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Abstract. Adaptive Gibbs Sampling (AGS) algorithm
is a new heuristic for unconstrained global optimization.
AGS algorithm is a population-based method that uses a
random search strategy to generate a set of new potential
solutions. Random search combines the one-dimensional
Metropolis-Hastings algorithm with the multidimensional
Gibbs sampler in such a way that the noise level can be
adaptively controlled according to the landscape providing
a good balance between exploration and exploitation over
all search space. Local search strategies can be coupled
to the random search methods in order to intensify in the
promising regions. We have performed experiments on
three well known test problems in a range of dimensions
with a resulting testbed of 33 instances. We compare the
AGS algorithm against two deterministic methods and
three stochastic methods. Results show that the AGS al-
gorithm is robust in problems that involve central aspects
which is the main reason of global optimization problem
difficulty including high-dimensionality, multi-modality and
non-smoothness.

Keywords. Random search, Metropolis-Hastings algo-
rithm, heuristics, global optimization.

Búsqueda aleatoria adaptiva para
problemas de optimizacón global sin

restricciones

Resumen. El algoritmo del Muestreador Adaptivo de
Gibbs (MAG) es una nueva heurı́stica para la opti-
mización global irrestricta. El algoritmo MAG es un
método basado en poblaciones que utiliza una estrategia

de búsqueda aleatoria para generar un nuevo conjunto de
soluciones potenciales. La búsqueda aleatoria combina
el algoritmo unidimensional de Metrópolis-Hastings con
el multidimensional muestreador de Gibbs, de tal manera
que el nivel de ruido se puede controlar adaptativamente
de acuerdo al panorama de la función. Existe un buen
equilibrio entre la exploración y la explotación en todo
el espacio de búsqueda. Una estrategı́a de búsqueda
local puede acoplarse a la búsqueda aleatoria con el
fin de intensificar en las regiones prometedoras. Los
experimentos se desarrollaron sobre tres problemas
conocidos en un rango de dimensiones, con un banco
de prueba resultante de 33 instancias. El algoritmo MAG
se comparó contra dos métodos deterministas y tres
métodos estocásticos. Los resultados muestran que el
algoritmo MAG es robusto en problemas que involucran
aspectos centrales que determinan principalmente la
dificultad de los problemas de optimización global, es
decir, de alta dimensionalidad, multimodalidad y la no
suavidad.

Palabras clave. Búsqueda aleatoria, algoritmo de
Metrópolis-Hastings, heurı́sticas, optimización global.

1 Introduction

The inherent difficulty of global optimization prob-
lems lies in finding the very best minimum from a
multitude of local minima. We consider the problem
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of finding the global minimum of the unconstrained
continuous optimization problem

min f(x) such that x ∈ Ω ⊂ <n (1)

where f(x) is a nonlinear function and x is a vector
of continuous and bounded variables. A global
minimization algorithm aims at finding the global
minimizer x∗ of f(x) such that

f∗ = f(x∗) ≤ f(x), ∀x ∈ Ω. (2)

Such optimization problem arises in many practi-
cal fields of application, generally involving a large
number of continuous variables, so there is a need
for designing robust algorithms capable of solving
problems with different characteristics within each
field.

Random search is one of the pillars of most
heuristic methods in global optimization. By in-
troducing stochastic perturbations (e.g., mutations
in a genetic algorithm) it is possible to explore
large regions of a landscape and potentially escape
from local minima, resulting in the exploration of
different local minima points. The optimal mag-
nitude of this perturbation, in order to achieve a
good balance between exploration and exploitation,
is a problem-dependent task. In general, this
dependency makes the parameter selection a major
issue of heuristic algorithms design. In this paper
we propose a Markov Chain Monte Carlo (MCMC)
procedure which, in combination with a local search
strategy, can find very competitive solutions to large
global optimization problems in comparison with
both deterministic and stochastic established meth-
ods. During execution, our algorithm adaptively
determines adequate exploration and exploitation
rates. Due to the fact that the exploration stage
is given by a clearly defined stochastic process, it
is possible to have robust and meaningful control
parameters.

In order to construct a global exploration strat-
egy, the well known analogy between optimiza-
tion problems and equilibrium in physical sys-
tems [12] is used. Consider a cost function
f(x1,x2, ...,xn, ...,xN ). The probability density of
a physical system at thermal equilibrium under the
potential f is given by

p(x) =

(
1

Z

)
exp(−f/kT ) (3)

where T is the temperature and k is the Boltzmann
constant. At small values of the kT term, sampling
from the equilibrium density will generate points
close to the global optimum. However, if the kT
term is too small, most of MCMC methods will
suffer a large risk of getting trapped in local regions.
This evidence situates the need for an accurate
selection of the step size parameters which dictate
the amount of noise in the random search. A
carefully tuned set of step size parameters for
a given temperature may not be appropriate for
a different temperature. Moreover, a logarithmic
schedule should be imposed to avoid premature
convergence [9].

An attractive alternative to usual Metropolis-
Hastings based approaches, such as simulated
annealing, is the use of Gibbs sampling. The main
reason is that Gibbs sampling does not require the
definition of any step size parameter and, in addition,
the random search processes generated by it are ca-
pable of jumping out of large low probability regions
[3, 4]. Furthermore, convergence to the correct
density is geometric under general conditions [5,15].
However, a disadvantage of Gibbs sampling is that
explicit expressions for the conditionals densities
of interest are required. These conditionals can
be provided only for particular density shapes.
This drawback has been recently addressed by
the Stationary Fokker-Planck (SFP) sampler which
generalizes the Gibbs sampler for arbitrary densities
at the cost of using some gradient information [3].
The SFP method has already been applied to global
optimization as an exploration mechanism [3, 4].
Here, a similar approach is followed, but it has as
implement the fact that no gradient information is
required. Our method is based on the Metropolis
within Gibbs (MG) algorithm proposed in [1]. The
simplicity of MG algorithm makes it easy to define
intensification strategies and adaptive simulated
annealing type cooling schedules.

This paper is organized as follows. In the next
section, the Adaptive Gibbs Sampling (AGS) algo-
rithm is described. Sections 3 and 4 introduce a
number of test problems and several comparative
methods, respectively. In Section 5 the algorithm is
empirically evaluated and the results are analyzed,
while emphasizing those aspects that are more
difficult to tackle for any global or local optimization
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method, namely, the increase of dimensionality and
the presence of very rough landscapes. Section
6 highlights some future work and concludes the
paper.

2 Adaptive Gibbs Sampling (AGS)
Algorithm

In this section, we introduce our optimization algo-
rithm based on the Metropolis within Gibbs algo-
rithm [1]. In the proposed algorithm, random search
combines the one-dimensional Metropolis-Hastings
algorithm with the multidimensional Gibbs sampler
in such a way that the noise level can be adap-
tively controlled according to the landscape. Noise
intensity allows exploring all search space and
escaping from local optima. Cooling schedules or
noise reduction allows exploitation in the promising
regions where local optima exist.

Local search strategies can be coupled to the
random search in order to intensify in the promising
regions. The main steps of the AGS method is given
in Algorithm 1 and are described below.

Algorithm 1 General framework for the proposed
AGS algorithm

1: Initialization
2: repeat
3: Sampling
4: Selection
5: Update
6: Mutation
7: Intensification
8: until (termination criteria are not met)

2.1 Initialization

In AGS algorithm, an initial solution vector x =
(x1,x2, ...,xn, ...,xN ) is randomly created over the
search space.

2.2 Sampling

In order to generate a set of new potential solutions,
candidate points for each variable are generated by

x∗n = xtn + cnZ (4)

where Z is a standard normal variance and cn
are scale parameters. The candidate point will
be accepted as the next value (xt+1

n = x∗n) with
probability

P = min

{
1,
p(x1,x2, ...,x∗n, ...,xN )

p(x1,x2, ...,xtn, ...,xN )

}
. (5)

If the candidate point is not accepted, then the
current value of x is retained: xt+1

n = xtn. Therefore,
at sufficiently large values of cn the acceptance
rates should be low, and as cn tend to zero, the
acceptance rates will tend to 1. This feature permits
not only to define cooling schedules, but more
importantly, to give criteria for the exploration of
the landscape at the single variable level.

In the Gibbs sampler, a Markov chain that con-
verges to the density of interest p(x) is constructed
by sampling from the conditionals p(xn|{x−n}).
Simulating one value in turn for each individual
variable from these conditionals is called one cycle
of Gibbs sampling. We can draw a population of
M solutions by performing M Gibbs cycles. Un-
der general conditions, draws from this simulation
algorithm will converge to the target density at a
geometric rate [5,15].

The output of the sampling step is a population
XN ,M of potential solutions and a θN vector of
acceptance rates.

2.3 Selection

For each variable over the whole population of
solutions generated, we estimate a mode vector
x like a promising solution in the search process.
The mode vector extracts information from more
likely variable values of the population.
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2.4 Update

We have chosen cooling schedules of the form

cn = conτ
−λ,λ > 0 (6)

where con is a constant chosen so that initially the
acceptance rates are close to zero. The variable τ
represents the actual iteration number. The actual
iteration number τ is initialized at the beginning with
τ = 1 and will be increased iteratively by τ = τ + 1.

2.5 Mutation

In order to escape from local minima and explore
large regions of a landscape at the single variable
level, we introduce a simple mutation mechanism.
This mechanism involves replacing the variable
value for a random value within the search space
according to the following rule:

if θn > ε, then xn = rand, cn = con and τ = 1 (7)

where rand is a random value for nth variable of x.
Note that for the values close to zero of ε, there is
a high noise level in the search process; therefore,
we would have a blind search process. If ε criterion
is reached, the acceptance rates and τ iteration
number are initialized.

2.6 Intensification

In order to improve the proposed solution, a local
search strategy is introduced. Therefore, if 〈θ〉 > β,
the proposed solution x is improved via local search
strategy. 〈θ〉 is an average of acceptance rates
vector over all variables. We can use an arbitrary
local search method. In this paper, we use the
Nelder-Mead method as a local search strategy [13].
Note that for β values close to 1, a pure local search
exist. The β value must be suitable for the random
search process in order to intensify in the promising
regions.

Note that the proposed method does not con-
verge to a temperature of zero, but it adapts through
the β parameter such that the temperature has
the conditions for which the literature on MCMC
methods suggests to have a sampling that ade-
quately covers all search space [16]. Therefore it is
necessary to couple a local search method. Other

stochastic methods, which are comparable with
the AGS algorithm, converge to a point, thus it is
analogous to bring the temperature of the stochastic
search to zero.

2.7 Parameter Settings

The AGS parameters used in this paper are cho-
sen such as to be a robust setting and therefore,
in our experience, applicable to a wide range of
functions to be optimized. The parameters used
are population size M=100, initial scale parameters
co = (0.1, ..., 0.1), β = 0.7, ε = 0.95 and λ = 2.

3 Test Problems

In order to empirically evaluate the AGS algorithm,
we selected some well known problems which act as
performance tests for global optimization algorithms.
These test problems were selected for testing the
robustness of the AGS against stochastic and deter-
ministic methods in three aspects which, even indi-
vidually, decrease the performance of many global
optimization algorithms. These aspects are the
increase in dimensionality, the multimodal function
optimization and the optimization of non-smooth
functions. The selected test problems are now
introduced.

3.1 Rosenbrock Problem

The Rosenbrock function is a well known test prob-
lem for optimization algorithms. Fig. 1 exhibits the
Rosenbrock function for two variables, where it can
be seen that the global minimum is inside a long,
narrow, parabolic shaped flat valley. Finding the
valley is a trivial task, but convergence to the global
minimum is difficult. For this reason it has been
reported in the literature as a very difficult task for
stochastic heuristics [10] and is very well suited to
study the behavior of algorithms while increasing
the problem dimension. The problem is defined as

min

N∑
n=1

100(xn+1 − x2n)2 + (xn − 1)2 (8)

−10 ≤ xn ≤ 10

and it has the known global solution x∗ = (1, ..., 1)
for which the cost function value is zero.
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Fig. 1. The Rosenbrock function in 2D, f(x1,x2) =
100(x2 − x21)2 + (x1 − 1)2

3.2 Morse Clusters

An important application of global optimization
techniques is the minimization of potential energy
structures, which is relevant in the study of proteins
and nanomaterials. The Morse potential is an
adequate model for several atomic clusters and
gives a challenging benchmark for global optimiza-
tion algorithms [14]. The model consists in an
expression for the pairwise atomic interactions:

Vij = e2ρ(1−rij) − 2eρ(1−rij) (9)

where rij is the interatomic Euclidean distance and
ρ is a parameter that represents the equilibrium pair
separation.

The problem is to minimize the potential energy
of the N atom cluster,

V =
∑
i<j

Vij . (10)

Fitting to bulk data indicates that, by the Morse
model, realistic predictions can be made for clusters
like C60 (using ρ = 13.62), sodium (with ρ = 3.15)
and nickel (ρ = 3.96), just to mention a few. The
minimum energy configurations are of fundamental
importance in addressing the chemical and physical
properties of a given system.

The putative global optima for each dimension
of the considered clusters are given in Table 1. In
Table 1, N denotes the number of atoms to cluster-
ize in a three-dimensional space and S denotes the
real problem size (S = 3 ·N ).

Table 1. Putative known global optima for each Morse
clusters instance

N S f(x∗) N S f(x∗)

5 15 -9.04 35 105 -141.96
10 30 -27.47 40 120 -167.99
15 45 -49.75 45 135 -192.95
20 60 -72.51 50 150 -219.82
25 75 -95.13 55 165 -250.29
30 90 -118.43

3.3 Fractal Function

One of the main interests in the development of
heuristics is their use in problems for which an
exact solution is not easily attainable. Functions
with very rough landscapes are one of the most
challenging problems for both exact and heuristic
global optimization methods. Fractal function has
strong similarities to real-world problems. Here at
first instance we consider a test problem with a
fractal landscape introduced in [2]:

min f(x) =
N∑
n=1

C ′(xn) + x2n − 1 (11)

−5 ≤ xn ≤ 5

C ′(x) =

{
C(x)

C(1)|x|2−D , if x 6= 0

1, if x = 0
(12)

C(x) =
∞∑

j=−∞

1− cos(bjx)

b(2−D)j
(13)

where C(x) is an approximation of the Weierstrass-
Mandelbrot cosine fractal function. For this function,
D is known to be a box dimension (1 < D < 2) and
it represents a parameter that arbitrarily increases
or decreases the complexity of the cost function.
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Fig. 2. Zoom on the fractal function in 2D with parameters
D=1.85 and b=1.5

For this fractal function it is impossible to indicate
the exact position of the global minimum. Due to the
zigzagging peaks close to the origin, several local
optima with function values smaller than zero exist.
Fig. 2 introduces the fractal function with parame-
ters D = 1.85 and b = 1.5. This figure illustrates
the complexity of performing an optimization routine
for this function, due to both the multiple locally
optimal points within each region and the fact that
gradient information cannot be used to determine
the direction in which the function is decreasing.
The parameters D = 1.85 and b = 1.5 are used in
all the experiments reported in this paper.

4 Algorithms for Comparative Tests

Having selected suitable performance test problems
for evaluating the AGS algorithm robustness, the
task was then to select competitors for every single
test problem. To achieve this, we chose some
methods, both deterministic and stochastic, that
have been proved to reach good quality solutions in
at least one of the test problems. Now we present
the methods selected for the comparative tests
with AGS.

4.1 Stochastic Methods

In order to compare the proposed AGS algorithm
with other population-based heuristic search meth-
ods, we considered three of the most popular
strategies nowadays, namely, Genetic Algorithms
(GAs), Particle Swarm Optimization (PSO) and
Differential Evolution (DE). All three heuristics start
with a set of randomly generated solutions which
are updated throughout an iterative process using
different mechanisms. GAs, PSO and DE methods
have reported comparable results in highly complex
problems such as some of the problems we used
for evaluation in this work. Due to their proved
performance, these techniques have been widely
studied and, as a consequence, there exist many
versions of each of these strategies. To avoid
biasing our study towards specific implementations,
we consider the standard/basic versions of GAs,
PSO and DE methods.

GAs: The genetic algorithms are inspired from bi-
ological evolution, where solutions (chromosomes)
are coded as binary vectors and new individuals are
created or updated by a recombination of selected
individuals and mutation rules. In this work we
considered the canonical genetic algorithm with
roulette wheel selection, one-point crossover and
a standard mutation procedure, see [8] for details.
We used the Matlab R© GAs toolbox implementation.

PSO: A particle swarm optimization is inspired
by the behavior of biological societies, such as
flocks of birds and shoals of fishes, which present
local and social behavior for achieving common
goals [6]. Solutions are coded as numerical vectors
(particles) and they are updated by combining infor-
mation from global and local solutions that are found
during the search process. For the comparison
we implemented the standard PSO algorithm with
adaptive inertia weight, which is one of the most
used improvements of PSO for enhancing the rate
of convergence of the algorithm [18].

DE: The differential evolution is the newest pop-
ulation based heuristic which we consider for the
experimental comparison. DE updates solutions
by combining existing solutions and adding ran-
domness into this combination. The update of
solutions is defined by simple rules for selection,
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crossover and mutation. In this paper we con-
sidered the basic DE algorithm as described in
[19]. We used the DE implementation available
at http://www.icsi.berkeley.edu/∼storn/code.html.

4.2 Deterministic Methods

In addition to stochastic methods, we considered
two classical deterministic algorithms which have
shown their capabilities to achieve good quality
solutions when implementing them to solve large
optimization problems, namely, the Nelder-Mead
Method (NMM) and the Conjugate Gradients Algo-
rithm (CGA).

NMM: The Nelder-Mead Method is a simplex
method for finding a local minimum of a function of
several variables that has been devised by Nelder
and Mead [13]. The NMM requires only function
evaluations, not derivatives. In the N -dimensional
space, a simplex is a polyhedron with N + 1 points
(or vertices). We chose the N+1 points and defined
an initial simplex. The method iteratively updates
the worst point by four operations: reflection, ex-
pansion, one-dimensional contraction and multiple
contraction. The NMM uses a small number of func-
tion evaluations per iteration and it is one of the most
widely used direct search methods for multidimen-
sional nonlinear optimization problems that have a
unique optimal solution. A big disadvantage of the
NMM is that it can converge to non-stationary points
[11]. For the experimental comparison we used
the package neldermead available in the CRAN
package repositories (http://cran.r-project.org/).

CGA: The Conjugate Gradient Algorithm is a
method for finding the nearest local minimum of
a function of n variables. This method presupposes
that the gradient of the function can be computed.
It uses conjugate directions instead of the local
gradient for going downhill [7]. The CGA combines
the information from all previous directions in such
a way as to create a subsequent search direction
that is independent (or conjugated) to all previous
directions. For the experimental comparison we
used the package Rcgmin available in the CRAN
package repositories.

5 Experimental Results

In this section we evaluate the AGS performance to
solve several well known test problems for uncon-
strained global optimization. These test problems
were selected for testing the robustness of the AGS
algorithm against stochastic and deterministic meth-
ods in three aspects that individually decrease the
performance of many global optimization algorithms,
namely, the increase in dimensionality, the multi-
modal function optimization and the optimization of
non-smooth functions. The empirical evaluation
consisted in assessing the performance of the
methods based on five independent executions of
each method and for each problem size, from 5 to
55 variables. Both the cost function average value
and the average number of cost function evaluations
performed are reported for each problem dimension.
The algorithm that reached the best cost function av-
erage value for each problem dimension is marked
in bold face. Every test problem implementation
has its own main stopping criterion, but in order
to make the comparisons as fair as possible, we
have set an additional stopping criterion consisting
in the number of cost function evaluations (FEs),
which is set to 500 000 for all experiments in this
paper. Furthermore, we make use of statistics
to validate the results of our empirical evaluation
and we present a ranking for comparing the overall
performance of each algorithm when applying them
to the selected test problems.

5.1 Rosenbrock Problem

Given that the optimal cost function value for the
Rosenbrock problem is zero, we consider as the
main stopping criterion reaching a cost function
value of 0.001 or lower. Defining such threshold for
acceptable solutions is necessary as we are dealing
with heuristic search methods that do not guarantee
obtaining the global optimum (at least for a finite
number of iterations).

Table 2 displays the cost function average value
(f(x̂) column) and the average number of cost
function evaluations needed (# of FEs column) by
each algorithm when applied to the Rosenbrock
problem while varying the problem dimensionality.
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The standard deviation for both measures is re-
ported as well (Std. Dev. columns). It is noteworthy
that all tables within this paper follow this format.

It can be seen that, for all the dimensions, the
method with the best performance is the CGA, as it
finds the objective function values close to the global
optimum while using a few cost function evaluations.
Note that the number of cost function evaluations
for the CGA method is an estimate of the number
of evaluations necessary to compute the gradient
and the Hessian throughout the process. For the
dimensions of 5 to 30 in Table 2, the AGS algorithm
achieves solutions close to zero. For the rest of
the dimensions, we observed that AGS needs more
than 500 000 cost function evaluations to achieve
high quality solutions. Nevertheless, the results
obtained by AGS are the closest, in comparison to
the rest of the comparative methods, to the results
achieved by the CGA method. The behavior of
the NMM method is acceptable for problems of
low dimensionality (5-20), although its performance
drops significantly for dimensions larger than 20.
Among the stochastic optimization techniques, the
DE technique obtained the best results for the
dimensionalities of 5-30, followed by PSO and GA;
however, the performance of DE is rather poor
for dimensionalities larger than 30. PSO and GA
methods showed a more stable behavior across
dimensionalities.

5.2 Morse Clusters

For the Morse cluster problem we allow the methods
under evaluation to run until either their own default
stopping criterion is met (related to a number of
successive iterations with no improvement in the
solution) or the maximum number of function evalu-
ations is reached. For the comparisons we have set
the following error function, |f(x∗)−f(x̂)|/|f(x∗)| <
0.1, where f(x∗) is the putative known global optima
and f(x̂) is the average cost function.

Despite the fact that there exist very effective
heuristics for Morse cluster optimization [14], they
are particularly designed for this problem while our
interest in this paper is on the development of a
general purpose method.

Table 3 shows both the average value of the cost
function and the average number of cost function

evaluations needed by every algorithm when ap-
plied to the Morse cluster problem while varying the
problem dimensionality. It is important to point out
that N denotes the number of atoms to clusterize
in a three-dimensional space, so the real problem
size is S = 3 · N , where S is the overall number
of variables to optimize. From our experiments it
can be seen that for N = 15, 20 and 25 the method
with the best performance is the CGA, while for the
rest of dimensions this distinction belongs to the
NMM method. It should be noted that, for large
dimensions (3 · 30–3 · 55), the solutions achieved by
AGS are closer to the solutions provided by the best
performance method than the rest of algorithms
under comparison, while for low dimensions (3 · 5
– 3 · 10) most of the compared methods seem to
achieve solutions with almost equal quality. For
N = 40 to 55 the quality of the solution of the
CGA method diverges. Regarding the stochastic
techniques, the three methods obtained lower per-
formances for dimensionalities larger than 3 · 15.

5.3 Fractal Function

When solving the non-smooth fractal function, we
have adopted similar stopping criteria as those con-
sidered in the Morse cluster problem: the method
stops either when its own default stopping criterion
is met or when the maximum number of function
evaluations is reached.

Table 4 reports the average of the cost function
values and the number of cost function evaluations
needed by every algorithm when applied to the non-
smooth fractal function problem while varying the
problem dimensionality. It can be seen that for all
dimensions in this problem the best performance is
obtained by the GA method, reaching cost function
values smaller than zero while evaluating the cost
function 500 000 times. For all dimensions, the AGS
algorithm achieves cost function values smaller than
zero. The AGS solutions are comparable to those
of GA method in all dimensions. The behavior of
the DE method is similar to the behavior of both
the GA and the AGS algorithm for low dimensions
(5-30), although its performance drops significantly
for dimensions larger than 30, where the AGS
is the only method among all algorithms under
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Table 2. Experimental results when applying the selected algorithms to the Rosenbrock problem for 5 to 55 dimensions.
All results have been averaged over five independent runs

method N f(x̂) Std. Dev. # of FEs Std. Dev. N f(x̂) Std. Dev. # of FEs Std. Dev.

AGS 2.34E-14 5.18E-14 1000 0 3.21E+00 1.13E+00 496986 1299
CGA 9.19E-19 1.38E-18 357 85 7.28E-18 1.13E-17 1480 201
NMM 5 8.60E-03 1.00E-03 587 196 35 1.02E+02 1.13E+01 346808 313588
PSO 5.30E-03 3.50E-03 487720 27458 5.69E+01 1.13E+01 500000 0
DE 7.00E-04 1.00E-04 99221 10052 1.88E+02 1.13E+02 500000 0
GA 5.77E-01 9.09E-01 500000 0 8.09E+01 1.13E+01 500000 0

AGS 1.92E-08 3.69E-08 10200 3834 1.02E+01 1.13E+00 497846 2657
CGA 4.04E-18 5.66E-18 506 116 1.52E-18 1.38E-18 1550 254
NMM 10 9.50E-03 0.00E+00 4551 2173 40 1.92E+02 1.13E+02 457433 211480
PSO 6.18E-01 3.12E-01 500000 0 6.52E+01 1.13E+01 500000 0
DE 8.00E-04 1.00E-04 339241 7759 1.03E+03 1.13E+02 500000 0
GA 2.23E+00 3.06E+00 500000 0 1.28E+02 1.13E+01 500000 0

AGS 7.19E-06 1.11E-05 41062 9293 1.92E+01 1.13E+00 498498 1402
CGA 4.77E-18 8.03E-18 749 93 2.44E-18 2.49E-18 1706 326
NMM 15 9.50E-03 0.00E+00 31345 12606 45 3.67E+02 1.13E+02 433512 91419
PSO 3.22E+00 3.10E+00 488480 25759 7.32E+01 1.13E+01 500000 0
DE 1.54E-01 3.82E-02 500000 0 8.86E+03 1.13E+03 500000 0
GA 1.85E+01 3.11E+01 500000 0 1.55E+02 1.13E+01 500000 0

AGS 7.88E-05 9.53E-05 122518 17303 3.17E+01 1.13E+00 497710 1817
CGA 3.13E-18 6.66E-18 941 83 3.35E-18 3.26E-18 1863 376
NMM 20 9.90E-03 0.00E+00 120235 69874 50 1.43E+02 1.13E+01 500000 0
PSO 7.63E+00 6.60E+00 500000 0 8.37E+01 1.13E+01 500000 0
DE 7.16E+00 2.10E-01 500000 0 6.44E+04 1.13E+04 500000 0
GA 4.73E+01 3.99E+01 500000 0 1.53E+02 1.13E+01 500000 0

AGS 1.56E-04 1.18E-04 278530 35925 4.28E+01 1.13E+00 497479 1712
CGA 4.25E-18 6.01E-18 990 134 2.76E-18 4.18E-18 2084 264
NMM 25 1.58E+01 1.00E+01 205129 146579 55 2.19E+02 1.13E+02 495701 9613
PSO 1.48E+01 8.17E+00 500000 0 1.20E+02 1.13E+01 500000 0
DE 1.59E+01 3.08E-01 500000 0 3.48E+05 1.13E+04 500000 0
GA 5.50E+01 3.88E+01 500000 0 1.65E+02 1.13E+01 500000 0

AGS 3.24E-04 1.68E-04 496824 2310
CGA 1.29E-17 1.07E-17 1258 260
NMM 30 5.73E+01 5.75E+01 447232 391524
PSO 3.25E+01 2.55E+01 500000 0
DE 2.55E+01 1.08E+00 500000 0
GA 7.34E+01 3.41E+01 500000 0

comparison that remains close to the performance
of the most effective method.

Roughly speaking, the gradient free approaches
(AGS, NMM, PSO, DE and GA) have similar compu-
tation times while the CGA algorithm is much faster
in the problems to which it is applicable, since it is a
method that requires fewer evaluations of the cost
function to achieve a good solution.

5.4 Ranking Comparison

In order to illustrate the overall performance of
each algorithm with respect to the others, we
have constructed a simple ranking by taking into
consideration the information shown in Tables 2
to 4. The best function value has a rank 1, the
second best function value has a rank 2, etc., so
the worst method has a rank 6. For the case where
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Table 3. Experimental results when applying the selected algorithms to the Morse cluster problem for 5 to 55 dimensions.
All results have been averaged over five independent runs

method N f(x̂) Std. Dev. # of FEs Std. Dev. N f(x̂) Std. Dev. # of FEs Std. Dev.

AGS -9.04E+00 0.00E+00 3603 226 -1.29E+02 7.37E-01 172786 58764
CGA -9.04E+00 0.00E+00 3125 326 -2.21E+01 2.28E+01 772548 248565
NMM 5 -9.04E+00 0.00E+00 5156 2700 35 -1.34E+02 1.62E+00 500000 0
PSO -9.04E+00 0.00E+00 500000 0 -4.32E+01 1.27E+01 500000 0
DE -7.40E+00 3.67E-01 500000 0 -8.98E+00 2.55E+00 500000 0
GA -9.04E+00 1.94E-05 500000 0 -7.38E+01 7.35E+00 500000 0

AGS -2.61E+01 9.11E-01 14801 4025 -1.52E+02 1.28E-01 311787 73343
CGA -2.54E+01 4.76E-01 81216 42044 1.48E+02 3.06E+01 970632 44211
NMM 10 -2.65E+01 7.86E-01 22429 6487 40 -1.55E+02 2.31E+00 500000 0
PSO -2.49E+01 3.14E+00 500000 0 -4.71E+01 6.91E+00 500000 0
DE -7.97E+00 1.49E+00 500000 0 -1.08E+01 3.63E+00 500000 0
GA -2.55E+01 1.13E+00 500000 0 -7.02E+01 7.09E+00 500000 0

AGS -4.60E+01 8.29E-01 55829 28601 -1.75E+02 2.90E-01 490773 8739
CGA -4.67E+01 1.79E+00 197148 57527 5.74E+02 2.79E+01 1001880 187917
NMM 15 -4.65E+01 1.86E+00 149418 49892 45 -1.78E+02 3.87E+00 500000 0
PSO -3.10E+01 6.16E+00 500000 0 -3.88E+01 5.93E+00 500000 0
DE -9.40E+00 2.29E+00 500000 0 -1.22E+01 4.73E+00 500000 0
GA -3.72E+01 5.44E+00 500000 0 -7.46E+01 9.42E+00 500000 0

AGS -6.66E+01 1.14E+00 63203 12458 -1.84E+02 3.50E+00 488098 7098
CGA -6.82E+01 1.99E+00 361000 111125 1.28E+03 4.37E+01 1289680 403702
NMM 20 -6.65E+01 1.24E+00 301985 44931 50 -1.99E+02 5.81E+00 500000 0
PSO -3.58E+01 3.23E+00 500000 0 -4.89E+01 1.10E+01 500000 0
DE -8.44E+00 1.31E+00 500000 0 -9.73E+00 1.81E+00 500000 0
GA -4.51E+01 4.13E+00 500000 0 -7.83E+01 4.58E+00 500000 0

AGS -8.63E+01 5.01E-01 79769 20075 -1.95E+02 1.36E+01 485588 151
CGA -8.90E+01 2.68E+00 811800 312243 2.42E+03 4.78E+01 1485000 792375
NMM 25 -8.88E+01 1.46E+00 500000 0 55 -2.22E+02 6.54E+00 500000 0
PSO -4.85E+01 5.55E+00 500000 0 -4.70E+01 6.59E+00 500000 0
DE -9.41E+00 8.70E-01 500000 0 -1.01E+01 5.69E-01 500000 0
GA -5.50E+01 5.20E+00 500000 0 -6.96E+01 6.08E+00 500000 0

AGS -1.07E+02 4.27E-01 184306 61085
CGA -8.67E+01 9.05E+00 877830 497173
NMM 30 -1.09E+02 3.50E+00 500000 0
PSO -5.24E+01 5.08E+00 500000 0
DE -1.04E+01 1.57E+00 500000 0
GA -6.54E+01 5.13E+00 500000 0

the cost function values are the same, we use the
number of cost function evaluations to discriminate
the ranking of the results of the compared algo-
rithms. Tables 5 to 8 show the rank information for
the Rosenbrock, the Morse cluster and the fractal
problem, respectively. In each one of these tables,
the rows exhibit the compared methods while the
columns are related to the problem dimension, so
each element of the table from columns 5 to 55

corresponds to the rank given to a specific method
for that dimension, according to its performance
when compared to the other methods. The lower the
rank is, the better the performance of the method.
Column R-Sum shows the sum of the ranks per
method. Finally, the R-Rank column introduces the
rank of the R-Sum column, which is an indicative
of the overall performance for a given method in
all dimensions for the solved problem. The overall

USUARIO
Cuadro de texto
252 Jonás Velasco, Mario A. Saucedo-Espinosa, Hugo Jair Escalante…

USUARIO
Cuadro de texto
Computación y Sistemas Vol. 18 No. 2, 2014 pp. 243-257ISSN 1405-5546 http://dx.doi.org/10.13053/CyS-18-2-2014-030



Table 4. Experimental results when applying the selected algorithms to the non-smooth fractal function problem for 5 to
55 dimensions. All results have been averaged over five independent runs

method N f(x̂) Std. Dev. # of FEs Std. Dev. N f(x̂) Std. Dev. # of FEs Std. Dev.

AGS -4.30E-01 2.64E-02 69442 150 -2.23E-01 9.92E-01 496146 42
CGA 4.03E+01 1.61E+01 60 109 2.88E+02 4.77E+01 26 29
NMM 5 -9.60E-02 2.18E-01 807 92 35 1.62E+01 1.25E+01 204497 123646
PSO 2.52E+01 2.92E+00 500000 0 2.30E+02 8.19E+00 500000 0
DE -8.75E-02 8.32E-02 500000 0 4.83E-02 2.10E-01 500000 0
GA -9.71E-01 1.21E-01 500000 0 -4.07E+00 2.20E-01 500000 0

AGS -2.35E-01 2.61E-01 137692 687 -2.95E-01 7.75E-01 496689 1275
CGA 7.94E+01 1.93E+01 13 1 3.26E+02 3.10E+01 41 31
NMM 10 3.65E+00 7.47E+00 6017 5958 40 2.09E+01 6.58E+00 237184 195298
PSO 5.72E+01 2.05E+00 500000 0 2.59E+02 3.52E+00 500000 0
DE -1.06E-01 9.02E-02 500000 0 8.03E-01 6.91E-02 500000 0
GA -1.71E+00 1.30E-01 500000 0 -4.29E+00 1.96E-01 500000 0

AGS -5.46E-01 7.98E-02 203339 1329 -1.83E+00 5.49E-02 497508 86
CGA 1.23E+02 2.16E+01 19 14 3.89E+02 6.71E+01 12 1
NMM 15 6.39E+00 7.13E+00 8620 4080 45 1.30E+01 8.95E+00 335779 272687
PSO 9.00E+01 2.26E+00 500000 0 2.95E+02 2.74E+00 500000 0
DE -9.96E-02 4.93E-02 500000 0 1.83E+00 3.26E-01 500000 0
GA -2.25E+00 1.08E-01 500000 0 -5.01E+00 1.50E-01 500000 0

AGS -2.64E-01 2.45E-01 268635 165 -1.89E-01 3.49E-01 495735 1350
CGA 1.73E+02 4.11E+01 22 16 4.13E+02 2.92E+01 11 1
NMM 20 4.28E+00 4.70E+00 17317 3963 50 1.81E+01 9.23E+00 300187 211061
PSO 1.20E+02 2.26E+00 500000 0 3.26E+02 4.74E+00 500000 0
DE -8.84E-02 1.71E-02 500000 0 3.15E+00 3.56E-01 500000 0
GA -2.86E+00 9.56E-02 500000 0 -5.26E+00 1.98E-01 500000 0

AGS -1.37E-01 4.91E-01 409620 1832 -6.54E-01 9.73E-01 495544 926
CGA 2.14E+02 2.78E+01 33 34 4.54E+02 3.62E+01 17 13
NMM 25 5.69E+00 3.72E+00 23968 4114 55 2.51E+01 8.57E+00 500000 0
PSO 1.57E+02 4.76E+00 500000 0 3.68E+02 4.96E+00 500000 0
DE -1.16E-01 1.16E-01 500000 0 8.76E+00 5.50E-01 500000 0
GA -3.34E+00 8.55E-02 500000 0 -5.22E+00 2.32E-01 500000 0

AGS -3.23E-01 4.79E-01 495054 2661
CGA 3.09E+02 6.89E+01 14 3
NMM 30 8.61E+00 6.37E+00 95174 33072
PSO 1.90E+02 2.04E+00 500000 0
DE -1.03E-01 1.15E-01 500000 0
GA -4.07E+00 2.20E-01 500000 0

performance is introduced in Table 8. The column R-
Sum exhibits the sum of ranks obtained in columns
R-Rank for all the problems. The Rank column is
the overall rank, among all test problems. From this
column, we can see that AGS obtained the best rank
across the different problems and dimensions; this
fact illustrates the robustness of our method while
increasing the dimensionality and when optimizing
multimodal and non-smooth functions. Despite the

fact that other methods such as CGA outperformed
the AGS in one problem, AGS consistently achieved
good performance across the different tasks.

5.5 Statistical Comparison

In order to statistically validate the robustness of
AGS algorithm, we use the Welch’s t test (or un-
equal variance t test). The Welch’s t test is a
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Table 5. Ranking results for the Rosenbrock problem

Method/N 5 10 15 20 25 30 35 40 45 50 55 R-Sum R-Rank

AGS 2 2 2 2 2 2 2 2 2 2 2 22 2
CGA 1 1 1 1 1 1 1 1 1 1 1 11 1
NMM 5 4 3 3 4 5 5 5 5 4 5 48 4
PSO 4 5 5 5 3 4 3 3 3 3 3 41 3
DE 3 3 4 4 5 3 6 6 6 6 6 52 5
GA 6 6 6 6 6 6 4 4 4 5 4 57 6

Table 6. Ranking results for the Morse problem

Method/N 5 10 15 20 25 30 35 40 45 50 55 R-Sum R-Rank

AGS 2 2 3 2 3 2 2 2 2 2 2 24 2
CGA 1 4 1 1 1 3 5 6 6 6 6 40 4
NMM 3 1 2 3 2 1 1 1 1 1 1 17 1
PSO 4 5 5 5 5 5 4 4 4 4 4 49 5
DE 5 6 6 6 6 6 6 5 5 5 5 61 6
GA 4 3 4 4 4 4 3 3 3 3 3 38 3

Table 7. Ranking results for the Fractal problem

Method/N 5 10 15 20 25 30 35 40 45 50 55 R-Sum R-Rank

AGS 2 2 2 2 2 2 2 2 2 2 2 24 2
CGA 6 6 6 6 6 6 6 6 6 6 6 72 6
NMM 3 4 4 4 4 4 4 4 4 4 4 46 4
PSO 5 5 5 5 5 5 5 5 5 5 5 60 5
DE 4 3 3 3 3 3 3 3 3 3 3 38 3
GA 1 1 1 1 1 1 1 1 1 1 1 12 1

Table 8. The final ranking results

Method R-Sum Rank

AGS 6 1
NMM 9 2
GA 10 3
CGA 11 4
PSO 13 5
DE 14 6

technique used to compare means of two samples
when it cannot be safely assumed that population
variances are equal [17]. On the one hand, by using
this test we could infer if two means (average cost
function values in this case) differ significantly and
thus originate from different populations. Such a
result will indicate that two methods are not likely to
produce equal quality solutions.

On the other hand, we could construct and com-
pare the means confidence intervals to determine
how close the solution qualities of two methods
are. The Welch’s t test is performed under the
assumption of normality. We use the samples (five
independent runs) of the solutions obtained by the
three best methods for each problem of the highest
dimension (N = 55) for the statistical tests. GNU R
was used for this statistical significance study.

The normality of the sample distribution is
checked by using the Shapiro-Wilk test. Table
9 shows both the W statistic and the p-values
computed. The null hypothesis for this test is that
the data is normally distributed. The Rosenbrock
problem is significant with a level of significance
α = 0.01 (W critical = 0.6859). The Morse and
Fractal problems are significant with a level of
significance α = 0.05 (W critical = 0.7620). One
would accept the null hypothesis, concluding that
there is no information to discard normality in the
data.

Table 10 shows the t statistic, the p-values and
the confidence interval computed for all pairwise
comparisons concerning AGS when applying the
Welch’s t test. The null hypothesis is that the
two population means are the same, but the two
population variances may differ. It can be seen for
all comparisons that the resulting p-values obtained
in this test clearly indicate statistically significant
differences between every two methods, that is, all
results are significant at the 5% significance level.
One would reject the null hypothesis concluding that
there is strong evidence that the expected values
for all pairwise comparisons are different, which
means that the three methods offer different quality
solutions. For a further analysis, we make use of
the confidence interval. In the rest of this section,
when we refer to the difference between means, we
stand for the difference between means predicted
by the confidence interval.

For the Rosenbrock problem, the difference be-
tween the means of CGA (best method) against
AGS seems to be smaller than the difference be-
tween the means of PSO (3rd best method) against
AGS. Moreover, for the Morse cluster problem,
the difference between the means of NMM (best
method) against AGS is much smaller than the
difference between the means of GA (2nd best)
against AGS. Finally, for the Fractal problem, the
difference between the means of GA (best method)
against AGS is smaller than the difference between
the means of DE (2nd best) against AGS. These
results indicate that, on average, AGS solutions are
the closest to the solutions provided by the best
performance algorithm in each of the three test
problems at the highest dimension. None of the
other algorithms share this property. Therefore, we
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conclude that there is strong evidence indicating
that AGS is a robust approach for difficult high di-
mensional unconstrained global optimization tasks.

Table 9. The Shapiro-Wilk normality test results

Function Method W p-value

Rosenbrock CG 0.7362 0.0220
AGS 0.7790 0.0540
PSO 0.8893 0.3534

Morse NMM 0.8849 0.3320
AGS 0.8603 0.2293
GA 0.9232 0.5508

Fractal GA 0.9075 0.4525
AGS 0.8741 0.2834
DE 0.9361 0.6384

Table 10. Welch’s t test results

Function Comparison Statistic t p-value Confidence interval

Rosenbrock AGS versus CGA 60.77 4.38E-07 [40.82, 44.73]
PSO versus AGS 4.94 0.0077 [33.80, 120.03]

Morse AGS versus NMM 4.05 0.0072 [10.71, 44.11]
GA versus AGS 18.75 3.18E-06 [108.40, 141.70]

Fractal AGS versus GA 10.22 0.0002 [3.38, 5.76]
DE versus AGS 18.85 8.75E-07 [8.21, 10.62]

6 Conclusions and Future Work

In this paper, a new optimization algorithm called
Adaptive Gibbs Sampling (AGS) algorithm is in-
troduced. AGS algorithm directly extracts global
statistical information about the search space during
the random search keeping a good compromise
between exploration and exploitation. Local search
strategy has been coupled to the random search
process in order to intensify in promising regions.
With both mechanisms of search, the AGS algo-
rithm can find very competitive solutions to large
global optimization problems, in comparison with
deterministic and stochastic established methods.
An adequate use of both the local information of
solutions found and the global information about
the search space improves the performance of the
proposed method.

We have evaluated the performance of our
method against deterministic and stochastic algo-
rithms that are commonly employed for solving
challenging well known test problems. For the

selection of the test problems, we have focused on
problems that involve three central aspects which
mainly determine the difficulty of global optimiza-
tion problems, namely, high-dimensionality, multi-
modality and non-smoothness. For comparison
purposes, we selected three of the most popular
heuristic strategies nowadays, namely, Genetic Al-
gorithms (GAs), Particle Swarm Optimization (PSO)
and Differential Evolution (DE), as well as two
classical deterministic algorithms that have shown
their capabilities to achieve good quality solutions
when implementing them to solve large optimization
problems, namely, the Nelder-Mead (NMM) method
and the Conjugate Gradients Algorithm (CGA).

Experimental results showed that our approach
is statistically robust, as it is capable of finding
reasonable quality solutions for global optimization
problems. By robust we refer to the fact that,
on average, AGS algorithm performs better than
other methods in high dimensional problems, as
it achieves high quality solutions for all the test
problems chosen.

In the future, we will extend these performance
comparisons against other state-of-the-art methods
for unconstrained global optimization, and we will
extend the AGS algorithm to execute in parallel
computing. For the AGS parallel approach, we
will study problems with larger dimensions than the
ones provided here, which conform a greater testing
challenge for our method and other heuristics.
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Astrofı́sica, Óptica y Electrónica
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