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Abstract. In this paper, matched detector (MD) and 

matched subspace detector (MSD) are studied when 
the structured background power is different under the 
null and the alternative hypotheses. The distributions of 
two test statistics are derived under these conditions. It 
has been analytically shown that these detectors can 
suffer a drastic degradation in performance for 
background power deviations under alternative 
hypothesis. We discuss the differences between the 
performances of these detectors in the case of the 
structured and unstructured backgrounds with 
uncorrelated Gaussian noise. The theoretical results 
are compared with simulated data and good agreement 
is reported. We present experimental results of small 
floating object detection on an agitated sea surface 
using spectral digital video experiments which validate 
the theoretical results.  

Keywords. Hypothesis dependent power, subpixel 

targets, performance loss. 

Sobre la eficiencia de detección de 
objetos subpixeleados con potencia 
de fondo estructurado que depende 

de hipótesis 

Resumen. El detector acoplado (MD) y el detector de 

subespacio acoplado (MSD) son estudiados cuando la 
potencia de fondo estructurado es diferente bajo las 
hipótesis alternativa y nula. Las distribuciones de las 
dos pruebas estadísticas son realizadas bajo las 
mismas condiciones. Ha sido analíticamente 
demostrado que esos dos detectores pueden sufrir una 
degradación drástica de su eficiencia para las 
desviaciones de la potencia de fondo bajo hipótesis 
alternativas. Se discuten las diferencias entre los 
rendimientos de esos detectores en el caso de fondos 
estructurados y no estructurados con ruido Gaussiano 
no correlacionado. Los resultados teóricos son 
comparados con los datos simulados y una buena 

concordancia es reportada. Se presentan resultados 
experimentales de la detección de objetos pequeños 
flotando en la superficie agitada del mar, usando el 
experimento del video digital espectral, que demuestra 
la validación de los resultados teóricos. 

Palabras clave. Potencia que depende de hipótesis, 

objetos subpixeleados, pérdida de eficiencia. 

1 Introduction 

Detection problems arise in a wide variety of 
applications such as sonar, radar, data 
communication, medical and optical remote 
systems [1-9]. In optical remote systems, it is 
typical that the background has the same 
covariance structure but different variances under 
hypotheses H0 and H1 [6], which is directly related 
to the fill factor of a target, that is, the percentage 
of the pixel area unoccupied by an object.  

There are two background models frequently 
used in detectors: unstructured background 
model, which represents the background as a 
time stochastic correlated process, and the 
structured background model, which represents 
the background as a spectral deterministic 
function of frequency. The detector performance 
analysis has been considered [8] for the case of 
unstructured background models where the 
purpose is to perform analytical and numerical 
analysis of two well-known detectors (MD and 
MSD) which would at least partially explain the 
behavior of these detectors when the structured 
background power is different under the null and 
the alternative hypotheses. It is well known [1, 6, 
9], that these detectors are designed for a specific 
signal waveform and a given noise probability 
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density function. A common drawback of the 
works referred to previously is the assumption 
that the noise power relation under hypothesis H0 
and under hypothesis H1 remains fixed [2-4,8]. 

Unfortunately, it turns out that in many cases 
the optimum detectors can suffer a drastic 
degradation in the performance for small 
deviations from the nominal assumptions [3-6]. It 
has been demonstrated [8] that the MSD 
performance loss for high-dimensional target 
subspace p>10 achieves a great value in 
presence of the Gaussian unstructured 
background with different variance for hypotheses 
H0 and H1, but MD with the target subspace p=1 is 
robust in these conditions.  

In the literature [4, 6, 7], the study of these 
classical detectors is not complete when the 
structured background power is different under 
the null and alternative hypotheses. In optical 
systems (including the hyperspectral subpixel 
target detection), for example, it is typical that the 
background has the same spectrum structure but 
different variances under hypotheses H0 and H1 
[6], which is directly related to the pixel fill factor 
b, that is, the percentage of the pixel area 
unoccupied by an object. The choice of the 
mathematical model used to describe the 
variability of target and background spectra 
(subspace versus statistical) leads to different 
families of detection algorithms.  

The variability of the background can be 
described using either a subspace model 
(structured background) or a statistical distribution 
(unstructured background). In this paper, we 
investigate theoretically the detection 
performance losses in the case of background 
power variations between two hypotheses in the 
structured background environment for the 
canonical MD and MSD. 

Then we compare numerically the 
performance losses for MD and MSD in the case 
of the structured and the unstructured background 
models. We present simulation and experimental 
results of detection of two floating objects on an 
agitated sea surface using spectral digital video 
experiments. 

2 Problem Statement and System 
Analysis 

The target detection problem is often defined in 
the literature [1, 4, 6] as the hypothesis-testing 
problem for testing the null hypothesis H0: the 

target response scaling     versus     for the 
alternative hypothesis H1. We consider a subpixel 
model [1, 8], where each pixel is a sum of two 
vectors, one from the target spectrum subspace 
and the other from the background spectrum 
subspace. For targets occupying multiple pixels, 
detection can exploit both spatial and spectral 
properties. In contrast, the detection of subpixel 
targets can be achieved only by exploiting 
spectral properties. When the background 
variability is modeled using a subspace model, 
the target detection problem involves choosing 
between the following competing hypotheses: 

H0: x =αBab+ n,  H1: x =µSat + αbBab+ n (1) 

where x is the pixel spectrum under test, B is a 
N×Q matrix representing the background 
spectrum subspace, ab and at are the normalized 

(‖   ‖       ‖   ‖   ) unknown abundance 

vectors of the target spectrum and background 
spectrum, respectively,αis the common 
background spectrum scale factor, b is the pixel 
fill factor (the percentage of the pixel area 
occupied by a background), S is a N×p matrix 
representing the target subspace, and n is a N-
dimensional error vector accounting for lack-of-fit 
and noise effects typically assumed to be a zero-
mean N-dimensional normal distribution N(0,σ

2
IN), 

N>Q>p.  

The orthogonal subspace projection (OSP) 
detector seems to be a reasonable detector for 
this linear mixing model containing the target and 
background spectrum signatures [1, 4]. On the 
other hand, in practice, MD or MSD may 
sometimes outperform the OSP, as demonstrated 
in [7], and, additionally, practitioners often use 
these detectors for their simplicity. The well-
known MD and MSD test statistics [7] are 

TMD=    √σ     andTMSD =      σ
  (2) 
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where the target response is s=Sat and 

      
 
  
  
 
 
is the orthogonal p-rank projection 

matrix on the signal spectrum subspace. To make 
a decision, we need to compare test statistic T(x) 
to a given thresholdη and accept H1 when T>η 
and H0 otherwise. Since the threshold determines 
both detection probability PD and false alarm 
probability PF, we need to determine the 
probability distribution of T(x). It can be shown 
[1, 7], that the MD test statistics are 
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where K=     is the target-background cross-
correlation factor, and r =a/σ is the background-
to-noise ratio. In thecase of the MSD test 
statistics it is known [1, 7] that therandom variable 

    is distributed as 
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distributed: 
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where K1 is the value of the background 
projection onto signal spectrum subspace and 
K1=K for at

T
=[    …  ]. Formulas 7, 8, 9 show that 

the MSD efficiency depends on the signal 
amplitude µ and the factor γ=brK. When the 

signal spectrum subspace does not coincide with 
the background spectrum subspace, we obtain 

K1=K=0 and γ=0. In this case   
2    and the MSD 

efficiency achieves the maximum and even for a 

small signal amplitude µone can see that   
2    

2
. 

In the case of r2  
   , the pixel factor b 

reduction diminishes the noncentrality parameter 

  
2
 (9) and then the detection performance 

reduces. In this case it can be seen that for the 

small signal amplitude µ, the value of   
2
 can be 

smaller than   
2
. It is necessary to increase the 

signal amplitude µ to achieve a fixed value of the 
detection probability (or to achieve the 

relationship   
2    

2
). This additional magnification 

of the signal amplitude, which is necessary in the 
case of b<1, causes the detection performance 
loss. It is interesting that in the case of subpixel 
targets, MSD efficiency depends not only on a 
relationship between target S and background B 
spectrum subspaces (see K), signal-to-noise µ

2
/σ

2
 

and background-to-noise r ratios, but also on pixel 
fill factor b, i.e., the relationship between pixel and 
target areas and their relative positions. 

Unstructured background models assume that 
the additive noise has been included in the 
background, which in turn is modeled by a 
multivariate normal distribution. It has been 
demonstrated in [8] that in the case of the 
unstructured background, MSD statistics are 
given by 

TMSDU(x)=(1/σ
2
)x

H
R

-1
S(S

H
R

-1
S)

-1
S

H
R

-1
x 

 {
  
 ( )            

    
 (  

 )       
 

(10) 

where R is the background covariance matrix 

and   
2
=
 μ   )

 
    μ   )

 
 
σ
2 . Based on Expression 10, 

the detection probability depends on three factors: 
the pixel fill factor b, the degree of freedom p, and 

noncentrality parameter   
2
. When the pixel fill 

factor b decreases, this leads to reduction of the 

detection probability due to the coefficient    
in (10). In contrast, when b decreases, the 

noncentrality parameter   
2
 increases, and that 

leads to improvement of detectability. In general, 
as a result of the action of two opposite factors, 
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the detection performance increases not 
strongly [8].  

In the next section we carry out a numerical 
evaluation of the MD and MSD performance 
losses in the case of the structured background 
model with different parameters K and b.  

3 Detection Performance Analysis and 
Numerical Illustrations 

The aim of this section is threefold. First, we 
assess the validity of the theoretical formulas 
7, 8, 9 by comparing them with the actual receiver 
operating characteristics (ROC) obtained through 
Monte Carlo simulations. Second, we assess the 
performance loss of the classical MD and MSD in 
the case of the background power variation under 
hypothesis H1. Third, we compare the MSD 
performance in the presence of the structured 
background model with respect to the 
unstructured background model under the pixel fill 
factor variation.  

We set the desired value of the false alarm 
probability PF=10

-3
 and determine the 

corresponding threshold value by simulation.  
We generate standard white Gaussian noise 

data, namely, independent, identically-distributed, 
Gaussian vectors (of size N) with zero mean and 
identity variance. In the estimation of probability 
by counting techniques, the number of 
independent trials that guarantees a relative 
r.m.s. error less than 10% is 100/ PF; thus, we 
generate a vector of 10

5
 value of the statistic for 

each detector from which the threshold is 
estimated as the 100

th
 value in a descending 

order, i.e., as the 1-PF sample quantile. Finally, 
following the same considerations, the detection 
probability PD is estimated using the evaluated 
threshold on 10

5
 independent trials.  

The ROC of MD and MSD, namely, curves of 
their probability of detection versus the signal-to-
noise ratio, are plotted in Fig. 1 for MD and in 
Fig. 2 for MSD. Both analytical and simulation 
results (simulations marked by symbols) are 
shown for the same set of parameters of the 
structured background model.  
It can be seen in Fig. 1, 2 that the analytical 
expressions 7, 8, 9 give very precise 

approximations of the real test performances. The 
MD performance is considerably better than the 
MSD performance, but MD requires an actual 
target signature which is rarely available in 
practice. We assess the MD and MSD 
performance losses in the presence of the 
structured background to unknown pixel fill factor 
b<1 (background power deviation under H1) and 
compare them with the losses of these detectors 
in the case of the unstructured background [8]. 
The performance loss is defined as the 
incremental signal-to-background ratio (SBR) 
necessary for achieving the same detection 
performance (PD=0.5). The MD performance loss 
(3) is a function of the noncentrality parameter m 

only and depends on the value of ( -  rK (4). It is 
evident that this term represents the degradation 
in m for b<1. It should not seem surprising that 
this loss depends on the voltage background-to-
noise ratio r. It is interesting to notice that the loss 
depends on the cross-correlation factor K and in 
the case of K→   the t rget spectrum does not 
coincide with the background spectrum) the loss 
decreases to zero. Next, we analyze the MSD 
performance loss. Fig. 3 shows that MSD is less 
sensitive to the factor b in the case of the 
unstructured background (see the MSDU line). 

 

Fig. 1. Detection probability vs. signal-to-background 
ratio for MD and structured background model, N = 60, 
PF =10-3 
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A typical MSD performance loss for signals in 
a correlated background, where the unstructured 
background is specified in terms of its covariance 
matrix R, was shown in [8], (Fig. 1, 2, 4), and the 
maximum loss is about 6 dB for b=0.1.  

It can be seen in Fig. 3 that the MSD 
performance loss is essentially bigger in the case 
of the structured background model and can 
achieve 20 dB for small white noise power (or for 
great r). There are two main causes of the 
performance loss difference between two 

models:1) the unstructured background model is 
stochastic and therefore MSD carries out the 
incoherent weakening of the background power, 
2) the structured background model is 
deterministic and MSD can implement the 
background coherent reduction. 

4 Experimental Example 

In practice, there are situations where we do not 
have sufficient information to estimate the target 
abundance vectors at and therefore we cannot 
use MD. In this section, we illustrate the MSD 
losses for different pixel fill factor values b and 
target-background cross-correlation factor K using 
the experimental video sequences of floating 
subpixel targets on agitated sea surface. These 
sequences are about 200000 frames long, taken 
in coastal sea waters using stationary digital video 
camera.  

We have selected two pixels at the distances 
of about 200 m and 1000 m. The digital video 
camera is placed at about 2m above the sea 
surface leading to a very small observation angle 
of 1°. Therefore, the pixel area on the sea surface 
is approximately an ellipse with different great and 
small axes. Concerning the targets, we have 
chosen a red boat of a size of 30×7 m (a distance 
of 1000 m) and a swimmer (a distance of about 
100 m). 

In Fig. 4 one can see the first image of the 
experimental image sequence where the 
swimmer, the boat and the sea surface with sea 
wave altitudes of less than 0.2 m are presented. 
The pixel sizes depend on the distance and for 
the experimental digital camera they were 
0.01m

2
/pixel (an ellipse with axes 0.01×0.8 m) for 

the 100 m distance and approximately 1m
2
/pixel 

(0.1×8 m) for the 1000 m distance. Furthermore, 
the performance evaluation of detection 
algorithms in practice is challenging due to the 
limitations imposed by the limited amount of 
target data. As a result, the establishment of 
accurate detection probability curves is quite 
difficult.  

Therefore we divided our research into two 
stages. At the first stage, we experimentally 

 

Fig. 2. Detection probability vs. signal-to-background 
ratio for MSD and structured background model, N = 60,  
PF = 0-3 

 

Fig. 3. Detection loss vs. pixel fill factor for MD and 

MSD in the case of structured and unstructured 
background models, N = 60, PF = 10

-3 
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evaluated the target signatures at a small 
distance (30-40 m) and the sea signatures at 
distances of 100 and 1000 m.  

For the experiment to be pure, all 
measurements were conducted in an equal 
weather situation and altitude of waves. Using the 
relation between the spectrum bands of the target 
signature and the sea signatures at distances of 
100 m and 1000 m, we estimated the factor K. 
We assumed that the target reflections from large 
distance are equal to the obtained target 
signature plus a white normal noise. We have 
mixed additively these target reflections with the 
experimental data of the sea reflections at the 
distances of 100 m and 1000 m. Such artificial 
method allowed us to vary the pixel fill factor b 
and to calculate the MSD detection performances 
(receiver operating characteristics (ROC) 
depending on the pixel fill factor for both targets 
with different factor K (Fig. 5). One can observe in 
Fig. 5 the MSD performance losses in the case of 
different factors K and b. The MSD performance 
losses increase when the factor K gets bigger and 
the factor b gets smaller.  

At the second stage, we experimentally 
evaluated the MSD performance of the swimmer 
on the sea surface (a distance of about 100 m) 
and the boat (a distance of about 1000 m). The 
pixel fill factor b is approximately equal to 0.4 (the 
target covers about 60% of pixel area). When the 
pixel area covering the target is enlarged, the 

target amplitude increases. To eliminate this 
effect, we normalized the maximum spectral line 
of the signal reflected from the targets.  

Fig. 6 shows the statistical test (MSD) values 
for40 experiments with N=200. We chose various 
pixels so that the pixel fill factor b had values of 
0.2 (Fig. 6) and 0.8 (Fig. 7).The comparison of 
Figures 6 and 7 shows that a pixel fill factor 

 

Fig. 4. The first image of the image sequence used in 
the experiment 

 

Fig. 5. Comparative experimental results: detection 
probability vs. signal-to-noise ratio for MSD, p = 10, 
N = 200, PF = 10

-2
. The boat has K = 0.2 and the 

swimmer hasK = 0.8 

 

Fig. 6. Experimental results: MSD statistics in the case 
of the swimmer (N=200, pixel fill factor b=0.2) 
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decrease at the constant target amplitude is the 
cause of MSD performance loss. These 
experimental results demonstrate that both the 
target-background cross-correlation factor 
increasing and the pixel fill factor decreasing can 
result in MSD performance losses. 

5 Conclusions 

In the case of structured background power 
deviation under H1, the distributions and the ROC 
for MD and MSD were derived analytically and 
validated via simulations.  

The theory and simulation demonstrated that 
MD and MSD suffer a drastic degradation in 
performance for the structured background power 
deviations under the alternative hypothesis.  

The simulation and experimental results 
showed that target-background cross-correlation 
factor and pixel fill factor play a significant role in 
MSD performance. Future research will focus on 
a more effective technique to estimate the pixel fill 
factor to be used in the detection algorithm. 
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