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Abstract. This paper proposes a novel robust approach 
to perform inter-camera and ground-camera calibration 
in the context of visual monitoring of human-populated 
areas. By supposing that the monitored agents evolve 
on a single plane and that the cameras intrinsic 
parameters are known, we use the image trajectories of 
moving objects as tracked by standard trackers in a 
RANSAC paradigm to estimate the extrinsic parameters 
of the different cameras. We illustrate the performance 
of our algorithm on several challenging experimental 
setups and compare it to existing approaches. 
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Calibración extrínseca robusta  
de un sistema de cámaras  

a partir de trayectorias  
en ambientes humanos 

Resumen. Este artículo propone un nuevo método 
robusto para realizar las calibraciones inter-cámaras y 
suelo-cámara en el contexto de vídeo-vigilancia sobre 
escenas pobladas por humanos. Suponemos que los 
agentes transitan en un simple plano y que los 
parámetros intrínsecos de las cámaras son conocidos. 
Usamos las trayectorias de objetos en movimiento en 
las imágenes, como por ejemplo las generadas por 
algoritmos de rastreo del estado del arte, para estimar 
los parámetros extrínsecos de las diferentes cámaras. 
Ilustramos el desempeño de nuestro algoritmo sobre 
diferentes configuraciones experimentales desafiantes, 
y lo comparamos con diferentes métodos existentes. 

Palabras clave. Calibración de cámaras, visión por 
computadora, rastreo, vídeo-vigilancia y sistemas de 
cámaras múltiples. 

1 Introduction 

In spite of its spectacular development, video 
surveillance is yet largely dependent on human 
agents in charge of monitoring up to dozens of TV 
screens, which may be a source of negative 
detections. Recent years have seen the 
emergence of automatic, computer-aided video 
surveillance systems in the computer vision 
community. Typically these systems use state-of-
the-art tracking algorithms in each camera of the 
network and fusion techniques to recover the 3D 
trajectories of the moving objects in the scene [3]. 
Then, this information feeds pre-defined or 
unusual event detection and may trigger alarms 
for the agents. An important element for a 
widespread use of such systems is an automatic 
calibration algorithm that would not require the 
costly intervention of an expert and that would 
allow the data collected throughout all the video 
streams to be fused properly.  

This article presents an algorithm that 
estimates the extrinsic parameters of a set of 
different cameras involved in a surveillance 
network, i.e. the 3D transformations between 
pairs of cameras and between each camera and 
the reference plane. The assumptions we make 
are that (1) the targets are moving on a planar 
scene, which is a common setup in surveillance 
systems, (2) we have an estimation of the intrinsic 
parameters of each camera, and (3) the cameras 
are static. An important characteristic of such 
camera networks is that the viewpoints may be 
dramatically different from one camera to another, 
e.g., in the frames from the two sequences of 
cameras depicted in Fig. 1. In particular, this 
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prevents us from using traditional feature-based 
matching techniques based on local descriptors 
around interest points [7] for estimating the 
underlying geometric transforms. 

Instead, in the vein of the seminal work of [6], 
we rely on the output of motion detection and 
motion tracking to guess correspondences at the 
level of motion blobs or motion tracks and to infer 
the corresponding geometry. In other words, we 
use the dynamic part of the scene for registering 
views instead of the static part. 

The organization of this paper is as follows: in 
Section 2, we highlight noticeable related work in 
the literature; in Section 3, we describe our 
algorithm for robust inter-camera homography 
estimation; in Section 4, we see how to recover all 
the extrinsic parameters from homographies and 
show how to calibrate the whole camera network; 
in Section 5, we comment results obtained on 
different setups and compare our algorithm to 
other existing works in the literature; finally, 
Section 6 draws conclusions and introduces 
future work.  

2 Related Work and Contributions 

The seminal work of Lee et al. [6] uses the 
centroids of blobs extracted with standard 
background subtraction techniques to perform 
homography fitting with a least median square 
(LMS) approach, that is further refined in a 
second step. Its main drawback is that the 
number of putative correspondences grows very 
fast with the number of targets simultaneously 
detected at a given time-stamp, so that the 
number of inliers for the LMS optimization drops 
dramatically in proportion, making the algorithm 
unsuitable for regularly crowded scenes. 
Obviously, the dimension of the search space is 
reduced drastically when instead of motion 
detection blobs one forms the correspondences 
from tracking sequences [1, 9]. In [9], the authors 
present a RANSAC-like approach that performs, 
as we do here, non-uniform sampling in the set of 
putative sequences. It sequentially tests 
homographies from two pairs of sequences (two 
pairs in each video) and keeps the best 
homography. However, the likelihood functions 
that ponder each sample are not clearly defined. 

The work in [1] is more general in a sense, as 
it is extended to fundamental matrix estimation. It 
is also based on RANSAC, but does not make 
particular distinction between samples to guide 
the consensus to the most promising pairs of 
sequences. In another paradigm, the work of [8] 
uses perspective invariants, namely the cross 
ratio of five points, to match trajectories between 
video sequences. The algorithm also allows 
calibrating the time offset between video streams. 
However, in most situations, it is quite difficult to 
isolate non-degenerate trajectories - i.e., 
sufficiently far from straight lines - to compute 
stable cross-ratios, so that the possible 
applications of this work are limited. Among the 
most recent works in the area, the one of [4] is 
interesting as it also takes radial distortion into 
account. However, the correspondences are 
determined on the base of control points manually 
selected on trajectories, which may make it more 
adapted for expert users. A common 
inconvenience of these previous approaches is 
that they use tracking trajectories directly as they 
come from the tracking algorithm, which causes 
problems of robustness in the case that the 

 

 

Fig. 1. The typical input/output of our algorithm. Above, 
we form correspondences (one color, one 
correspondence) among trajectories (from standard 
trackers) to compute robustly the feet-to-feet homography 
Hij, between the two views. These inlier trajlets (see 
Section 3) correspond to the computation of 
homographies between camera 2 and 7 of the PETS 
2009 data (i.e., subfigures of the last line in Fig. 9). 
Below, the geometry of the scene can be recovered 
through homographies Hi and Hj from each camera to the 
reference plane, which is suitable for multi-view tracking. 
Each field of the view is re-projected with yellow lines 
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tracking fails - and that the system is not aware of 
it. In many situations, e.g., because of occlusions 
in crowded scenes, tracking algorithms may be 
unable to distinguish one object from another and 
may assign a wrong identity to some tracked 
object. This may be catastrophic for the 
estimation of scene geometry.  

Our approach takes some of the ideas 
developed in [1, 9] to cut down the algorithmic 
complexity of the correspondence problem and 
brings several contributions including (1) 
robustness with respect to possible failures of the 
tracking algorithms, (2) more reliable guidance of 
the optimization process to the correct geometry, 
and (3) an optimization process to find the 
calibration of a set of N cameras. As far as 
notations are concerned, we will use bold capital 
letters for matrices, regular letters for scalars and 
vectors. The indices will generally refer to the 
camera(s) to which the variable is related.  

3 Inter-Video Homography Estimation 

3.1 Problem Formulation 

The problem setup and notations are detailed in 
Fig. 2: several cameras Ci, 1≤ i ≤N, with different 
degrees of overlap, monitor a scene where 
people or other mobile objects move. We 
suppose that this scene is laid on a reference 
plane Π, which induces a homography between 
any pair of cameras (i,j) monitoring the scene, i.e. 

if pi=(ui,vi)
T is an image point in camera Ci, the 

projection of a point P of the plane Π, and 
pj=(uj,vj)

T is the projection of this same point on 
camera Cj, then we have the classical relationship 
in homogeneous coordinates [4], 

(1) 

where ~ means that a relation of equality holds for 
any multiplication factor λ>0, so that Hij has in fact 
only 8 degrees of freedom. The problem consists 
in estimating (1) these transforms and (2) the 
homographies Hi that map points P of the 
reference plane to their projection pi, 

 
(2) 

where (X,Y,0)T are the coordinates of point P in a 
frame (X,Y,Z) (depicted in Fig. 2) such that Z=0 is 
the equation of Π. Traditional methods estimate 
homographies Hij by searching for point 
correspondences (pi,pj) and by using them to 
solve the linear system directly induced by all the 
instances of Eq. 1. As these correspondences are 
difficult to find with static scene points and 
appearance whenever the viewpoint changes 
strongly, we rely on tracks from video trackers. 

Our algorithm can be summarized as follows: 
(1) collect trajectories in each stream Vi with a 
tracking algorithm, (2) pre-process trajectories to 
eliminate ambiguities at occlusion points (we will 
refer to the trajectory parts built in this way as 
trajlets), (3) apply the RANSAC-like robust 
optimization process with a likelihood-guided 
sampling process between all pairs of cameras, 
and (4) refine the whole camera set calibration by 
non-linear optimization techniques. 

3.2 Collect and Pre-Process Trajectories 

In the first step of our algorithm, we collect 
tracking trajectories from all available video 
streams. We conceived our algorithm to be robust 
w.r.t. the properties of the 2D tracker, so that 

 

Fig. 2. Setup: cameras Ci for 1 ≤ i ≤ N observe a planar 
scene laid on a plane Π. Inter-camera homographies 
between cameras i and j are denoted by Hij, while camera-
to-reference plane homographies from camera i to Π are 
denoted by Hi. Each camera has its own (shaded) scene 
coverage 
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which tracker to use is not very relevant here. 
Practically, we used some of the 2D tracker 
algorithms implemented in the OpenCV library. 
The result, for a video stream i of camera Ci, is an 
initial set of trajectories Li = {li

(m), m≥0}, encoding 
the position of one target centroid  along the 
time. The centroids are chosen here instead of 
feet positions because most of the authors seem 
to agree that they are not as sensitive to noise as 
the feet position [1, 6, 10]. However, a 
consequence is that the computed homography 
will correspond to a plane c passing through 
target centroids (i.e., not Π). We denote it as Ĥij 
and will see that the feet-to-feet homography Hij 
can be estimated from Ĥij.  

In the second step, we form what we call 
trajlets, i.e., pieces of trajectories smaller than the 
initially collected ones in Li. The idea is to get a 
second set of trajectories that are not too short, in 
order for the optimization to remain tractable 
computationally, but at the same time cut in such 
a way that they would not be susceptible to be 
contaminated by errors from the tracking 
algorithm, e.g. occlusion errors. The latter case is 
quite common for most tracking algorithms: two 
tracks that intersect at some point may exchange 
their respective target identity. In that case, the 
result is that both tracks are unusable for 
establishing correspondences. To avoid this, for 
all the pairs of collected trajectories (li

(m), lj
(n)) for 

which some of the points pi,t,pj,t are close in the 
image (at some timestamp t), we simply cut off 
the ambiguous parts within a given time radius δ. 
For each cut on an initial pair (li

(m), lj
(n)), this 

process creates four sub-trajectories (trajlets) 
(li

(m)+, li
(m)-, lj

(n)+, lj
(n)-), such that,  

 

 

Then, we smooth these trajectories by using 
local filtering based on Bezier curves so as to 
reduce the impact of noise in the objects’ position 
(this smoothing is evaluated in Section 5). The 
result of this processing is, again, for each video 
stream i, an - a priori larger - set Li' = {li(m), m≥0}. 
Some of these trajlets are drawn in the upper part 
of Fig. 1.  

3.3 Robust Homography Estimation 

The estimation of Ĥij is done in a RANSAC-like 
scheme described in this section. A priori, a 
homography candidate for explaining the two 
images of the same scene can be derived from 
just one correspondence between a trajectory in i 
and a trajectory in j, since it is entirely defined by 
4 point correspondences [1, 8]. However, most of 
the trajlets appearing in usual video-surveillance 
contexts are close to degenerate, i.e. linear. This 
is why we generate here the candidate 
homographies from two trajlets correspondences 
instead of one. This, in turn, has an 
inconvenience, since, if we have an order of 
magnitude of τ trajlets appearing at intersecting 
windows of time, then the probability for a 
sampled pair to match is roughly 1/τ. Then, the 
probability for two consecutively sampled trajlets 
to match is 1/τ2. Hence, the number of sampling 
iterations needed in RANSAC to ensure (in 
stochastic expectation) that at least one correct 
pair is sampled is quadratic in τ, which can be 
problematic with crowded scenes. 
A solution is to avoid a uniform sampling process 
by assigning likelihood values to all possible pairs 
of trajectories and by sampling the trajectories 
according to these values of likelihoods. We 
define them through 

where Nj(li
(m)) stands for the number of trajlets in  

Lj' that have a time overlap with trajectory li
(m) (the 

value being defined as if there were no time 
overlap) and ∆(li

(m), lj
(n)) measures the time 

overlap between trajectories li
(m) and lj

(n). These 
two terms (1) penalize the sampling of trajectories 
that could result ambiguous to match (large Nj 
or Ni) and (2) favor the trajectories with large 
overlap which improves homography estimation 
by using larger sequences. Another important 
point in the sampling process is a geometrical 
consistency check made on pairs of trajectories, 
according to which the polygon formed by the 
extremities of two trajectories should just keep or 
inverse the order of its vertices in other views. 
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Both criteria make the required number of 
samples much lower than the aforementioned 
quadratic term above. In practice, we need a few 
dozen iterations to get a pair of correctly matched 
trajlets. The remaining part of the process is 
based on the classical RANSAC scheme and 
described in Algorithm 1:  

Algorithm 1. Computation of homography Ĥij 
between cameras Ci and Cj. 
 
Ŝ   ← 0 
repeat 
1. Sample a pair of trajlets (li

(m), lj
(n)) according to 

the likelihoods p(li
(m), lj

(n)). 
2. Compute the candidate homography Ĥij

mn from 
the correspondences between all points of li

(m) 
and lj

(n), by using the classical DLT [5], and 
compute its inverse (Ĥij

mn)-1. 
3. For all trajlets pairs (li

(r),lj
(s)), compute the 

residual symmetric error ε2(r,s): 

 
4. In the residual matrix ε2(r,s), identify elements 

that are (1) below a given threshold and (2) 
minima on the line r and column s. 

5. Sum in S the lengths of the trajectories 
corresponding to the identified elements. 

6.  if S>Ŝ,  
 Ŝ   ← S;  
 Ĥij ← Ĥij

mn. 
    end 

until a given proportion of trajectories from video 
streams Vi and Vj have been explained by Ĥij or a 
given number of iterations have been done. 
if  Ĥij explains enough trajectories in Vi and Vj, 

1. Consider Ĥij as recovered; 
2. Refine Ĥij by a few Levenberg-Marquardt 

iterations on the residual symmetric error 
minimization. 

else  
Consider the two views as unregistered.  

end 

4 Extrinsic Parameters Estimation 

In this section, we describe how to recover a 
geometry of the scene (i.e. the relative position of 
two cameras), from an inter-image homography. 

Then, we propose an optimization scheme to 
calibrate a set of N cameras. 

Homography decomposition. Once the 
homographies Ĥij have been recovered as we 
saw in the previous section, we estimate the 
extrinsic parameters, i.e. the parameters Rij, tij of 
the rigid 3D transform between the two cameras 
acquiring video streams i and j. For this purpose, 
we use the following decomposition of matrix Ĥij 
into intrinsic and extrinsic parameters [4], 

 (3) 

where the matrices Ki are the intrinsic parameters 
of cameras i, supposed known here, and where 
dij,nij give the equation of the plane (here, the 
centroids plane) in camera i frame, i.e. its 
equation is nij

T Q = dij, where Q are the 
coordinates of 3D points in the camera i frame. 
The indices ij may seem superfluous in nij and dij 
as the plane equation is expressed just in the 
frame of Ci. However, we will use it to distinguish 
these estimates from other estimates of the same 
quantities. For example, vectors nik resulting from 
the decomposition of the computed homographies 
Ĥik are also estimates of the normal to c 
expressed in the frame of Ci. 

Note that Eq. 3 is given only up to a scale 
factor that we will determine in a second time. We 
use Triggs' algorithm [10] to determine the 
decomposition values of Ĥij. Note that this 
algorithm gives two possible pairs for Rij, tij, but 
one of them can be easily discarded. Here, we 
just select the one that corresponds to the most 
horizontal configuration of the camera. 

Determining a frame on the reference 
plane.Once the normal nij to the plane c (and Π, 
which is parallel) has been computed, a base 
(e1',e2') of vectors generating the centroid plane 
can be chosen, for example e1'=(e1nij) /||e1nij|| 
and e2'=(e1'nij), where the ek form the canonical 
base (e1=(1,0,0)T). This allows defining a frame 
associated to c as described in Fig. 3, centered 
on Di, the orthogonal projection of the center of 
projection of Ci onto c. As a consequence, the 
vector of coordinates of any point Q given in the 
camera i frame can be written as 
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where (α,β) are the coordinates of Q in the 
defined frame. 

Image plane to ground plane homography. 
From the computed image-to-image homography 
Ĥij and its decomposition, one recovers (up to a 
scale factor for dij) an homography to the 
centroids plane by deriving from the projection 
equation on Ci of point Q onto point q = (uq,vq)

T 

 (4) 

from which one derives in terms of the spatial 
coordinates on the (real) centroid plane, (α,β),  
 

i.e. Ĥi = Ki (e1' | e2' | dij nij) acts as a homography 
from the centroid plane c (coordinates α,β) to the 
image plane in camera Ci. However, an ambiguity 
remains in this definition as dij is computed only 
up to a scale. 

Scale recovery. As tij and dij are computed from 
Eq. 3 only up to a scale, we use some knowledge 
about the scene to compute the scale factor. One 
option is to assume a constant, fixed velocity for 
the object in the scene that has the median 
velocity. Another one is to assume a known half-
height between people’s centroids and feet. In 
both cases, the scale recovery is straightforward. 

We will explain it hereafter for the second 
case, and it can be proven in a similar way for the 
first one. Let us suppose that we have the 
knowledge of the half-height of a person, as the 
quantity L (e.g., 80 cm). 

We will denote the different intrinsic 
parameters of camera Ci as αu,i, αv,i, u0,i and v0,i, 

If F and Q are the 3D points corresponding 
respectively to the feet and centroid of a tracked 
target (see Fig. 3), then we may write  

 

(5) 

The projections of these two points will be 
denoted by f and q, and the half-height as 
measured in the image of camera Ci is l=||q-f||. By 
using the projection equations, Q is projected 
onto q through 

(6) 

and, similarly for F, 
 

We can express the observed distance in the 
image by taking the norm of q-f, l, which leads, by 
denoting q=(uq,vq)

T, to 

 

 (7) 

Then, by using Eq. 6, we get two equations in 
terms of xq=(uq-u0,i)/αu.i and yq=(vq-v0,i)/αv,i, 

from which we express α = Kα dij and β = Kβ dij 
where Kα and Kβ are deduced from the known 
quantities xq, yq, e1', e2', and nij. Now, by plugging 

 
 

Fig. 3. Definition of a reference frame associated to 
camera Ci. The origin is set at point Di which is the 
orthogonal projection of the center of projection of Ci 
onto Π. Its axis are defined by vectors e1' and e2' 
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these expressions for α and β into Eq. 7, one can 
deduce an expression for dij, 

(8) 

Each blob (q,f) giving an estimate of dij with 
the previous development and adult people 
forming the vast majority of the tracked blobs but 
not the entirety, we take the median among the 
different computed estimates for all the estimated 
inliers of Ĥij. In our experiments, this option 
assuming the people’s heights constant (as 
opposed to assuming the velocities constant) 
gave better and much more stable results1. 

Once the scale is recovered, one finally gets 
either a ground plane-to-image Hi (as in Eq. 2) or 
an image-to-image Hij induced by Π (as in Eq. 1). 
Most results below illustrate the second form. 
Note that for any homography we estimate, we 
will get a different definition of a frame relative to 
Π. Also note that once the centroid-to-reference 
plane Ĥi is estimated, we get immediately the 
feet-to-plane Hi by 

Calibration of a network of cameras. As 
described in the previous paragraphs, each pair 
of cameras (Ci,Cj) gives an estimate of the 
relative scene geometry for these cameras. Now, 
to get an estimate of the geometry of the set of N 
cameras, we proceed as follows. For each 
possible pair of videos, a calibration process 
following the previous method is done. The result 
is a set of external calibration data: {(nij,dij, Rij,tij)}ij 
for all pairs of cameras (i,j) that we could 
calibrate. For all these pairs, we also get a set of 
inlier points pairs (pi

[k],pj
[k]) from matched 

trajectories, i.e., Iij={(pi
[k],pj

[k])}k.s mentioned 
before, we may get several estimates of the same 
plane parameters, from different pairs of video 
streams. For example, the estimation of Ĥ12 and 
Ĥ13 both lead to estimates of c in the frame of 
camera 1. 

                                                      
1 It seems that one problem in using velocity information is 
that the framerates of most videos in the benchmark data are 
not constant. 

Also, among all the estimates, some 
constraints should apply. For example, if the 
equation of Π is estimated in both frames i and j 
respectively by homographies Hij and Hjk, then we 
should be able to get the plane parameters 
expressed in Ci from the ones expressed in Cj and 
the 3D transformation (Rij, tij) 

 
(9) 

To use efficiently all this redundancy, we 
propose an optimization scheme that cycles over 
all video streams i, for which it alternates the 
following steps: 

− Step 'P' refines the plane parameters (ni,di) 
expressed in camera i, with transformations 
(Rij, tij) fixed, over all cameras j that have been 
registered with i (Iij≠); 

− Step 'R', allows to enforce Eq. 9, 

 
(10) 

where the sums are taken on all cameras j 
such that an homography has been computed 
between i and j, and the γj are weights summing 
to one that are proportional to the total number of 
inlier points contributing to the estimation of the 
plane parameters through video j (i.e., a rough 
level of confidence over the estimation of plane 
parameters); 

− Step 'T', for each camera j registered with 
camera i in the first steps, refine the 
transformations (Rij, tij) with the plane 
parameters (ni,di) remaining fixed. 

The two refinements (steps 'P' and 'T') are made 
respectively over the union of all sets of inliers Iij 
and over individual sets Iij. The step 'P' tries to 
minimize a function Fi  

(11) 

under the constraint ||n||=1, where 
h(a,b,c)=(a/c,b/c). The step 'T' tries to minimize, 
for each registered pair (i,j), a function Fij: 
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(12) 

where γ is a triple of angles, and t is the 
translation vector. The outputs of the steps 'T' are 
then used again in the following 'P' steps (as new 
values for Rij and tij) in the next iterations of this 
cycle. For each of these steps, we used a 
classical Levenberg-Marquardt (LM) approach. 
  
Algorithm 2. Scene calibration. 
 
Iij ← Apply algorithm 1 between all pairs (i,j).  

Decompose all Ĥij's into Rij, tij, nij, dij using [10]. 

Determine the scale of tij, dij by using Eq. 8 on 
each blob in Iij and taking the median. 

Initialize ni, di by averaging all nij,dij 

repeat 
for camera Ci do  
Refinement LM steps on ni,di on the 
objective function given by Eq. 11. 
Relaxation scheme on ni (Eq. 10). 
Refinement LM steps on Rij, tij on the 
objective function given by Eq. 12. 
end 

until convergence 
Choose reference camera ι with the highest ∑j|Iij|, 
compute a reference frame on Π and a 
homography Hι from this frame to Ci, (Eq. 4). 

For all cameras j connected to ι by a path of 
homographies, compute the reference plane-to-
image Hιj.  

 
 
 
The scene calibration is summed up in 

algorithm 2, which makes use of the previously 
described non-linear optimization steps. Once 
these steps are done, we simply select the most 
promising camera ι in terms of inliers contributing 
to the estimations of Hιj and for all cameras j that 
can be connected to ι by a path of homographies 
(e.g., Hιk, Hkl, Hlj), we deduce Hj from Eq. 4 and 
the estimated relative transforms. 

5 Results  

We tested and compared our algorithm on the 
PETS [11] benchmark data. This database 
provides several datasets, with increasing levels 
of difficulty for the tracking algorithms, i.e., 
different levels of people density. Each dataset 
gives eight video streams which makes it suitable 
for our evaluation needs. For our calibration 
purposes, we used the medium density crowd 
dataset (labelled as S0). 

As mentioned before, this work has been 
implemented entirely in C++ with the OpenCV 
library. It uses a classical tracking algorithm from 
OpenCV (color-based particle filter). Moreover, 
we use a somewhat more efficient variant of the 
RANSAC algorithm, LO-RANSAC [2] that locally 
optimizes the estimation of the model after each 
improvement of the current winner model.  

We first give some qualitative results of 
camera-to-camera homography registrations Hij in 
Fig. 9. We depict the registrations obtained with 
three of the computed homographies Hij (left) and 
their inverse Hij

-1 (right) by warping the image j 
onto the image plane i, all of these without 
applying yet the optimization from Section 4. 
Ideally, if the homographies were correct, all the 
elements of the scene belonging to the plane Π 
should coincide. One can note that most of the 
recognizable roads, lines, spots are correctly 
warped in the other view. Fig. 1 depicts the inliers 
trajlets (i.e., the matched data in the RANSAC 
process of Alg. 1) that allowed the estimation of 
the third homography in Fig. 9 (i.e. between views 
2 and 7). In addition to these three examples of 
Fig. 9, the algorithm calibrates 15 of the possible 
28 camera pairs. When pairs are not calibrated, it 
is mainly because of a too little overlap between 
the cameras or due to some large off-the-plane 
obstacles (e.g., trees) that make the track 
correspondences difficult to find. 

Another qualitative result is depicted in Fig. 4: 
the output of Algorithm 2 for cameras 1, 2, 3, 4, 5, 
6, and 7, i.e. computed homographies H1, H2, H3... 

The images at some timestamp t from all 
these video streams i are projected with the 
homographies Hi onto the bird view over the real 
scene.  
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The field of view of each camera is 
materialized through yellow angular sectors (or 
red angular sectors if the registration is not done 
directly by one homography to the reference 
cameras, but by several ones). To compare it with 
the ground truth data given with the dataset, we 
manually superimposed an aerial view of the zone 
where all camera positions are indicated by blue 
numbers. Ideally, the vertices of the field of views 
should indicate the positions of the cameras. As it 
can be observed, the position errors are in the 
order of dozens of centimeters. 

Quantitatively speaking, in Fig. 5 we compare 
our approach with different algorithms in the 
literature, as far as computational efficiency is 
concerned. To evaluate this efficiency, we plot the 
average numbers of iterations the RANSAC loop 
has to perform (y-axis) before reaching a given 
level of precision (x-axis), i.e., satisfying 
decreasing levels of quality. These numbers are 
averaged over 11 runs and presented in log scale 
for better visualization. In black, we plot the 
number of iterations necessary for the blob-based 
algorithm of [6], which is far above all the others, 
as it has been pointed out already, because of its 
intrinsic higher complexity. In red, we plot the 
standard RANSAC algorithm such as [1]. In 
green, we plot the result of [9] and in blue the one 
of our algorithm: the last three have a rather 
similar behavior, but ours gives systematically 
lower time requirements to reach a given 
precision bound because of (1) the non-uniform 
sampling scheme and (2) the pre-processing of 
trajectories into trajlets. 

Conversely, in order to evaluate our algorithm 
in terms of precision and robustness, we 
compared the image-to-image homographies 
estimated by Alg. 1 to the ones computed through 
(a) a naive implementation of RANSAC (similar to 
[1]) and (b) a better implementation with non-
uniform sampling (similar to [9]). These three 
schemes are evaluated for fixed numbers of 
iterations (x-axis) in Fig. 6, for the pairs 1-2 (left) 
and 2-7 (right). The results we obtained for the 
other pairs are similar. The comparison is made 
on per-pixel average re-projection errors, 
measured by the Euclidean distance between the 
projections by Hij of points in images i onto 
images j and the projections of these same points 
with ground-truth homographies Gij. We took the 
mean error over 15 different runs. One can notice 
that the mean error for the first two schemes are 
quite high and unstable because of the presence 
of outlier trajectories in the RANSAC scheme that 
may be inserted in the estimation, whereas ours 
converges much more stably to its best value. 

In Fig. 7, we depict two outputs of the non-
linear optimization scheme of Section 4. In the left 
part, we plot the error residuals of functions Fij (y-
axis) that, as expected, tends to drop first and 
then remains stable with the number of steps (x-
axis).  In the right part, we plot the norm n1-R12n2, 

 
 
Fig. 4. This mosaic results superposes  (1) the 
rectification of the images of cameras 1, 2, 3, 4, 5, 6, 7 
on the ground plane, with fields of view depicted in 
yellow and (2) an aerial image given on the PETS2009 
[11] website that indicates each camera position by the 
blue numbers 

Fig. 5. Number of iterations (y-axis, in log/scale) 
necessary for the calibration process to reach a given 
precision level (x-axis). The more iterations are, the 
slower the algorithm is. We depict the required number 
of iterations for [6] in black, for the standard RANSAC 
algorithm [1], in red, for [9], in green, and for our 
algorithm, in blue 
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which, as we explained it previously, is extracted 
from two separate estimations, but theoretically 
should vanish. It can be observed that because of 
our relaxation step in Alg. 2, this geometrical 
consistency term n1-R12n2 tends to be minimized 
with the number of steps. 

Finally, in Fig. 8 we present the distributions of 
the same reprojection error of Fig. 6, but for two 

versions of our algorithm, i.e., with (right) and 
without (left) smoothing of the trajectories. We 
which, as we explained it previously, is extracted 
show the results for pair (1,6) on the left, while on 
the right for pair (2,7). What can be shown is that 
the median (bold horizontal line) error is not 
necessarily better with smoothing, but there are 
much less outlier situations (unfilled dots), that is 
why we have chosen to smooth trajectories. 

  

Fig. 6. Comparison of the reprojection errors (i.e., registration quality) obtained as a function of the number of 
iterations in the RANSAC scheme. The plots are mean values over 15 registration intents and are relative to 
two pairs of videos (1-2 on the left, 2-7 on the right). In red, results with the standard RANSAC ([1]), in green, 
with the algorithm of [9], and in blue, with our approach 

 

Fig. 7. Two outputs of the non-linear optimization scheme applied to scene calibration, based on camera pairs 1-2, 1-
6, 1-7, and 2-7, that makes the set of estimates of pairwise geometries evolve towards consistent values. Left, 
evolution of the value of the objective functions Fij on a per pixel basis. Right, evolution of the norm of the geometric 
coherence term n1-R12n2. 
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6 Conclusions 

We presented an algorithm for the calibration of a 
set of video surveillance cameras. It has several 
advantages over comparable algorithms in the 
literature as follows:  

(1) by pre-processing trajectories into trajlets 
and by assigning likelihood values to pairs of 
them so that unambiguous matches are favored, 
it keeps the computational complexity  
reasonable;  

(2) as we do not rely on entire trajectories, but 
instead on smaller parts less susceptible to be 
erroneous, it is much more robust to the occlusion 
problems accompanying standard 2D tracking 
algorithms;  

(3) its non-linear optimization step incorporates 
all geometrical consistency constraints between 
the cameras, so that the final estimates between 
the pairs are not contradicting each other.  

We presented rectification results in 
challenging situations where the viewpoint 
changes makes it nearly impossible to register the 
views by traditional point correspondences 
techniques, and we showed that our own 
approach outperforms existing ones when 
efficiency is concerned, i.e., the number of 
iterations needed for the calibration process to 
reach a given level of precision is always lower 
with our algorithm. Moreover, to our knowledge, 
there is no other work in the literature that goes 

further the pairwise camera calibration to perform 
the calibration of a whole network of cameras 
while taking the consistency of the computed 
estimates into account.  

As ongoing and future work, we aim to model 
and compute probabilistic uncertainties on the d 
estimated homographies based on the 
uncertainties on measured trajectories. We plan 
to use them  

(1) in optimization, to favour less uncertain 
homographies and  

(2) in a 3D people tracking scheme over the 
camera network. 
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