and weight are 
unchanged. Aiming at producing more effective 
applications, the idea to use the mean vector of 
GMM-MAP speaker models as a super vector 
input data in a Support Vector Machine (GSV-
SVM) classifier [2] came up, see Fig. 1. 

GMM-MAP method includes a natural 
hierarchy between the UBM and each speaker 
model; for each UBM Gaussian component, there 
is a corresponding adapted component in the 
speaker model. These methods are not efficient 
enough because there are some aspects that 
increase the computational and memory cost: 
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1. The GMM-MAP speaker model has a high 
number of Gaussian components, commonly 
M=1024 or 2048, because the MAP 
adaptation from UBM to speaker data uses 
all the UBM Gaussian components, then the 
Super Vector Machine (SVM) take a super 
vector obtained concatenating all D-
dimensional mean vectors of Gaussian 
components resulting in a high DxM 
dimension. For example, if D=24 and 
M=1024, each speaker utterance super 
vector will have 24576 values. 

2. The speaker model has only some Gaussian 
components that represent better the acoustic 
space of each speaker utterance and the rest 
are redundant, in other words: 

- a sub-set of Gaussian components 
represents better the speaker utterance (best 
discriminative for the target); 

- another subset of components represents 
better the utterances of many speakers (non-
discriminative between targets); 

- the rest of the components represent better 
the utterances of other speakers 
(discriminative for impostors). 

So, it is convenient to apply some Gaussian 
component selection method in order to reduce 

this redundancy and to bring more effective 
classification methods, mainly in front of real and 
embedded applications, and to reduce the store 
size of the models, too. 

One of the most used learning methods to 
obtain GMMs is the Expectation Maximization 
algorithm (EM) [3]. With this method it is very 
difficult to know how many components are 
enough to fit the probabilistic distribution of the 
learning data, usually the number is obtained 
empirically [4]. Selection of an adequate number 
of components is an important issue in Gaussian 
mixture model learning. With too many 
components, the mixture model would overfit the 
data; on the other hand, with too few components, 
it would not be enough to describe the structure of 
the data. 

Various Gaussian selection methods —
referred to in [5] as Gaussian-layer methods— for 
reducing the number of GMM computations in 
speaker recognition have been proposed. 

Better known and more extended criterion is 
proposed in [1] which performs at the verification 
stage, a selection of Gaussian components from 
the GMM-MAP target model using the top-C 
"better classified components" of the UBM for 
each feature vector of test signal, where C=10 is 
recommended; this method is our baseline for 

 

Fig. 1. GSV-SVM method proposed by Campbell et al. (2006) 
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comparison. Concerning the reduction of GMM-
MAP models in embedded applications of 
speaker recognition systems, Reynolds states [6] 
that one of the most important problems is the 
size of the models related to memory storage and 
network traffic. For MAP adapted models, the 
storage of all parameters is not required because 
only mean vectors are adapted from UBM. 
Reynolds proposes to store only the mean 
difference between the GMM-MAP target model 
and the UBM model, achieving memory 
reductions of 56:1 with only an Equal Error Rate 
(EER) relative increase of 3.2%. 

Auckenthaler and Mason [7] applied UBM-like 
hash model; for each speaker Gaussian 
component, there is a short list of indices of the 
expected best scoring components of the UBM 
model. Using the short list, only the corresponding 
Gaussian components in the speaker model are 
then scored, reporting a speed-up factor of about 
10:1 with a minor degradation in the 
verification performance. 

Xiang and Berger [8] constructed a tree 
structure for the UBM and multilevel MAP 
adaptation is used for generating the speaker 
model with a tree structure. In the verification 
phase, target speaker scores and UBM scores 
are combined using a multi-layer perceptron 
neural network. They reported a speed-up factor 
of 17:1 with a 5% relative increase in the EER. 

Now we will briefly describe some proposals 
that "prune" the GMM. 

Kinnunen et al. in [9] pre-quantize the test 
sequence prior to matching, reducing the number 
of test vectors and prune out unlikely speakers 
during the identification process, generalizing best 
variants to GMM/UBM based modeling. 

Roch in [10] proposed the Gaussian selection 
to obtain N-best hypothesis in a pre-classifier 
considering that the classification of all tokens 
increases the computational load exponentially. A 
criterion, based on pre-classifier without charging 
the test process, normalizes the number of 
components and specifies the percentage of the 
distribution to be selected as queues. This job 
reduces the pre-classifier cost while keeping the 
accuracy inside 95% confidence interval. 

Previous methods degrade the system 
performance as they gain speed-up. Other 

proposals use a different strategy to make a 
clustering of GMM, now we will consider some 
of them. 

Aronowitz in [11] proposed to obtain an 
approximation of the GMM score without using 
test utterance applying Approximate Cross 
Entropy (ACE). With feature vectors and UBM, it 
performed a small selection to Gaussian with 
greatest likelihood and then it was submitted to 
some cluster in a Vector Quantification Tree (VQ-
tree). In addition to this, we propose a GMM 
compression method thus considerably 
decreasing the storage space required for 
the models.  

Liu et al. in [12] proposed a Gaussian selection 
method using only the components selected by 
cluster UBM (CUBM) as input for calculating an 
EM statistic with the objective of improving the 
speed of estimating the factor analysis model 
obtaining a good balance between efficiency and 
performance. Setting the number of CUBM 
Gaussian to 16 Gaussian components, the 
efficiency of CUBM-FA is much better than 
baseline factor analysis (the time cost has 
reduced from 9.53 sec to 1.24 sec) while having 
similar performance (both around 3.8% in EER 
and 0.02 in minimal of detection cost 
function (minDCF)). 

Recently another proposal that sorts and 
indexes the GMM is [13]. Saeidi et al. proposed 
an optimization of the sorted function exposed by 
Mohammedi and Saeidi in [14], obtaining better 
results than GMM-UBM baseline. They use the 
Particle Swarm Optimization (PSO) method, 
evaluating the search width in a power of 2. 
Results obtained with search width of 512 are 
better than those obtained with the sorted function 
in [14] presenting an EER=8.21 and 
minDCF=0.4024, while the sorted GMM method 
in [14] presents an EER=8.72 and 
minDCF=0.4090, and the baseline GMM-MAP 
method has an EER=8.31 and minDCF=0.3929. 

More recently, another extension of the 
method explained in [13] is proposed by Saeidi et 
al. in [15], using a two-dimensional indexation, 
allowing simultaneous selection of Gaussian and 
frames. The evaluation was developed using 
several values of a control parameter to specify 
the neighborhood of the optimization (2%, 3%, 
5%, 10%, 15% and 20%) obtaining speed-up 
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ratios of 157:1, 85:1, 37:1, 11:1, 5:1 and 3:1, 
respectively. This method is computationally more 
efficient than the GMM-MAP baseline because 
less frames and Gaussian components are 
evaluated in the test, obtaining similar baseline 
efficacy only with the control parameter in 20%. 

Observe that recent methods obtain similar 
performance to the baseline reducing the 
processing speed. 

Our work centers the attention on the 
redundant information present in speaker models 
and proposes a method to reduce this, performing 
a selection of Gaussian components of the GMM-
MAP and UBM models, based on cumulative 
vectors of number of activations of better 
classified components for each feature vector of 
the acoustic utterances. Since our intention is to 
evaluate the reduction of redundant information in 
speaker models, we will perform GMM-MAP 
speaker verification experiments using two 
Gaussian component selection approaches to 
obtain the best model to characterize the speaker 
with a reduced dimension. We also propose the 
use of weights for the selected Gaussian 
components to give a greater emphasis to the 
most activated Gaussian components of the 
speaker model. 

This paper is organized as follows. Section 2 
describes the proposed methods, Section 3 
describes the databases and front end used, 
Section 4 evaluates the two methods 
experimentally. Then, Section 5 explains the 
results obtained in the application of one of the 
methods to speaker verification experiment with 

short test utterances, and Section 6 concludes the 
paper and proposes new research lines. 

2 Proposed Methods 

This section contains the explanation of the 
proposed methods 

- to obtain the cumulative vector, 

- to select the Gaussian components, 

- to adjust the weights of the Gaussian 
components, 

- to perform classification. 

2.1 The Cumulative Vector 

Since our aim is to perform a Gaussian selection 
from UBM that best represents the client, we use 
recent methods proposed in [16], applying the 
UBM model instead of the anchor model. The 
process consists in obtaining the better classified 
component of the UBM regarding each frame of 
speech utterance and storing in a vector the sum 
of reached “activations” in all frames of the 
utterance, see Fig. 2. 

The likelihood is calculated for each frame, 
regarding all Gaussian components of the UBM, 
obtaining a likelihood matrix 𝐿𝐿𝐻(𝑋|𝜆𝑈𝐵𝑀)(𝑇,𝑀), 

where 𝑇 is the number of frames and 𝑀 is the 
number of Gaussian components of UBM. From 
the 𝐿𝐿𝐻 matrix, a row (frame) search of the best 
classified component (maximal likelihood) is done 
and it is identified as activated, then a sum by 

 

Fig. 2. Cumulative vector method 



A Gaussian Selection Method for Speaker Verification with Short Utterances 349 

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 345-358 
ISSN 1405-5546 

http://dx.doi.org/10.13053/CyS-18-2-2014-036 

columns of activated components is performed 
(over all frames of utterance), and the result is 
stored in the cumulative vector. The cumulative 
vector contains 𝑀 accumulative values, reflecting 
the number of activations of each Gaussian 
component, for all utterances. 

2.2 Gaussian Component Selection Criteria 
Using the Cumulative Vector 

As described above, there are several Gaussian 
component selection criteria [17] based on the 
feature vector likelihood given the Gaussian 
component 𝑝(𝑥|𝜆). The goal of our proposal is to 
select a set of Gaussian components that better 
characterizes the acoustic classes of a speaker 
utterance, based on the 𝑘 greatest accumulative 
values of the cumulative vector. Using the 
cumulative vector obtained from UBM, for each 
speech utterance, the Gaussian components with 
the 𝑘 greatest accumulative values are ordered 
and selected, see Fig. 3. 

This criterion brings an important reduction of 
model dimensionality: observe the dimensionality 
reduction of the speaker model from 𝑀 to only 𝑘 

components. These 𝑘 components are the best 
classified components in all utterances, so the 
model would be more discriminative. 

2.3 Selection Variant Using the Training 
Utterance 

Two variants of classification [17] will be 
explained using the GMM-MAP framework [1]; 

both methods use the UBM Gaussian component 
selection based on the cumulative vector 
explained above to select the Gaussian 
components and to obtain a reduced model which 
better represents the speaker utterance. 

a. Selection Variant Using the Training 
Utterance 

The method performs a selection of the Gaussian 
components using the feature vectors of the 
training utterance and the UBM. A speaker model 
is obtained with MAP adaptation; simultaneously 
the cumulative vector (CV) is obtained, using the 
same data. With the model and CV, GCS-CV 
method is applied, obtaining a new k-components 
model of the training utterance. At last, test 
utterance is classified in GMM-MAP framework, 
but using the new model of the training utterance, 
see Fig. 4. 

b. Selection Variant Using the Test Utterance 

This method performs a selection of the Gaussian 
components using the feature vectors of the test 
utterance and GCS-CV with the target model to 
obtain a new model of the target utterance to 
make the classification. Using the feature vectors 
of the training utterance and the UBM, a speaker 
model is obtained with MAP adaptation; then, 
using the feature vectors of the test utterance and 
the UBM, the cumulative vector is obtained. With 
the model and the cumulative vector, GCS-CV 
method is applied, obtaining a new k-components 
model of the test utterance. At last, the test 

 

 

Fig. 3. Gaussian component selection criteria using the cumulative vector (GCS-CV) 



350 Flavio J. Reyes Díaz, Gabriel Hernández Sierra, and José Calvo de Lara 

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 345-358 
ISSN 1405-5546  

http://dx.doi.org/10.13053/CyS-18-2-2014-036 

utterance is classified in GMM-MAP framework, 
but using the new representation, see Fig. 5. 

c. Replacement of the Weights of the Selected 
Component Based on the Number of 
Activations 

The complete adaptation to the features of the 
training utterance causes in the model the 
existence of sub-sets of Gaussian components 

with different acoustic information in the speaker's 
space: target information, impostor's information 
and information common to many speakers as we 
hypothesized in the introduction. In the model, 
those Gaussian components that carry common 
information for many speakers are less 
discriminative and more redundant. These 
Gaussian components could reflect high 
probabilities for many speakers, being less 

 

Fig. 4. Classification method using the training utterance 

 

Fig. 5. Classification method using the test utterance 
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discriminative for a specific speaker, even being 
adapted to its utterance.  

Taking into account that these Gaussian 
components could present a similar number of 
activations, the better reflection of the difference 
between speakers is present if we substitute the 
original weight of the Gaussian component by the 
number of activations, which are not common 
Gaussian components. For this reason we 
propose to use the accumulative values 𝑎𝑣𝑚 of 
the CV of the utterance as a weight for the 
Gaussian components that model the utterance. 
In practice, after the selection of 𝑘 Gaussian 
components that present higher values of 
activation, each weight of the Gaussian 
component is replaced by the corresponding 
normalized activation value: 

𝑎𝑣𝑚 =
𝑎𝑣𝑚

∑ 𝑎𝑣𝑚
𝑘
𝑚=1

. (1) 

3 Experimental Results 

3.1 Database 

The UBM model is obtained from "SALA: 
SpeechDat across Latin America" telephone 
speech database (Venezuelan version) [18]. It 
contains 1000 speakers (503 male, 497 female) 
uttering in each telephone call a total of 45 read 
and spontaneous items.  

For training and test utterances, NIST2001 
Ahumada database was used [19]. Ahumada is a 
speech database of 104 male Spanish speakers, 
designed and acquired under controlled 
conditions for speaker characterization and 
identification, which incorporates several speech 
variability factors. Each speaker in the database 
expresses five types of utterances (digits 
sequences, balanced phrases, balanced and 
random text and spontaneous speech) in seven 
microphone sessions and three telephone 

sessions, with a time interval between them. 
Conventional telephone land line was used. In 
session 𝑇1 every speaker was calling from the 
same telephone in an internal-routing call. In 
session 𝑇2, all speakers were requested to make 
a call from their own home telephone, trying to 
search a quiet environment, so the channel and 
handset characteristics are unknown. In 
session 𝑇3, a local call was made from a quiet 
room using 9 randomly selected standard 
handsets. Each speaker utters a spontaneous 
expression of about 60 sec. in each telephone 
session; eliminating the pauses, speech is about 
48 sec. as average, in each utterance. 

3.2 Front End 

Well known Mel-Frequency Cepstrals Coefficient 
(MFCC) features [20] have been used to 
represent the short time speech spectra. As 
shown in Fig. 6, all telephone speech signals are 
quantized at 16 𝑏𝑖𝑡𝑠 at 8000 𝐻𝑧 sample rate, pre-
emphasized with a factor of 0.95, and an energy 
based silence removal scheme is used. A 
Hamming window with 20𝑚𝑠 window length with 
50% overlap is applied to each speech frame and 
a short time spectrum is obtained applying a FFT. 
The magnitude spectrum is processed using a 24 
Mel-spaced filter bank, the log-energy filter 
outputs are then cosine transformed to obtain a 
standard set of 12 MFCC, the zero cepstral 
coefficients is not used [21].  

In order to reduce the influence of mismatch 
between training and testing acoustic conditions 
in a telephonic environment, a robust feature 
normalization method for reducing noise and/or 
channel effects is applied to MFCC features, the 
Cepstral Mean and Variance Normalization 
(CMVN) proposed by Viikki and Laurila in [22]. 
This method normalizes the gross spectral 
distribution of the utterance and reduces long 
term intra-speaker spectral variability. Assuming 
Gaussian distributions of features, CMVN 

 

Fig. 6. Normalized MFCC front end 
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normalizes each component of the feature vector 
according to the expression 

𝑐�̂�[𝑡] =
𝑐𝑖[𝑡] − 𝜇𝑖

𝜎𝑖
,  (2) 

where 𝑐𝑖[𝑡] and 𝑐�̂�[𝑡] are the 𝑖th coefficient of the 

feature vector at each frame 𝑡 before and after 
normalization, respectively, and 𝜇𝑖 and 𝜎𝑖 are the 
mean and variance estimates of the time 
sequence of each coefficient 𝑐𝑖. Fig. 6 represents 
a complete scheme of normalized MFCC 
front end. 

At last, the Δ cepstral features from MFCC 
normalized cepstral feature are obtained and 
appended to MFCC features [23] conforming a 
24-dimensional 𝑀𝐹𝐶𝐶 + Δ feature vector. 

3.3 Score Normalization 

Score normalization method for small evaluation 
databases is proposed in [24]. For each score 
LLH between a target 𝑋𝐴 and a test 𝑋𝐵, the 
normalized score is 

𝐿𝐿𝐻𝑁(𝑋𝐴, 𝑋𝐵) = 𝐿𝐿𝐻(𝑋𝐴, 𝑋𝐵) − 𝑚𝑒𝑎𝑛(𝐿𝐿𝐻(𝑋𝐴, 𝐼𝑆)),  (3) 

where 𝐼𝑆 is a subset of impostors. Since the 
evaluation database is small, we divided the 
experiment into two subsets, 𝑎 and 𝑏, each of 
them composed of half of the speakers. 

When the subset 𝑎 is used to perform the 
speaker recognition test, the speakers from the 
subset 𝑏 are used as impostors for normalization 
and vice versa. The test from the two subsets is 
polled together in order to obtain the global 
performance of a given system. 

4 Speaker Verification Experiments 

4.1 GMM-MAP Speaker Verification Baseline 

First, a GMM-MAP speaker verification baseline 
using the data and methods explained was 
established. A UBM model with M=2048 
Gaussian components was trained using 
expectation-maximization (EM) algorithm [3] with 
1989 male speech utterances from SALA 
database. GMM-MAP models of 100 speakers 
were MAP adapted [1] using the spontaneous 
utterances of session T1 of Ahumada database 
as training utterances. For the verification step, 

 

Fig. 7. Selection of Gaussian components directly from the UBM 
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testing spontaneous utterances was obtained 
from the same speakers but in session T2 of 
Ahumada database, and the comparison was 
based on the criteria to reduce the verification 
load proposed in [1]; it performs a search of the 
Gaussian components of the UBM, which are the 
most likely for each feature vector of the test 
utterance. These Gaussian components from the 
GMM-MAP target model are selected, creating a 
sub-model with C=10 Gaussian components for 
each feature vector of the test utterance, 
obtaining as many sub-models as feature vectors. 
With each of the obtained sub-models and their 
corresponding feature vectors, vector-based 
likelihood is calculated; the likelihood of the test 
utterance with respect to all sub-models will be 
the mean values of the vector-based likelihoods. 
Score normalization is applied and the results are 
evaluated on DET curve [25], obtaining an 
EER=4%; the NIST evaluation criteria, minimal of 
"detection cost function" was evaluated too, 
minDCF=2.29%. 

4.2 Speaker Verification with Component 
Selection from the UBM Model 

In order to evaluate our initial hypotheses and 
compare with the rest of experimental results, a 
simple selection of Gaussian components directly 
from the UBM was done, based on cumulative 
vector and component selection methods, 
see Fig. 7. 

Two experiments were done in order to 
evaluate the influence of the replacement of 

weight by activation numbers; Table 1 presents 
the results of both experiments for different k. 

Results shown in Table 1 demonstrate that a 
simple selection of Gaussian components of the 
UBM, without any kind of model adaptation of 
training utterances, introduces a great variability 
in the performance of the classifier depending on 
the dimension k of the selected components. As 𝑘 
increases, % EER and minDCF increases too, 
indicating that more non-discriminative or 
common components were selected and included 
in the speaker k-GC model. Besides, if weight 
replacement by activation numbers of selected 
Gaussian components is applied, an increase in 
the discrimination between speakers is 
appreciated with a reduction of the EER and the 
minDCF, for the same k selected components. 

This experiment supports the hypotheses 
expressed before, confirming our supposition that 
the GCS-CV method applied to MAP adapted 
models using training or test utterances could 

Table 1. EER and DCF results of experiments 

based on the UBM model1 

 
Selection 

Selection and 
weight replacement 

k EER minDCF EER minDCF 

150 15.0 7.23 8.28 5.68 

200 17.0 7.08 8 5.67 

250 18.0 7.67 9 6.11 

300 18.18 7.89 8 6.03 

350 22.0 8.37 7.81 6.16 

400 21.43 8.3 7.87 6.17 

500 22.50 8.67 7.80 6.15 

Table 2. EER and minDCF results of experiments 

Method1  Selection 
Selection and 

weight 
replacement 

k  EER minDCF EER minDCF 

150  5.0 2.69 4.53 2.6 

200  4.88 2.53 4.77 2.43 

250  5.0 2.47 4.48 2.33 

300  4.52 2.39 5.0 2.41 

350  4.0 2.22 5.0 2.44 

400  5.0 2.29 5.0 2.34 

500  5.0 2.23 5.0 2.35 

Method2  Selection 
Selection and 

weight 
replacement 

k  EER minDCF EER minDCF 

150  4.89 2.58 5 2.94 

200  4.04 2.32 4.18 2.68 

250  4.0 2.28 4.50 2.63 

300  4.36 2.41 4.64 2.63 

350  4.05 2.28 4.74 2.62 

400  4.20 2.22 4.75 2.63 

500  4.18 2.21 4.89 2.64 
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increase the performance of the classifier with an 
important reduction of Gaussian components. 

4.3 Speaker Verification Experiments Using 
Training and Test Data to Select Gaussian 
Components from the UBM Model 

Two experiments were performed with both 
selection variants explained in Section 2, 
selecting k=150, 200, 250, 300, 350, 400 and 500 
Gaussian components; the combination with the 
proposed replacement of weights by the 
activations number was also evaluated. 

Our experiments using the proposed 
methods showed the following results. 

Redundancy reduction in the selected 
Gaussian components. As shown, the 
experiment using Method 1 with k=350 Gaussian 
components and experiment using Method 2 with 
k=250 Gaussian components get the same % 
EER and less % minDCF related to the GMM-
MAP baseline, with a respective reduction of 
82.9% and 87.7% of the Gaussian components of 
the original speaker model (2048). The non-
selected Gaussian components are less 
discriminative of the speaker or not discriminative 
at all. This reduction of information lowers the 
verification phase computational burden, due to 
the use of less number of Gaussian components. 

Classification method using the test 
utterance is better. Method 2 obtains similar 
results to Method 1 with less Gaussian 
components (250 vs. 350); this method is more 
adjusted to the speaker because it selects the 
components of the model from the test utterance, 
very similar to Reynolds method [1] but 
less expensive. 

Weight replacement by activation numbers 
of selected components is not always good. 
The weight replacement reflects its efficacy only 
for k<300 components in Method 1, for greater k, 
the weight replacement does not increase the 
performance, because the appended new 
components are less discriminative than the first 
300. As Method 2 is more adjusted to speaker, 
the weight replacement doesn't take the desired 
effect, because the selected components are the 
most discriminative ones, their applications 

produce a reduction in the classifier performance 
as a consequence. 

4.4 Score Fusion and Normalization 

Finally, a fusion of scores was done; observe in 
Table 3 a light increase of performance, EER and 
minDCF in both approaches using only the 
selection or the selection with the weight 
replacement by the activation numbers. The score 
normalization is done only once, after fusion 
of scores. The score fusion expression is 

𝑠𝑐𝑜𝑟𝑒𝑓𝑢𝑠𝑖𝑜𝑛 =  
1

2
(𝑠𝑐𝑜𝑟𝑒𝑀1) +

1

2
(𝑠𝑐𝑜𝑟𝑒𝑀2). (4) 

5 Application of the GSC-CV Criteria to 
Speaker Verification with Short 
Signals 

A current problem in real speaker recognition 
systems is the duration of the utterance to verify 
[18]. Considering that the proposed methods 
perform a selection of Gaussian components 
more representative of the speaker and reduce 
the common information between all speakers, 
we carried out speaker verification experiments 
similar to the ones described in Section 4, with 
the main difference that duration of test utterance 
is reduced to 3, 5 and 15 seconds. 

Test utterance is very short and does not 
submit the necessary information to perform an 

Table 3 EER and minDCF results of score fusion 

of experiments 

  
Method 1-2 

Method 1-2 
with weight 
replacement 

k  EER minDCF EER minDCF 

150  5.0 2.42 4.81 2.19 

200  4.0 2.32 4.24 2.19 

250  4.0 2.34 4.18 2.24 

300  4.0 2.30 4.06 2.23 

350  4.0 2.22 4.0 2.22 

400  4.8 2.26 4.0 2.20 

500  4.58 2.24 4.0 2.20 
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adequate Gaussian components selection, and 
the resulting model is not representative enough 
of the speaker. So, we chose Method 1 without 
weight substitution for the experiments, because it 
performs the selection from the training utterance. 

Experiments were performed with the method 
explained in Section 2, selecting k=150, 200, 250, 
300, 350, 400 and 500 Gaussian components. 
Table 4 presents the results of the experiments 
for different 𝑘 and durations of the test. 

Experimental results show that speaker 
verification with GSC-CV criteria performs better 
than baseline for short test utterances with k>150; 

then, the reduction of redundancy in the model 
implies better efficacy in the verification with short 
test utterances. Observe that, if the duration of 
test utterances is reduced, more Gaussian 
components are necessary to obtain better 
results, 𝑘 is between 200 and 250 for 15 sec, 𝑘 is 

between 300 and 350 for 5 sec and 𝑘 is between 
350 and 450 for 3 sec. It means that the speaker 
model requires more Gaussian components as its 
test utterance is shorter, to obtain better 
performance; so it is necessary to have a little 
increase in redundancy in the speaker model to 
deal with the short test utterances. 

 

Fig. 8. Comparison of EER using Method 1 with different duration of test utterances 

Table 4. EER and minDCF results of experiments with short test utterances 

 15 sec 5 sec  3 sec 

K EER DCF EER DCF EER DCF 

150 5.9 3.25 9.79 4.15 12.42 5.53 

200 4.6 3.16 7.90 4.37 11.0 5.43 

250 4.7 2.96 8.39 4.47 11.0 5.31 

300 5.0 2.98 7.64 4.2 12.0 5.36 

350 5.0 2.86 7.0 4.28 10.40 5.26 

400 5.0 2.84 8.0 4.27 11.0 5.15 

500 5.0 2.72 9.0 4.23 10.88 5.09 

BL 5.1 2.67 9.64 4.11 12.0 5.01 
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Fig. 8 compares the EER results obtained 
from these experiments with test utterances of 3, 
5 and 15 sec. of speech and obtained in 
experiment and shown in Table 2, for test 
utterances of about 48 seconds of speech. Both 
experiments use Method 1 without 
weight substitution. 

Observe that method with k=350 is the best for 
any test duration; also observe that the 
differences in efficacy between 15 sec. and 48 
sec. for all the methods are very few, so the GSC-
CV criteria applied to reduce redundancy in 
speaker models provoke very similar behavior in 
speaker verification for test utterances with 
duration greater than 15 sec., then the use of this 
method would reduce the processing cost of test 
utterances in speaker verification. 

6 Conclusions and Future Work 

In the presence of real or embedded applications 
of speaker verification, the classical GMM-MAP 
[1] and GSV-SVM [2] methods are not sufficient 
enough. It is so, because the classical GMM-MAP 
obtains a large number of components from the 
set of Gaussian components selected for each 
feature vector, it is possible to perform a reuse of 
Gaussian components in different sub-models, 
increasing the computational load and runtime of 
the verification stage, at the same time GSV 
presents high dimensionality, too. Both methods 
use non-discriminative and redundant information. 

Experimental results using GSC-CV criteria 
show that an important reduction of the models, 
more than 80% regarding the number of 
Gaussian components used in the baseline 
models (2048) explained in Section 4.1 is 
reached, with similar performance in speaker 
verification experiments. Of course, the volume 
reduction will depend on the databases. In all 
experiments, the use of the GSC-CV method of 
Gaussian component selection would reduce the 
computational and memory cost of classifying 
stage in real applications of speaker verification in 
relation to the baseline, because for each frame 
this method selects the 10 most likely Gaussian 
components. Also, the use of the proposed 
method, by selecting 200 or more Gaussian 
components as shown in Table 4, increases the 

efficacy of speaker verification with short test 
utterances compared to the baseline, an aspect 
very common in forensic situations. 

As a future work, we propose to obtain another 
method to select the Gaussian components of the 
model, using an Adaboosting classifier, 
considering the Gaussian component as weak 
classifiers and utterances of target and impostors 
speakers as positive and negative samples. The 
proposal would be to obtain an optimal value of 𝑘 
Gaussian components as a strong classifier of 
each target speaker to be used as speaker model 
for speaker verification experiments. 
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