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Abstract. In this work, a strategy to automatically 

generate eye-believable motions for a virtual character 
that navigates in a 3D environment is presented. The 
overall approach consists of four components as 
follows. (1) A state-of-the-art path planner that 
computes a collision-free reference path for the 
character’s center of mass (COM). For this planner, a 
simplified model that bounds the character’s geometry 
is proposed. (2) A segmentation algorithm that divides 
the path into behaviors. (3) A classifier that compares 
each behavior with the corresponding motion capture 
segments previously analyzed and stored in a 
database. (4) A whole-body motion generator that 
synthesizes the appropriate behavior determined by the 
classifier. The main contribution of this work is to 
produce a sampling-based global motion planner that 
generates different behaviors (in addition to locomotion) 
issued from environmental constraints. Several results 
of our algorithm in different environments are shown 
and its current limitations are discussed. 

Keywords. I.3.7 computing methodologies, computer 

graphics, three-dimensional graphics and realism, 
motion planning, character animation, motion-capture 
classification. 

Un planificador basado en capturas de 
movimiento para personajes virtuales 

desplazándose en ambientes 3D 

Resumen. En este trabajo se presenta una estrategia 

para generar automáticamente movimientos 
visualmente creíbles para un personaje virtual que 
navega en un ambiente 3D. Esta estrategia consta de 4 
componentes: (1) Un planificador de movimientos que 
calcula un camino sin colisiones para el centro de 
masa (COM) del personaje. Para esto, se propone un 
modelo simplificado que envuelve la geometría del 
personaje. (2) Un algoritmo de segmentación que 
divide el camino en comportamientos. (3) Un 

clasificador que compara cada comportamiento con 
segmentos de captura de movimiento para identificar el 
tipo de comportamiento correspondiente. (4) Un 
controlador local de movimientos para todas las 
articulaciones del personaje que genera los 
comportamientos determinados por el clasificador. La 
contribución principal de este trabajo es producir un 
planificador de movimientos global basado en 
muestreos que genera diferentes comportamientos 
(además de locomoción) a partir de las restricciones 
del ambiente. Se muestran algunos resultados de 
aplicar esta estrategia en varios ambientes de prueba 
de para el personaje virtual y se discuten las limitantes 
del trabajo. 

Palabras clave: I.3.7 metodologías computacionales, 

gráficas por computadora, gráficas tridimensionales y 
realismo, planificación de movimientos, animación de 
personajes, clasificación de comportamientos.  

1 Introduction 

Generating eye-believable motions for virtual 
characters has gained an increasing interest from 
both Computer Graphics and Robotics 
communities. This interest is mainly due to such 
demanding applications as video games, 
simulation environments, product design, 
architectural design, education, etc. As an 
example, the video game community would 
greatly benefit from algorithms that would make 
the evil characters motions somewhat plausible, 
i.e., taking the shortest possible paths in order to 
avoid obstacles, while simultaneously maintaining 
a “natural” gait. Eye-believable human-like motion 
synthesis is particularly challenging for two main 
reasons: 
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1. As we humans are very familiar with looking 
at human motions, even the smallest artifacts 
on the computer generated motions may 
strike us as odd or unnatural. 

2. The high dimensionality of the representation 
of a humanoid skeleton makes the 
specification of every configuration highly 
redundant relative to almost any task. 

To deal with the first problem, a now standard 
solution is to use clips recorded from real actors 
and stitch or edit them to generate new motions. 
These clips are referred to as motion capture 
(mocap) clips. The second issue has been tackled 
from several angles; one among them is the use 
of simplified models of the characters, which can 
greatly reduce the dimensionality of the problem. 

In this work we propose a motion planner that 
computes a collision-free, eye-believable 
trajectory for a character in a cluttered 
environment. The planner takes as inputs the 
initial and final positions and orientations of the 
character as well as a set of prerecorded motion 
capture clips of several different behaviors 
(walking, running, jumping, bending and 
crawling). These clips are used in two stages: 

1. An offline motion analysis stage, where the 
captured examples are processed and stored 
in a compact and convenient structure, useful 
to compare with the movements generated by 
the planner. 

2. An online motion synthesis stage, where new 
collision-free paths are generated using a 
reduced model of the character. These paths 
are then segmented into homogeneous parts 
and compared with the motion database to 
find the type of action best suited to follow the 
path. 

The contribution of this work is two-fold: 

− We provide an original simplified model that 
reduces the dimensionality of the virtual 
character skeleton while keeping enough 
degrees of freedom (DOFs) to plan non-trivial 
motions. We use it for both planning and 
motion classification. 

− We propose a compact PCA-based structure 
to store motion-capture clips and adequately 
generate new motions from a planned path. 

These contributions allow us to consider more 
behaviors in addition to locomotion such as 
jumping or crawling when needed to avoid 
obstacles. The generated combined behaviors 
are more complex than those generated from 
locomotion only.  

The rest of this work is structured as follows. In 
Section 2 we review most relevant work related to 
our problem. In Section 3, an overview of our 
complete strategy is presented. Section 4 
describes the models of a virtual character which 
we use for planning, motion classification and 
motion generation. Section 5 describes a method 
for building a compact motion capture database 
from the original motion capture clips. In Section 
6, our algorithm for generating collision-free 
whole-body motions is described. Section 7 
presents some of the results obtained using the 
proposed strategy, and finally, in Section 8, 
conclusions and future work are discussed. 

2 Related Work 

Among the methods proposed in the literature to 
synthesize human-like motions for character 
navigation using motion capture clips, one of the 
most popular has been the Motion Graphs (e.g., 
[2, 11]) which stores a set of captured clips and 
automatically constructs transitions between them 
when these transitions are pertinent. Clips and 
transitions are stored in a directed graph, the 
motion graph, which is searched when new 
animation sequences are needed. A graph 
representation has the advantage that it 
preserves the realism of the original clips and that 
new animation sequences can be synthesized 
only by performing graph searches. However, as 
the clips are only stitched together, it is not easy 
to obtain a fine control and the variability 
necessary to accurately follow a reference path. 
Hence, other works, mostly within the Computer 
Graphics community, have proposed controllers 
based on a combination of captured clips. Pettré 
et al. [15] propose a locomotion controller for the 
navigation of a virtual character where reference 
linear and angular velocities of the character’s 
center of mass (CoM) are provided by the user as 
input to the controller. Within a previously 
constructed database of examples, the algorithm 
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looks for the three clips with the closest velocities 
to the input ones and interpolates them linearly to 
generate a new motion. In our work, we use 
Pettré’s controller together with controllers for 
different behaviors that consider obstacle height 
(jumping or crawling). This makes our approach 
go further than this previous work by using, in 
addition to locomotion, other behaviors in a single 
planning scheme. In the context of motion 
planning, several planners for virtual characters 
navigating in cluttered environments have also 
been proposed in the literature [5, 6, 13, 16, 18]. 
Most of these planners take as input motion 
capture clips to generate eye-believable motions. 
These methods can be divided into single-query 
and multiple-query approaches, depending on 
which motion planning strategy is used. Within 
single-query methods, the authors of [13] propose 
a planner based on a finite-state machine, in 
which states are motion capture clips of the same 
type of behavior (running, walking, jumping, etc.) 
and edges are transitions between them. The 
environment is represented as a 2D height map 
annotated with types of motion which could be 
used near certain obstacles, and a Rapidly-
Exploring Random Tree (RRT) [12] is created 
using the finite state machine as a control to 
compute a collision-free path in a given 
environment. Within multiple-query approaches, 
among which our work can be classified, two-
stage methods have been proposed. In the first 
stage of these methods, a collision-free path is 
found for a reduced model of a character, and in 
the second stage, the path is followed using 
motion capture clips. The authors of [18] propose 
a multi-layered grid, with each layer consisting of 
a single posture of a character. These postures 
represent a characteristic configuration of a type 
of movement or behavior such as walking, 
jumping or crawling. A collision-free path is found 
in this grid by giving some postures throughout 
the path. The postures are interpolated and 
dynamically validated to obtain a collision-free 
path for the whole body of the character. In [5], 
the authors plan a feasible, collision-free path for 
the footprints of a character. These footprints are 
the nodes of a graph and are linked with motion 
capture clips. Retargeting methods are used to 
satisfy the constraints imposed by each footprint 
position and orientation. In [16], the authors 

propose a two-stage method to synthesize new 
motions to avoid obstacles using existing motion 
capture examples. First, they compute a collision-
free path for a box bounding a character’s 
geometry. The resulting path is converted to 
linear and angular velocity references and given 
as input to the locomotion controller presented in 
[8, 15]. The authors take a similar approach but 
use a functional decomposition of a character. 
This decomposition divides the model of the 
character in three groups according to their 
function: locomotion, manipulation and pose. The 
motion planning stage is performed only for the 
box bounding the locomotion DOFs (the lower 
part of the character’s body). The manipulation 
DOFs are computed using an inverse kinematics 
algorithm appropriate for closed kinematic chains. 
In the final stage, residual collisions are 
eliminated using a local correction of the pose 
kinematic chain. Our work is a two-stage multiple-
query method following the same idea as [8, 16]. 

Our contribution relative to these works is two-
fold: we added more behaviors into the planner to 
handle different types of obstacles (by jumping or 
crawling), and we propose a more efficient 
reduced model for the character which allows to 
plan a wider range of initial collision-free paths. 
More recent works [6] have used sweeps of 
motion capture clips as deformable models which 
are fitted inside constrained environments. The 
original captures are deformed in an equivalent 
manner to obtain a collision-free motion following 
by going as near as possible as the original 
motion.  

3 Our Approach 

The goal of our approach is to obtain a 
collision-free eye-believable path from input 
motion capture clips. Fig.1 presents the overall 
approach. The algorithm can be divided in two 
stages: (1) a motion analysis stage and (2) a 
motion synthesis stage. The first step of the 
analysis stage is to use a reduced model of a 
character to reduce the dimensionality of the 
motion capture data. The reduced model is a 
mesh which deforms as the character moves 
(Section 4.1). The values at some of the vertices 
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of this mesh are extracted and taken as the new 
values to be analyzed by our algorithm. The 
second step is to further reduce the 
dimensionality of the data by extracting its 
principal components (Section 5.1) and projecting 
the points of the mesh of each clip on these 
components producing clusters of behaviors on a 
new space (Section 5.3). The result of the 
analysis stage is thus a database of clustered 
behaviors in a low-dimensional space (two or 
three dimensions). 

In the motion synthesis stage, we first produce 
a path using a reduced model of a character. This 
model is a set of five boxes attached to retracting 
joints making them shrink or expand on the 

vertical position (Section 4.2). This allows the 
simplified model to avoid obstacles below or 
above the default height of the character.  

The second step is to segment the obtained 
path to identify the different behaviors needed to 
avoid the obstacles and to classify them using the 
database (Section 6.2) constructed during the 
motion analysis stage. Depending on the behavior 
determined by the classifier, a different motion 
controller is issued to generate locomotion, 
crawling or jumping motions to follow the 
computed path. This motion generation strategy is 
summarized in Algorithm 1 (Section 6.3). 

In the following sections we further describe 
each step of our algorithm. 

 

Fig. 1. Overview of our overall strategy 
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4 Character Model  

A virtual character is usually represented as a 
series of linkages and joints rooted on the 
character’s pelvis (see Fig.2 (a)). Every joint in 
this whole-body model is spherical, i.e., each joint 
can be completely specified by three angles if an 
Euler angles representation for orientations is 
chosen. Each degree of freedom (DOF) of every 
joint is bounded according to its anatomical limits. 
The limits to the knee and elbow joints are set to 
values such that only the degree of freedom 
allowing extension and flexion is allowed to move. 
The root is a free floating object in the 3D space, 
the configuration of which can be described using 
three angles to represent its rotation and three 
scalars to represent its translation. This model 
has usually around 57 or more DOFs for a 
realistic virtual character.  

Even though modern sampling-based motion 
planning methods can perfectly handle models of 
dozens of degrees of freedom, human motion has 
specific patterns which must be respected to 
produce believable motions (e.g., locomotion). 
Hence, a whole-body model is not adequate for 
planning with sampling-based techniques: human 
motions are living in very tight sub-manifolds of 

   . In this work we therefore propose a reduced 
model of the system, useful for planning and 
helpful to reduce the dimensionality when 
analyzing and storing the motion database. It is 
not until the last stage of our algorithm that we 
use the whole-body model again, when we have 
to compute the required angle for each degree of 
freedom. The motivation to determine the correct 
reduced model is to find a common space into 
which both motion analysis and synthesis can be 
modeled and eventually compared. 

4.1 Reduced Model for Motion Analysis 

Motion capture data is frequently used when eye-
believable motions are desired as output. The 
usual procedure to deal with this data is to divide 
the recorded motion into small clips according to 
the behavior the actor performed. The clips can 
be segmented by hand or automatically (e.g., as 
in [3] or more recently in [19]). 

In our application, input data consists of clips 
of several hundreds of frames, where the 
complete pose of the character as well as its 
root’s position and orientation is specified. Here, 
all motion clips have been resized to contain the 
same number of frames which will be referred to 
as   . Hence, the data we keep from each clip 

can be considered as a matrix    in        , 
where    is the number of joints. Each column of 

this matrix corresponds to one frame in the clip. 
Typically, the number of frames in one clip is 
around 500.  

To reduce the dimensionality of this input data 
in the motion analysis procedure, a deformable 
polygonal mesh which bounds the character is 
used as illustrated in Fig. 2(b). Polygonal meshes 
are of common use in the area of Computer 
Graphics to handle skin or clothes of virtual 
characters.  

The displacement of any control point   of the 
mesh (any vertex on Fig. (b)) is associated to the 

motion of a joint or a set of joints of the skeleton 
through a weight     , which empirically 

represents the influence of the joint i on the 

motion of the vertex point    of the mesh. For 

example, a weight          means that the 

vertex    moves half the amount and in the same 
direction as the center of the joint i. The 
displacement of any given joint is measured 

 
a) b) c) 

Fig. 2. (a) Whole-body model of the character,  

(b) Polygonal mesh used for motion analysis,  
(c) Linked boxes used for motion synthesis 
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relative to the initial posture, usually called the 
bind pose. Hence, between two consecutive 
frames t and t+1, the displacement of a vertex on 
the mesh expressed on the same reference frame 
is given by Eq. 1, 

where ai(c) is an operator that returns the 3D 
position of the center of a joint i by applying a 

      vector of joint parameters   to the 

skeleton hierarchy (i.e., direct kinematics). The 
matrix        is a sparse matrix determined 

empirically. Our reduced model is constructed by 
taking the height of the points   of the polygonal 

mesh at every frame    computed as in Eq. 1. 

The idea is that, when constructing our motion 
database, we do not use all joints but only some 
of the vertices   on the polygonal mesh (typically, 
five points on the mesh are sufficient here) which 
(1) greatly reduces the problem dimensionality 
and (2) can be directly compared to the model 
used in planning as explained in the next 
paragraphs. Moreover, to cluster motions by 
types, we will see that the heights of a few points 
   are sufficient. 

4.2 A Model for Path Generation 

For planning purposes, the idea is also to use a 
reduced configuration space, not only for 
simplifying the complexity of the problem, but also 
to be able to compare segments of the computed 
paths with the motion capture data clips described 
above. To this end, we use another geometrical 
model represented in Fig. 2(c), which consists of 
a series of boxes linked through vertical and 
limited translating joints. The number of boxes is 
the same as the number of control points (  ) 
chosen to represent the polygonal mesh on the 
previous section (five in this case). The group of 
boxes has a size such that, when the translating 
joints are at their default value, they bound the 
character in a neutral position (Fig.3 (a)), when 
they are at their upper limits, they bound a 
jumping character (Fig.3 (b)), and when they are 

at their lower limits, they bound a crawling or 
bending character (Fig.3 (c)). 

Our aim is to use such 2.5D model to plan 
paths not only on the 2D floor plane on the 
workspace but also (up to certain limits) in the 3D 
workspace, as we can generate configuration 
which jump over short obstacles or crawl under 
tall ones. Since our motion capture database has 
motion clips for these types of motion, we would 
like to generate paths which could be reproduced 
with these behaviors, where a normal 2D planner 
would simply avoid all the obstacles. Then, a 
configuration for the character will be fully 
specified by (1) a 2D position and orientation 
vector on the ground plane            and (2) a 

vector         storing the heights of the    
different boxes which are not treated at the same 
level as it will be detailed in Section 6. 

The way to generate valid configurations for 
this box and linkage model is by applying the 3D 
Chainmail Algorithm used for volume deformation 
[9]. When an element of the chain is moved, its 
displacement affects only the position of its 
neighboring elements allowing fast propagation of 
the deformation throughout the system. When the 
box moves up or down, the chain linking the 
boxes absorbs the motion and is stretched up to 
some limit; when this limit is reached, the motion 
is transmitted to the neighbors. Hence, small 
displacements have only local effect while large 
displacements affect the whole system. For 
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(1) 

 

(a) (b) (c) 
 

Fig. 3. Simplified model of the character used for 

motion synthesis: (a) neutral configuration, (b) 
configuration for avoiding lower obstacles issuing 
jumping behaviors, (c) configuration for avoiding tall 
obstacles making the character crawl 
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example, consider two consecutive boxes   and   

among the    boxes in the reduced model with 
their respective vertical positions       . These 
boxes are linked through a translation joint with 

maximal displacement     
 

 between them. Any 
vertical displacement    imposed on   (e.g., due 

to a collision on the box  ) induces new heights 

    and     which will satisfy Eq. 2. 

The latter means that the displacement may be 
propagated (or not) to  . Similarly, the propagated 
displacement at   could also be propagated to the 
next level and so on. This scheme is at the core 
of the planning algorithm: the basic sampling is 
done in 3D         space, but in the case of a 
collision with the lowest (or the highest) box, the 
previous propagation scheme is applied to 
eventually infer a collision-free configuration.  

5 Clustering Mocap Databases 

In their raw format, it can be difficult to retrieve or 
compare behaviors in a motion capture database 
due to a large dimensionality of the data (    

   . In Section 4.1, we have described a more 

compact representation for each clip which relies 
on the heights of a set of points distributed on a 
regular polygonal mesh bounding the character 
(Fig. 4 (a)). The choice of these points (vertices 
14, 11, 8, 5 and 2 in Fig.4 (a)) has been made by 
observation to discriminate the behaviors that we 
have chosen to use here: running/walking, 
jumping and bending/crawling, but more 
behaviors could be included without losing the 
generality of the proposed model.  

For now, the five control points we consider 
are the ones that are closer to the head, the 
spine, the pelvis, the midpoint between the left 
and right knees and the midpoint between the left 
and right feet (Fig. 4(b)). 

As an example, the vertices 13, 14 and 15 on 
the top of the box all include only the contribution 
of the head joint    , while the vertex 2 is 
considered with equal weights that have the value 
of 0.5; the contribution of the left foot joint     and 
that of the right foot joint joint    . 

 

(2) 

 
 

a) b) 

Fig. 4. (a) Polygonal mesh used to reduce dimensionality of 

the input mocap clips. The numbered vertices    are shown. 

(b) Most weighted joints for the considered behaviors  

 

a) b) 

Fig. 5. (a) A frame from a bending motion bounded by the 

polygonal mesh. (b) Reduced input vector for the bending 
motion showing the height of the five observed vertices on the 
mesh 
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After this process, each input capture clip with 
initial dimensionality of       (57x500) is 

reduced to a       (5x500) vector of heights 

along frames. Fig. 5(a) shows one configuration 
of a bending motion bounded by the polygonal 
mesh and Fig. 5(b) shows an example of the time 
evolution of the five heights of the observed 
control points during the same bending motion. 
Fig. 5(b) clearly demonstrates that the head and 
shoulders of the character lower while the feet, 
knees and waist remain at the same height, which 
is characteristic of any bending behavior. 

5.1 PCA on Motion Capture Data 

At this point, our data is represented by the 
stacked entries of matrices   , i.e., a vector    of 

dimension              , which is still very 

large for behavior classification. In order to further 
reduce the dimensionality, we turn to Principal 
Component Analysis (PCA) which has the 
additional advantage of reducing noisy data 
components and keeping only the most relevant 
parts of the data for classification. 

In addition to the problem of dimensionality, 
we have as input data many more variables 
(heights of the mesh vertices in all frames in a 
clip) than observations (number of clips in the 
database) and therefore standard PCA cannot 
capture the relationships between variables. 
Instead, we use Kernel-PCA with a linear kernel 
[4]. Our PCA-based process for generating a 
compact representation of the database consists 
in the following steps: 

1. Collect a simplified representation as 
explained before, of each of the N clips, from 
a       matrix    to a      vector   . 

2. Compute the vectors mean   and the 

resulting centered vectors:   ̃      ̅. 

3. Set the      data matrix. 

  (
 ̃ 

 

 

 ̃ 

 
)  

4. Set the    -gram matrix      . 

5. Apply SVD on       . 

Once the SVD has been computed, any vector 
  can be projected on the base formed by the 

eigenvectors of   (columns of  ), and its 

coordinates are shown in Eq. 3. 

Now note that, among the N eigenvectors, 
some are much more significant than others. 
Hence, we will simply consider the first      
eigenvectors with highest eigenvalues.  

Each height vector will be represented by its 
coordinates on this base. An example of such a 
projection is given in Fig. 6 and Fig. 7. In Fig. 6, a 
set of 16 motion capture clips    in the format of 
heights vectors is shown. 

In Fig. 7, their coordinates onto the      first 

eigenvectors of   are shown altogether with their 

 

Fig. 6. Sequences of heights (vectors   ) for different 

motion capture clips forming our database. Walking, 
bending and jumping behaviors are noticeable. The 
vertical axis is the height of the observed points in the 
mesh and horizontal axis is the number of frames 

 (3) 
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annotation in terms of behavior. It is interesting to 
note that with this scheme, the main behaviors in 
which we are interested in this work, namely, 
walking/running, jumping and bending/crawling 
are well separated, enough to be able to classify 
new height vectors as explained hereafter. 

5.2 Time-Centering of Height Vectors 

For our whole process to capture the variations of the 

motions in the database, special care has to be put on 
the clips to avoid adding bias in the data because of 
time shifts. As an example, Fig. 8(a) shows one of the 

heights of a vector   extracted from the CMU motion 

database [7]. 

As the jump in this case is at the end of the 
sequence, this vector would be considered quite 
different from the other vectors of the same type, 
where the jump occurs sooner in the sequence. 
As a consequence, vectors are first centered 
before being inserted in the PCA process as 

 

Fig. 7. Projections of the previous height vectors, with annotations of behaviors. The three axes are the three main 

components issued from the PCA process 

 

(a) (b) 

Fig. 8. (a) A non-centered jumping motion from the CMU database. (b) The same jumping motion, time-centered 
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described before, and this centering consists 
simply in identifying the highest peak in the height 
vectors and setting it at the center of this time 
series. Fig. 8(b) illustrates the centering process 
applied on the height vector of Fig. 8(a). 

5.3 Classification of Height Vectors 

An important stage of our work is to segment 
paths generated by a path planner and convert 
them into a height vector   as the ones we 
described above. By doing so, we can then 
extract from the database of motion capture clips 
the most relevant clips to perform the required 
path segment in a natural way. For selecting 
these “closest” clips, we used a clustered 
database, such as the one illustrated in Fig. 7: 
clips are associated to a behavior, and a new 
height vector has to be assigned to one of these 
behaviors in order to choose an adequate 
strategy to execute the motion, i.e., it has to be 
classified. Here, we use a k-nearest neighbor 
algorithm in     which is the space of coordinates 
on the base of the eigenvectors. 

6 Planning and Synthesizing Motions 

After the motion database is constructed using 
the input clips, a motion generation stage is 
needed to synthesize new motions which can 
adapt to the environment. The second stage of 
our method is therefore a motion planner that 
computes collision-free motions for a virtual 
character. For this, three main steps are followed: 

1. A collision-free path is computed using the 
reduced model from Fig. 2(c). 

2. The computed path is segmented into 
homogenous parts by detecting large 
changes in the path height coordinates. 

3. Each segment is compared with the elements 
in the database to find the closest behavior 
and to determine the adequate controller to 
generate the whole-body motion which can 
follow the computed path. 

Each step is further described in the following 
paragraphs. 

6.1 Path Planner 

In order to obtain a collision-free path, any 
sampling-based method can be used. The main 
idea of these techniques is to capture the 
topology of the character’s collision-free 
configurations       into a roadmap without 

computing the graph explicitly (i.e., by randomly 
sampling      ). Once the roadmap is computed, 

it is used to find a path connecting the initial and 
final configurations. In this work, we have chosen 
to use a variant of the Probabilistic Roadmap 
(PRM) algorithm [10], a multiple-query sampling-
based method. Multiple-query methods are 
divided in two stages: a learning phase and a 
query phase. 

In the learning phase, feasible random 
configurations are drawn in the character’s 
configuration in space  . If a random 
configuration is collision-free, it is connected to 
the nearest sample using an edge only if this 
edge also lies inside      . The form of these 

edges, also known as local paths, depends on the 
kinematic constraints of the system for which the 
path is being computed. In this work, based on 
the results from the area of Movement 
Neuroscience [1] suggesting that most humans 
exhibit nonholonomic constraints when navigating 
in large open environments, we add differential 
constraints to the reduced model for planning. 
Bézier curves of the third degree are used as in 
[17] to ensure these differential constraints with 
the additional advantage of obtaining smooth 
paths. 

The aim of the query phase is then to find a 
path in the roadmap constructed during the 
learning phase. For this, the initial and final 
configurations are added as new nodes and 
connected with local paths with a node of the 
existing roadmap. Then, a graph search is 
performed to find a path between the start and the 
goal configurations. If such a path is found, then it 
can be smoothened to remove useless detours.  

The novelty of our planning algorithm is on the 
leaning phase. As it was mentioned in Section 4, 
all the DOFs of the reduced system are not 
treated in the same way by the planning 
algorithm. First, feasible (within DOF limits) 
random configurations are drawn for the 2D 



A motion-capture based planner for virtual characters navigating in 3D environments  401 

Computación y Sistemas Vol. 16 No.4, 2012 pp.391-407  
ISSN 1405-5546 

position and orientation only,         , of the 
reduced system for planning (shown in Fig. 2(c)). 
When colliding configurations are detected, they 
are not immediately rejected from the roadmap, 
but instead, the 3D Chainmail algorithm (see 
Section 4) is triggered. Fig. 9 shows this process 
for two boxes, one of which is avoided using the 
Chainmail algorithm shrinking the boxes upwards 
(Fig. 9(a)), a classic PRM algorithm would have 
discarded this configuration. The second box 
cannot be avoided with this technique; the 
obstacle has to be avoided by going around it 
(Fig. 9(b)). Here, the Chainmail algorithm looks 
for a configuration that can avoid this collision by 
displacing the boxes of the reduced model up or 
down until the joint limits are attained or the 
collision is avoided. If the collision cannot be 
avoided, the sample is discarded, but if it can be 
avoided, it is stored in the graph. 

The resulting path computed by the planner is 
a sequence of configurations specified with the 
eight DOFs of the reduced model: three for the 
character’s position and orientation in space 
         and five for the heights of each of the 
translation joints as described in Section 4. 

In Fig. 9(a) and Fig. 9(b), three paths are 
shown on the plane. The path in light gray 
(magenta in the color version) shows the path 

resulting from the algorithm before any 
optimization or smoothing. This path contains 
generally several sub-paths which are straight line 
segments even for very small paths. The dark 
gray (blue on the color version) is a path 
optimized recursively to avoid useless detours. 
Finally, the dotted path (green on the color 
version) is the smoothed path using Bézier curves 
of third degree.  

Fig. 10 shows the trajectory for the heights of 
the boxes in the sagittal plane. Fig. 10(a) is the 
output trajectory using the Chainmail algorithm for 
a big obstacle on the top of the environment (the 
reduced model has to shrink in the direction of the 
floor) and Fig. 10(b) shows the same trajectory 
after being smoothened to simplify the 
comparison with the motion capture database.  

6.2 Path Segmentation and Segment 
Classification 

Once a path is computed, a segmentation 
process needs to be applied on it in order to 
extract    sections of motion that can be 
compared to the motions in the mocap database. 
Ideally, each segment    would have a unique 
type of motion, regardless to its particularities and 
duration. Each segment will be the input to a 
simple nearest-neighbor classifier within the 
samples in the mocap database so that they can 
be labeled with the type of motion they 
correspond to (see Section 5.3). Our 
segmentation process is very simple: we detect 

 

a) 

 

b) 

Fig. 9. Two different samples in the learning phase of 

our planning algorithm. (a) A colliding configuration is 
avoided using the Chainmail algorithm displacing 
some boxes upward. (b) No collision-free 
configuration was found using the Chainmail 
algorithm. The obstacle was avoided by going around 
it 

 

(a) (b) 

Fig. 10. Example of a sagittal view of the trajectory 

output from the planning algorithm. Here, an obstacle 
was avoided using the Chainmail algorithm by 
lowering the upper elements of the reduced model. 
(a) Original trajectory. (b) Smoothened trajectory 
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strong changes in the heights of the boxes of the 
reduced model. The cut of each segment    is set 

(experimentally) to a number   of frames before 
and after a strong change is detected to account 
for the transition between motions. Fig.11 shows 
an example of a path segmented into five pieces.  

When all the segments are obtained, they 
have to be classified using the procedure from 
Section 5.3 in order to obtain the type of motion 
that should be generated for each   . To be able 
to compare each segment with the data in the 
mocap database, it is resampled to have a length 
of 500 frames, so as to form a vector   living in 
the same space as the aforementioned reduced 
motion capture clips. Each segment has therefore 
a dimension of            , the same as 

the PCA-transformed mocap data inside the 
database. 

Finally, the classifier projects the segment into 
the coordinate system provided by the training 
data principal components and the nearest 
neighbors found (see Fig. 12) give the adequate 
type of movement to follow the path.  

6.3 Whole-Body Motion Synthesis 

Once the type of motion has been identified from 
the classification process, a specific local 
controller for each type of motion (walking, 
jumping or bending) is used to generate the 
whole-body motions needed to follow the path. 
Each controller needs a different set of input 
parameters, one of them being the linear velocity 
provided by the user. Here, we only use three 
types of motion and therefore three local 
controllers. The first one is the locomotion 
generator presented in [15] which uses as input 
the linear and angular velocities of the desired 
walking pattern (extracted from the path) and 
produces a locomotion sequence by interpolating 
the three closest captures from the mocap 
database. This controller is used when the 
segment is classified as a walking/running motion. 
The second controller chooses an appropriate 
jumping motion in the mocap database by using 
the linear velocity and the jumping height 
extracted from the path segment. The third 

 

Fig. 12. A segment is classified by projecting it to the 

coordinate system defined by the two principal 
components of the training data and then finding its 
nearest neighbor. In this example the segment is 
classified as a jumping motion 

 

Fig. 11. Segments are divided when a strong change 

in their height is detected 
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controller, for bending motions, is very similar to 
the jumping controller except that it takes as an 
input the amount of displacement of the highest 
point of the reduced model to obtain a bending or 
crawling motion capture that avoids the obstacle. 
After the whole-body motions are obtained from 
each segment, they are interpolated with the 
previous segments to get the complete trajectory. 
Algorithm 1 sums up the complete motion 
generation method.  

7 Simulations 

In this section, we present some representative 

results obtained by applying our algorithm to a 
virtual mannequin asked to navigate in different 
simple worlds. All the results have been obtained 
with the motion capture database of CMU [7] 
which is the largest public motion capture 
database available online. Since it contains a lot 
of motion not relevant to our application of 
navigation of a character in virtual worlds (e.g., 
baseball motions are not useful to wander in 
polygonal environments), we have selected a very 
restricted subset of the data, namely, 16 motions 
represented in Fig. 6. These motions include 
walking/running, jumping or bending/crawling 

patterns. To construct the database in such a way 
that a comparison with planned paths is possible, 
the “skinning” process (see Section 4.1) is applied 

to all 16 input motions, and the resulting       

dimensional vectors are projected onto the 
coordinate system specified by the first principal 
components obtained after applying the Kernel-
PCA method (see Section 5.1). 

Interestingly, very few principal components 
have to be handled to capture the database 
variations. As an illustration, Fig. 13 shows the 
reconstruction of one of the particular motions 
(not from the database) which can be done with 
an increasing number of principal components. As 
it can be seen, the original motion (corresponding 
to the one obtained with 16 components, on the 
down-right corner) is already quite fairly 
reconstructed for      components. Due to this 

fact, we considered      in our experiments. 
We checked that these three main components 
contain at least 90% of the information from the 
original motion data. 

 

 

Fig. 13. Reconstruction of a particular motion with 

increasing numbers of principal components (from 1, on 
the top-left corner to 16 on the down-right corner reading 
them by rows). The vertical axes of each graph are the 
heights of the observed points and the horizontal axes are 
the number of frames 
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The software implementing our algorithm has 
been entirely written in C++, and the authors of 
[15] have kindly lent us their code for the motion 
controller of walking patterns. The scenes shown 
in our examples are quite simple but we eliminate 
the clutter to make our point and show that 
obstacles of different heights can be avoided 
either by bending, jumping over them or walking 
around them.  

The first example of a synthesized motion is a 
walking motion illustrated in Figures 14, 15 and 
16. As it can be seen, it contains a parallelepiped 
obstacle which cannot be avoided by jumping or 
crawling. Our algorithm first computes a collision-
free path by using the PRM-Chainmail method 
(Section 6.1) which generated a path avoiding the 
obstacle by passing around it. This path is shown 
in Fig. 14(a). The final smoothened path is 
displayed with a thick curve (blue on the color 
version). A graph of the heights of the centers of 
the boxes is shown in Fig. 14(b). As there are no 
strong height changes, only one segment is 
extracted by segmentation and classified (Section 
6.2) as a walking motion in Fig. 15(a). Fig. 15(d) 
demonstrates the motion generated by the 
locomotion controller following the computed 
path. 

The computational time for this simple 
example on a standard PC was 7.02s for the 
motion planner (PRM + Chainmail) plus 0.0026s 
for path segmentation plus 0.018s for path 
classification. One must keep in mind that the 
PRM construction (the main source of complexity 
for this algorithm) has to be done only once, and 
that every new query for motions to be generated 
use the same graph generated by the PRM initial 
run. This is the main advantage of multiple-query 
planning algorithms. 

The second example is a walk-jump-walk 
motion shown in Figures 16 and 17. As it can be 
seen, there is a wall separating the initial and final 
configurations. The planner could have avoided it 
as in the first example, but thanks to the 
Chainmail algorithm, it was able to compute a 
path that goes over the obstacle.  
Fig. 16(a) shows the position and orientation of 
the computed path on the plane. Fig. 16(b) shows 
a graph of the heights of the joints of the reduced 
model. Here, three segments are extracted using 
our segmentation procedure.  

The three extracted segments are classified, 
the first as a walking motion, the second as a 
jumping behavior, and the third as another 
walking behavior. The classification of the middle 
segment is shown in Fig. 17(a). The third example 
(Figures 18 and 19) is similar to the previous one. 
Here, the scene has also one obstacle but the 

 

(a) (b) 

Fig. 14. Walking trajectory. (a) Planned path using PRM 

and Chainmail. (b) Segmentation as a height vector 

 

 

(a) (b) 

Fig. 15. (a) Classification of the height vector of a 

walking behavior. (b) Whole-body locomotion synthesis 

 

(a) (b) 

Fig. 16. Jumping trajectory: (a) Projection on the plane 

of the path of the reduced model’s CoM.  
(b) Segmentation of the path in function of the height of 
the boxes of the reduced model 
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point is to show the algorithm avoiding the 
obstacle by finding a bending motion.  

The planner generates a path that goes under 
the obstacle, and the corresponding height vector 
(Fig.18(a)) is segmented into three distinctive 
parts corresponding to two walking and one 
bending segments (classification of the third 
segment is shown in Fig.18(b)). 

The final synthesized motion is depicted in 
Fig.19. This trajectory involves a bending motion 
to avoid the obstacle. A hand is used naturally for 
stability on the floor because it was recorded on 
the closest clip. 

The last example presents a more complex 
scene (also not a cluttered scene but with 
obstacles of variable heights) with obstacles that 
can be avoided by jumping or crawling under 
them. The planner managed to generate paths 
avoiding the obstacles. After a segmentation 
stage where seven segments where obtained, 
three types of behaviors were obtained in the 
following sequence: walk-jump-walk-bend-walk-
jump-walk. For this example the computational 

time was 3.56s for planning, 6.26s for 
segmentation and 0.018*7 for segment 
classification. The resulting whole-body motion 
can be seen in Fig. 20. 

8 Conclusions 

In this paper, we have described an algorithm that 
simultaneously plans collision-free paths and 
synthesize eye-believable motions for virtual 
characters that evolve in cluttered environments. 
By using two adequately chosen reduced models 
of the system, one for the motion capture data, 
one for the configuration space of the planner, our 
method is able to produce human-like motions 
chosen among the examples stored in a motion 
database while ensuring that the generated paths 
are feasible for the character. We have shown 
examples of trajectories generated with our 
method in challenging environments with 
obstacles which can be jumped or passed under, 
and we think that such an algorithm could be 

 

(a) (b) 

Fig. 17. (a) Classification of the height vector. (b) 

Whole-motion walk-jump-walk synthesis 

 

(a) (b) 

Fig. 18. Crawling/bending trajectory (a) Segmentation 

as walking-bending-walking behaviors in function of box 
heights. (b) Classification of the segments 

 

Fig. 19. Whole-motion synthesis for walking-bending-

walking behaviors 

 

Fig. 20. Whole-body motion synthesis for a composite 

behavior trajectory 



406 Juan Carlos Arenas-Mena, Jean-Bernard Hayet, and Claudia Esteves 

Computación y Sistemas Vol. 16 No. 4, 2012 pp. 391-407 
ISSN 1405-5546 

particularly useful in applications like video 
games. 

Currently, our method is limited by the fact that 
the motion needed to avoid obstacles (e.g., 
bending or jumping) may have an amplitude 
which is not available in the motion database, and 
these motions, for the moment, cannot be 
transformed directly to include this kind of 
parameter. The problem can be solved firstly by 
including more motions in the database. Another 
solution would be to make the local controllers 
use a generalized inverse kinematics method to 
locally avoid the obstacle. For example, if a 
bending motion has been generated, residual 
collisions, which may remain between the path 
and the obstacle, could be handled within a few 
frames by actuating on the torso parameters. 
Also, it may happen that the planner provides a 
path with two consecutive segments, and that, 
when synthesizing the motions, the first motion 
ends further than the point where the second 
motion has to start. This can be solved by 
interpolating the consecutive segments according 
to the obstacles or by adapting the motion length. 

As future and ongoing work we are planning 
new motion controllers for different types of 
motion, such as jumping or bending in order to 
produce new motions from existing ones. Through 
this parameterization, we hope to satisfy the 
constraints imposed on the character by the 
computed path, e.g., to control jumps by their 
widths and heights. We expect to do this by 
integrating physically-based motion controllers, 
which are currently being actively researched 
within the Computer Graphics community, and 
which we would use to edit the chosen capture 
clips from the database. Moreover, we intend to 
improve the transitions between the synthesized 
segments which at the moment are interpolated 
but which we intend to assemble in a more 
natural way [14]. Lastly, we are also working on 
improving the segmentation phase, which is 
critical for our algorithm.  
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