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Abstract. In many real-world application problems,
the availability of data labels for supervised learning
is rather limited and incompletely labeled datasets
are commonplace in some of the currently most
active areas of research. A manifold learning model,
namely Generative Topographic Mapping (GTM), is
the basis of the methods developed in the thesis
reported in this paper. A variant of GTM that uses
a graph approximation to the geodesic metric is first
defined. This model is capable of representing data
of convoluted geometries. The standard GTM is here
modified to prioritize neighbourhood relationships
along the generated manifold. This is accomplished
by penalizing the possible divergences between the
Euclidean distances from the data points to the model
prototypes and the corresponding geodesic distances
along the manifold. The resulting Geodesic GTM
(Geo-GTM) model is shown to improve the continuity
and trustworthiness of the representation generated
by the model, as well as to behave robustly in the
presence of noise. We then proceed to define a novel
semi-supervised model, SS-Geo-GTM, that extends
Geo-GTM to deal with semi-supervised problems. In
SS-Geo-GTM, the model prototypes obtained from
Geo-GTM are linked by the nearest neighbour to
the data manifold. The resulting proximity graph
is used as the basis for a class label propagation
algorithm. The performance of SS-Geo-GTM is
experimentally assessed via accuracy and Matthews
correlation coefficient, comparing positively with
an Euclidean distance-based counterpart and the
alternative Laplacian Eigenmaps and semi-supervised
Gaussian mixture models.

Keywords. Semi-supervised learning, Clustering,
Generative Topographic Mapping, Exploratory Data
Analysis.

Aprendizaje generativo de variedades
para la exploración de datos

parcialmente etiquetados

Resumen. En muchos problemas aplicados del mundo
real, la disponibilidad de etiquetas de los datos para
el aprendizaje supervisado es bastante limitada y los
conjuntos de datos etiquetados incompletamente son
habituales en algunas de las áreas de investigación
actualmente más activas . Un modelo de aprendizaje
de variedades, el Mapeo Topográfico Generativo (GTM
como acrónimo del nombre en inglés), es la base
de los métodos desarrollados en la tesis reportada
en este artı́culo. Se define en primer lugar una
extensión de GTM que utiliza una aproximación de
grafos para la métrica geodésica. Este modelo es
capaz de representar datos de geometrı́a intrincada.
El GTM estándar se modifica aquı́ para priorizar
relaciones de vecindad a lo largo de la variedad
generada. Esto se logra penalizando las divergencias
posibles entre las distancias euclideanas de los
puntos de datos a los prototipos del modelo y las
distancias geodésicas correspondientes a lo largo de
la variedad. Se muestra aquı́ que el modelo GTM
geodésico (Geo-GTM) resultante mejora la continuidad
y la fiabilidad de la representación generada por
el modelo, al igual que se comporta robustamente
en presencia de ruido. Después, procedemos
a definir un modelo semi-supervisado novedoso,
SS-Geo-GTM, que extiende Geo-GTM para tratar
problemas semi-supervisados. En SS-Geo-GTM, los
prototipos del modelo obtenidos de Geo-GTM son
vinculados mediante el vecino más cercano a la variedad
de datos. El grafo de proximidad resultante se utiliza
como la base para un algoritmo de propagación de
etiquetas de clase. El rendimiento de SS-Geo-GTM se
evalua experimentalmente a través de las medidas de
exactitud y el coeficiente de correlación de Matthews,
comparando positivamente con una contraparte basada
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en la distancia euclideana y con los modelos alternativos
de Eigenmapas Laplacianos y mezclas de Gaussianas
semi-supervisadas.

Palabras clave. Aprendizaje semi-supervisado,
agrupamiento, mapeo topográfico generativo, análisis
exploratorio de datos.

1 Introduction

Labeling aspects of reality is one of the most
standard tasks performed by the human brain and,
therefore, of natural learning. When dividing the
existing reality into different categories, humans
seamlessly perform a classification task that can
be improved over time through learning.

In the realm of non-natural, or machine learning,
the task of unraveling the relationship between
the observed data and their corresponding class
labels can be seen as the modeling of the mapping
between a set of data inputs and a set of discrete
data targets. This is understood as supervised
learning.

Unfortunately, in many real applications class
labels are either completely or partially unavailable.
The first case scenario is that of unsupervised
learning, where the most common task to be
performed is that of data clustering, which aims to
discover the “true” group structure of multivariate
data [32]. The second case is less frequently
considered but far more common than what one
might expect: quite often, only a reduced number
of class labels is readily available and even that can
be difficult and/or expensive to obtain.

In such context, unsupervised models are an
adequate tool for a first exploratory approach.
The available class labels can then be used to
refine the unsupervised procedure. This becomes
a task on the interface between supervised and
unsupervised models: semi-supervised learning
(SSL [17, 59, 7]). This type of learning is commonly
understood as a way to improve supervised tasks
(usually with few available labeled samples) with
the use of unlabeled samples [47, 15, 33, 26, 44].
In this paper, the approach is a less typical one:
improving and refining unsupervised learning by
using class labeled data.

From several categories of SSL methods [17],
we are specifically interested in graph-based
methods based on generative models. In
graph-based methods, the nodes of a graph
come to represent the observed data points, while

its edges are assigned the pairwise distances
between the incident nodes.

The way the distance between two data points is
computed can be seen as an approximation of the
(true) geodesic distance (which is computationally
intractable [11, 38]) between the two points with
respect to the overall data manifold [10]. Therefore,
we present a semi-supervised approach, inspired
by that two-stage SSL method proposed in [31].
It is based on geodesic generative topograhic
mapping (Geo-GTM: [20]), which is an extension of
the statistically principled Generative Topographic
Mapping (GTM: [14]).

In our proposal, the prototypes obtained from
Geo-GTM are inserted and linked by the nearest
neighbour to the data manifold. The resulting
graph is considered as a proximity graph for
which an ad hoc version of label propagation
algorithm (LP: [58]) is defined. This becomes
semi-supervised Geo-GTM (SS-Geo-GTM:
[21, 22]), a model that uses the information
derived from Geo-GTM training to accomplish
the semi-supervised task (see Fig. 1). A detailed
description of SS-Geo-GTM can be found in [21],
whereas a practical application to a problem in the
field of neuro-oncology, using human brain tumour
datasets, is described in [22].

Unlike the aforementioned SS-Geo-GTM
publications, here we compare its performance,
via accuracy and Matthews correlation
coefficient [40, 28], with that of two alternative
semi-supervised techniques: Laplacian
Eigenmaps [8] and semi-supervised Gaussian
mixture models [41].

2 Semi-Supervised and Generative
Manifold Learning

Semi-supervised learning is an emergent discipline
that incorporates prior knowledge into supervised
or unsupervised methods (classification and
clustering, mainly). The need for SSL, understood
as learning from a combination of both labeled and
unlabeled data, rises naturally in cases for which
there exists a large supply of unlabeled data but
a limited one of labeled data (bearing in mind that
in many practical domains it can be very difficult
and/or expensive to generate the labeled data).
When SSL is used for classification, the main goal
is to improve the classification accuracy aided by
unlabeled data.
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Fig. 1. Schematic GTM-based semi-supervised
procedure

SSL for classification has become popular over
the past few years. Some of the proposed methods
include: co-training [15], in which there are two
kinds (views) of information for training – about
examples and the availability of both labeled and
unlabeled data (some extensions of co-training
and its applications can be found in [43, 27,
19, 55, 56, 34]); Transductive Support Vector
Machines (TSVM, [33]), in which transduction
follows Vapnik’s principle: when trying to solve
some problems, one should not solve a more
difficult problem as an intermediate step (some
extensions of TSVM or Semi-supervised SVMs
and their applications are reported in [18, 23, 52,
53, 16, 50, 51, 45]); and Expectation-Maximization
(EM), within the Maximum Likelihood framework,
to incorporate unlabeled data into the training
processes [26, 44, 3, 42].

On the other hand, semi-supervised clustering
(SSC) uses class labels or pairwise constraints
(specifying wether two instances should be in same
or different clusters) on some examples to aid
unsupervised clustering [5, 13, 6, 37, 4, 48, 29, 54,
2]. SSC is useful when knowledge of the relevant
categories of a problem is incomplete. When it
happens, SSC can group data using the categories
in the initial labeled data as well as extend and
modify the existing set of categories as needed to
reflect other regularities in the data.

At the present time, there is a tendency to
consider as “standard” SSL methods [17] only

those which use it for classification tasks (as it
is defined in [47]). However, SSC should be
considered a more general SSL setting when the
number and nature of the classes are not known
in advance but have to be inferred from the data.
For a more complete literature survey of SSL for
classification and clustering tasks, readers can
consult [17, 59, 7, 57] and the references therein.

As mentioned in the previous section, the
approach in this work is a less typical one:
improving and refining unsupervised learning
by using class labeled data. Most used
unsupervised learning tasks are: dimensionality
reduction and clustering analysis. The non-linear
dimensionality reduction problem of manifold
learning can be expressed as the recovery of
meaningful low-dimensional structures hidden in
high-dimensional data [46, 49, 38]. This recovery
should allow us to extract useful information and
discover meaningful features, patterns and rules
from data.

When the manifold assumption is taken up for
clustering analysis, one important question is how
to incorporate intrinsic geometric information of
multivariate data in the corresponding clustering
method. Identifying the underlying manifolds
defining the data is of critical importance for their
understanding. Methods such as ISOMAP [49] and
Curvilinear Distance Analysis [39], for instance,
use the geodesic distance as a basis for generating
the data manifold. ISOMAP, in fact, can be seen
as an instance of Multi-Dimensional Scaling (MDS)
in which the Euclidean distance is replaced by
the geodesic one. This metric measures similarity
along the embedded manifold, instead of doing
it through the embedding space. In doing so, it
may help to avoid some of the distortions (such as
breaches of topology preservation) that the use of
a standard metric such as the Euclidean distance
may introduce when learning the manifold, due to
its excessive folding (that is, undesired manifold
curvature effects). The otherwise computationally
intractable geodesic metric can be approximated
by graph distances [11], so that instead of finding
the minimum arc-length between two data items
on a manifold, we find the length of the shortest
path between them, where such path is built
by connecting the closest successive data items.
Here, this is accomplished using the K-rule (for
other alternative approaches see [38]). A weighted
graph is then constructed by using the data
(vertices) and the set of allowed connections
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(edges). If the resulting graph is disconnected,
some edges are added using a minimum spanning
tree procedure in order to connect it. Finally,
the distance matrix of the weighted undirected
graph is obtained by repeatedly applying Dijkstra’s
algorithm [25], which computes the shortest path
between all data items.

2.1 Standard and Geodesic Generative
Topographic Mapping

The standard GTM is a generative non-linear
latent variable model that, in its original definition,
was intended for modelling continuous, intrinsically
low-dimensional data distributions, embedded
in high-dimensional spaces. It can also be
understood both as a sound probabilistic
alternative to the well-known and widely used
Self-Organizing Maps (SOM: [36]) and as a
constrained mixture of distributions model. Its
constraints make it less flexible than general
mixtures of distributions, but such renounce
to flexibility is compensated by computational
expediency and by data visualization capabilities
akin to those of the SOM, which general mixture
models lack. Like SOM, GTM is used for
unsupervised clustering and visualization.

The GTM is a model of the manifold learning
family defined as a mapping from a low
dimensional latent space onto the multivariate
space where observed data reside. The
mapping is carried through by a number of basis
functions generating a constrained mixture density
distribution. It is defined as a generalized linear
regression model:

y(u;w) = φ(u)W (1)

where φ are M basis functions
φ(u) = (φ1(u), ...,φM(u)). For continuous data of
dimension D, spherically symmetric Gaussians

φm(u) = exp
{
−1/2σ2‖u− µm‖2

}
(2)

are an obvious choice of basis function, with
centres µm and common width σ; W is a M ×
D matrix of adaptive weights wmd that defines
the mapping, and u is a point in latent space.
To avoid computational intractability a regular grid
of K points uk can be sampled from the latent
space. Each of them, which can be considered
as the representative of a data cluster, has a fixed
prior probability p(uk) = 1/K and is mapped,

using Eq. 1, into a low dimensional manifold
non-linearly embedded in the data space. This
latent space grid is similar in design and purpose
to that of the visualization space of the SOM.
A probability distribution for the multivariate data
X = {xn}Nn=1 can then be defined, leading to the
following expression for the log-likelihood:

L(W,β|X) =

N∑
n=1

ln

{
1

K

K∑
k=1

(
β

2π

)D/2

exp
{
−β/2‖yk − xn‖2

}}
, (3)

where yk, usually known as reference or prototype
vectors, are obtained for each uk using Eq.
1; and β is the inverse of the noise variance,
which accounts for the fact that data points might
not strictly lie on the low dimensional embedded
manifold generated by the GTM.

The Expectation-Maximization (EM) algorithm
[24] is an straightforward alternative to obtain
the maximum likelihood estimates of the adaptive
parameters of the model, which are the adaptive
matrix of weights W and β. In the E-step of
the EM algorithm, the mapping is inverted and
the responsibilities zkn (the posterior probability of
cluster k membership for each data point xn) can
be directly computed as

zkn =p(uk|xn,W,β)

=
p(xn|uk,W,β)p(uk)∑
k′ p(xn|uk′ ,W,β)p(uk′)

, (4)

where p(xn|uk,W,β) = N (y(uk,W),β).
Standard GTM is optimized by minimization

of an error that is a function of Euclidean
distances, making it vulnerable to continuity and
trustworthiness problems, especially for datasets
of convoluted geometry. Such data may require
plenty of folding from the GTM model, resulting
in an unduly entangled embedded manifold that
would hamper both the visualization of the data
and the definition of clusters the model is meant
to provide. Following an idea proposed in [1], the
learning procedure of GTM is here modified by
penalizing the divergences between the Euclidean
distances from the data points to the model
prototypes and the corresponding approximated
geodesic distances along the manifold. By
doing so, we prioritize neighbourhood relationships

Susana
Cuadro de texto
644 Raúl Cruz-Barbosa and Alfredo Vellido

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 641-653ISSN 1405-5546 DOI: 10.13053/CyS-17-4-2013-014



between points along the generated manifold,
which makes the model more robust to the
presence of off-manifold noise.

The Geo-GTM model is an extension of GTM
that favours the similarity of points along the
learned manifold, while penalizing the similarity of
points that are not contiguous in the manifold, even
if close in terms of the Euclidean distance. This is
achieved by modifying the standard calculation of
the responsibilities in Eq. 4 proportionally to the
discrepancy between the geodesic (approximated
by the graph) and the Euclidean distances. Such
discrepancy is made operational through the
definition of the exponential distribution, as in [1]:

E(dg|de,α) =
1

α
exp

{
−dg(xn,ym)− de(xn,ym)

α

}
,

(5)
where de(xn,ym) and dg(xn,ym) are, in turn, the
Euclidean and graph distances between data point
xn and the GTM prototype ym. Responsibilities are
redefined as:

zgeomn = p(um|xn,W,β)

=
p′(xn|um,W,β)p(um)∑
m′ p′(xn|um′ ,W,β)p(um′)

, (6)

where

p′(xn|um,W,β)

= N (y(um,W),β)E(dg(xn,ym)2|de(xn,ym)2, 1).
(7)

As for standard GTM, Geo-GTM provides
data visualization capabilities that the alternative
Manifold Finite Gaussian Mixtures model proposed
in [1] lacks.

3 Semi-Supervised Geodesic
Generative Topographic Mapping

In many of the databases generated in some of
the currently most active areas of research, such
as, for instance, biomedicine, bioinformatics, or
web mining, class labels are either completely or
partially unavailable. As was stated in section 2,
SSL methods can be developed to assist either
classification or clustering tasks mainly. The former
task is the purpose of the models described in
this section, but using a clustering method as a
basis. That is, this section specifically concerns
graph-based methods that use, as a basis,
generative unsupervised models for clustering and
visualization.

3.1 SS-Geo-GTM

The basic idea underlying the proposed
semi-supervised approach is that neighbouring
points are most likely to share their label and
that these labels are best propagated through
neighbouring nodes according to proximity.
Assuming that the Geo-GTM prototypes and the
corresponding constructed data manifold can be
seen as a proximity graph, we modify an existing
label propagation algorithm [58] to account for the
information provided by the trained Geo-GTM. The
result is the proposed semi-supervised Geo-GTM
(SS-Geo-GTM, for short). An schematic procedure
of SS-Geo-GTM is shown in Fig. 1.

The LP method is adapted to Geo-GTM as
follows. A label vector Lm ∈ [0, 1]k is first
associated to each Geo-GTM prototype ym. These
label vectors can be considered as nodes in a
proximity graph. The weights of the edges are
derived from the graph distances dg between
prototypes. For this, the prototypes are inserted
and linked to the graph through the nearest data
point. It is important to note that, in this process,
empty clusters (that is, those associated to a given
prototype ym, to which no data point is assigned,
or, in other words, those that do not bear a
maximum of responsibility zgeomn for any data point
n) are omitted. The edge weight between nodes m
and m′ is calculated as

wmm′ = exp(−
d2g(m,m′)

σ2
), (8)

where the σ parameter defines the level of
sparseness in the graph for label information. One
possible choice for the value of this parameter is
the minimal inter-prototype distance. An alternative
choice is introduced and defined in [21] as the
main reference inter-prototype (MRIP) distance,
which is the graph distance dg(ym1,ym2) between
the two non-contiguous prototypes ym1,ym2 of
highest Cumulative Responsibility (i.e., the sum of
responsibilities over all data items in X, for each
cluster m, CRm =

∑N
n=1 z

geo
mn). The prototypes

with highest CR are considered as the most
representative in the dataset. As illustration, the
process of computing the graph distances between
prototypes is shown in Fig. 2 (right), using the Dalı́
set described in the results section.

Following [31], the available label information
of xn ∈ X with class attribution c(xn) = Ct ∈
{C1, . . . ,Ck} will be used to fix the label vectors
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Fig. 2. (Left): The artificial 3-D Dalı́ dataset, where the two contiguous fragments are assumed to correspond to
different classes, identified with different symbols. (Right): Results of the Geo-GTM modeling of Dalı́. The prototypes
are represented by ‘◦’ symbols. The graph constructed using 4-nearest neighbours is represented by lines connecting
the data points, which are, in turn, represented by ‘·’ symbols. Figure taken from [21]

of the prototypes to which they are assigned (xn

is assigned to ym through um = argmaxui z
geo
in ),

so that Lm,j = 1 if j = t, and Lm,j = 0 otherwise.
Unlabeled prototypes will then update their label by
propagation according to

Lnew
m =

∑
m′ wmm′Lm′∑

m′ wmm′
, (9)

until no further changes occur in the label updating.
Subsequently, unlabeled data items are labeled
by assignment to the class more represented
on the label vector of the prototype ym bearing
the highest responsibility for them, according to
c(xn) = argmaxCj∈{C1,...,Ck} Lm,j . The same
methodology is used to build a semi-supervised
version of a standard GTM model (SS-GTM).

A summary of a GTM-based semi-supervised
algorithm is presented in Fig. 3, where the first five
steps correspond to pre-processing addressed to
prepare suitable data structures which will be used
in the remainder steps.

3.2 Results

Geo-GTM, GTM, SS-Geo-GTM, and SS-GTM
were initialized following a procedure described in
[14]. All of these models were implemented in
MATLAB R©. The latent grid for GTM and Geo-GTM
was fixed to a square layout of approximately

(N/2)1/2 × (N/2)1/2, where N is the number of
points in the data set.

Five datasets were selected for the reported
experiments, where three of them (Dalı́, Oil-Flow
and Digit1) can be represented by low-dimensional
manifolds, that is, the manifold assumption is hold.
For the other sets, Iris and g241c, it is known in
advance [17] that this assumption is not hold. The
characteristics of these datasets are as follows:

— The first one is the artificial 3-D Dalı́
set. It consists of two groups of 300
data points each that are images of the
functions x1 = (t cos(t), t2, t sin(t)) and x2 =
(t cos(t), t2,−t sin(t) + 20), where t and t2
follow U(π, 3π) and U(0, 10), respectively.

— The second is the more complex Oil-Flow
set, available online1, which simulates
measurements in an oil pipe corresponding
to three possible configurations (classes).
It consists of 1,000 items described by 12
attributes.

— The third one is the Digit1 set, which consists
of artificial writings (images) of the digit
“1” initially developed in [30]. The original
images are transformed in such way that

1http://research.microsoft.com/∼cmbishop/PRML/webdatasets
/datasets.htm
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Fig. 3. GTM-based semi-supervised algorithm summary

they are rescaled, noise is added, and some
dimensions are masked [17]. The final data
consists of 1500 241-dimensional samples,
which correspond to two classes.

— The fourth set is the well-known Iris
data, available from the UCI repository,
which consists of 150 4-dimensional items
representing several measurements of Iris
flowers, which belong to 3 different classes.

— The fifth set is g241c, where 241-dimensional
750 points were drawn from each of two
unit-variance isotropic Gaussians, the centers
of which had a distance of 2.5 in a random
direction. The class label of a point represents
the Gaussian it was drawn from. Digit1 and
g241c are also available online2.

The central goal of the experiments is the
comparison of the performances of SS-Geo-GTM,
SS-GTM, Laplacian Eigenmaps (LapEM [9])
and semi-supervised Gaussian mixture Model
(SS-GMM [41]) in terms of classification accuracy
and Matthews correlation coefficient (MCC) [40] for
datasets where the manifold assumption is or not
hold.

2http://olivier.chapelle.cc/ssl-book/benchmarks.html

We hypothesize that SS-GTM will yield
lower rates of classification accuracy in
the semi-supervised task than its geodesic
distance-based counterpart, especially for
datasets of convoluted geometry such as Dalı́
and Oil-Flow. LapEM was implemented in
MATLAB R©and for SS-GMM a recent open source
implementation for R environment [12] was used.

Through several experiments shown in [21] is
concluded that the choice of the MRIP as a
value for σ is appropriate. Class labels were
available for all data points in the original five
datasets. In order to evaluate the models in
a semi-supervised setting, labels were therefore
randomly removed (thus becoming missing values)
in every run of the experiments. In this setting,
we evaluate the models in the most extreme
semi-supervised setting, that is, when the class
label is only available for a single input sample
for each class and the remaining samples are
considered as unlabeled data. In the next step,
the label availability condition is relaxed, and the
models are evaluated in the presence of higher
ratios of labels as well as in the presence of noise.

All datasets are first modeled using GTM and
Geo-GTM. SS-GTM and SS-Geo-GTM are then
built on top of these. The semi-supervised
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Table 1. Classification accuracy (mean ± std) and MCC results for a one label/class setting

Accuracy results
Method Dalı́ Oil-Flow Digit1 Iris g241c

SS-Geo-GTM 99.52 ± 2.38 77.65 ± 7.61 77.99 ± 10.48 88.79 ± 7.86 51.50 ± 4.20
SS-GTM 90.64 ± 7.80 36.75 ± 2.78 52.28 ± 4.55 85.78 ± 8.10 57.49 ± 9.23
LapEM 54.61 ± 2.84 63.85 ± 10.52 50.41 ± 1.63 50.64 ± 3.94 50.33 ± 1.89

SS-GMM 100 ± 0 – – 86.01 ± 18.86 49.55 ± 1.63
MCC results

Method Dalı́ Oil-Flow Digit1 Iris g241c
SS-Geo-GTM 0.990 0.711 0.561 0.842 0.031

SS-GTM 0.813 0.051 0.048 0.791 0.150
LapEM 0.093 0.469 0.008 0.265 0.007

SS-GMM 1.0 – – 0.791 -0.009

performance of the models is measured as the
average percentage of correctly classified input
samples over one hundred runs (accuracy) and
in terms of the Matthews correlation coefficient
for multi-class problem [28]. MCC is of
common use in the bioinformatics field as a
performance measure when the analyzed datasets
are class-unbalanced. Both accuracy and MCC
measures can be naturally extended from the
binary to the multi-class context [28] and their
definition is as follows.

Let us assume a classification problem with S
samples and G classes, and two functions defined
as tc, pc : S → {1, . . . ,G}, where tc(s) and
pc(s) return the true and the predicted class of s,
respectively. The corresponding square confusion
matrix C is:

Cij = |{s ∈ S : tc(s) = i AND pc(s) = j}|, (10)

in which the ij-th entry of C is the number of
elements of true class i that have been assigned to
class j by the classifier. Then, the confusion matrix
notation can be used to define both the accuracy
and the MCC as:

accuracy =

∑G
k=1 Ckk∑G
i,j=1 Cij

, (11)

MCC =

∑G
k,l,m=1 CkkCml − ClkCkm

covXX · covY Y
. (12)

where

covXX =

√∑G
k=1

[(∑G
l=1 Clk

)(∑G
f ,g=1f 6=k Cgf

)]
and

covY Y =

√∑G
k=1

[(∑G
l=1 Ckl

)(∑G
f ,g=1f 6=k Cfg

)]
.

MCC takes values in the interval [−1, 1], where 1
means complete correlation (perfect classification),
0 means no correlation (all samples have been
classified to be of only one class) and -1 indicates
a negative correlation (extreme misclassification
case). The MCC measure was originally extended
to the multi-class problem in [28]. Recently
in [35], MCC was recommended as an optimal
tool for practical tasks, since it presents a good
trade-off among discriminatory ability, consistency
and coherent behaviors with varying number of
classes, unbalanced datasets and randomization.

For the first experiment (only a single randomly
selected input sample per class is kept labeled
and the remaining samples are considered as
unlabeled data), the results are shown in Table 1.
SS-Geo-GTM significantly outperforms SS-GTM,
LapEM and SS-GMM for almost all data sets in
terms of accuracy and MCC measures and, most
notoriously, for the data sets of more convoluted
geometry (Oil-Flow and Digit1). The differences
with SS-GTM are less notorious for the less
convoluted Iris data set. LapEM yields a very
poor behaviour in this setting. For the linearly
separable Dalı́ set, the results for SS-GMM are
similar to those of SS-Geo-GTM, but when data
presents more difficulties as convoluted geometric
properties or data points are not linearly separable
SS-GMM can not face these problems. For
instance, unstable results are presented for the Iris
set as suggested for the corresponding standard
deviation. Additionally, the SS-GMM model does
not run for Oil-Flow and Digit1 sets as indicated by
’–’ symbol in Table 1. For the two-class non-linearly
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Table 2. Classification accuracy (mean ± std) in the presence of increasing levels of uninformative noise

Dataset noise model Percent of available labels
level 2 4 6 8 10

SS-Geo 100±0 100±0 100±0 100±0 100±0
0.1 SS-GTM 96.29±3.37 98.15±1.97 99.09±1.0 99.31±0.99 99.28±0.89

LapEM 75.48±6.56 75.73±10.38 94.48±4.66 98.07±2.02 98.50±1.96
SS-GMM 100±0 100±0 100±0 100±0 100±0
SS-Geo 99.83±1.11 100±0 100±0 100±0 100±0

0.3 SS-GTM 95.57±4.0 98.11±1.45 98.56±0.83 98.77±0.75 98.88±0.69
LapEM 74.47±5.27 75.11±11.11 95.55±4.82 99.03±1.96 99.54±1.12

SS-GMM 100±0 100±0 100±0 100±0 100±0
Dalı́ SS-Geo 99.04±3.16 100±0 100±0 100±0 100±0

0.5 SS-GTM 96.52±3.09 98.05±2.16 98.99±1.40 99.31±1.06 99.39±0.78
LapEM 77.67±6.79 76.56±10.30 95.06±4.53 97.49±2.76 98.87±1.61

SS-GMM 100±0 100±0.02 100±0 100±0.02 100±0.02
SS-Geo 95.14±5.52 97.75±2.94 98.71±1.98 99.23±0.73 99.28±0.92

1.0 SS-GTM 96.12±3.79 98.36±1.53 98.66±1.21 99.04±0.45 99.06±0.35
LapEM 73.86±6.07 70.73±10.57 92.15±5.34 97.23±3.09 98.93±1.39

SS-GMM 99.34±0.33 99.35±0.35 99.40±0.38 99.33±0.35 99.39±0.34
SS-Geo 94.78±3.66 96.45±1.63 96.96±0.67 97.11±0.58 97.19±0.48

2.0 SS-GTM 92.96±3.0 94.28±1.96 94.73±1.75 95.45±1.01 95.36±1.07
LapEM 74.02±5.72 72.11±11.66 90.00±5.91 94.54±3.37 95.99±1.86

SS-GMM 97.27±0.34 97.22±0.36 97.17±0.36 97.07±0.39 97.13±0.37
SS-Geo 88.13±4.05 93.87±2.71 95.63±2.24 96.87±1.45 97.26±1.18

0.01 SS-GTM 55.54±11.94 70.66±5.84 77.14±4.65 80.25±3.58 84.15±3.39
LapEM 81.35±5.67 88.17±3.41 91.80±2.67 93.20±2.30 94.77±1.70

SS-GMM – – – – –
SS-Geo 88.60±4.06 93.34±2.94 95.46±1.94 96.31±1.64 96.98±1.23

0.03 SS-GTM 55.14±10.71 71.54±6.00 77.26±4.53 81.40±3.63 82.60±3.24
LapEM 79.79±7.18 90.50±3.72 94.00±2.72 95.91±1.98 96.59±1.13

SS-GMM – – – – –
Oil- SS-Geo 90.10±4.38 94.94±2.49 96.34±1.93 97.42±1.69 97.84±1.23

Flow 0.05 SS-GTM 53.39±11.81 70.52±7.42 75.79±4.77 81.32±4.52 83.84±4.34
LapEM 78.26±7.82 92.04±2.81 94.86±2.22 95.79±1.68 96.62±1.37

SS-GMM – – – – –
SS-Geo 60.40±12.81 81.48±8.91 88.95±4.89 91.19±3.59 92.49±2.59

0.1 SS-GTM 49.88±10.11 70.30±8.63 78.20±4.48 82.68±4.50 85.08±4.23
LapEM 66.78±11.12 87.81±4.79 92.50±2.95 94.23±2.23 95.42±1.78

SS-GMM 49.28±3.85 49.23±3.96 49.78±3.72 48.86±3.95 50.26±3.80
SS-Geo 59.89±11.38 75.76±6.16 79.50±5.03 83.0±3.78 85.41±2.63

0.2 SS-GTM 44.94±9.92 56.18±10.59 66.01±7.04 72.31±5.55 75.37±4.27
LapEM 63.75±7.44 77.32±4.55 82.22±3.31 85.47±2.15 86.58±1.84

SS-GMM 49.79±3.27 50.37±3.49 50.51±3.48 51.36±3.38 51.36±4.14

separable (very overlapped data points) g241c
set almost all models behave as at random
as expected given the extreme semi-supervised
setting.

We now gauge and compare the robustness
of the analyzed methods in the presence of
noise in some illustrative experiments for the
easy separable Dalı́ set and the more complex
12-dimensional Oil-Flow set. For this, Gaussian
noise of zero mean and increasing standard
deviation was added to: a noise-free version of
the Dalı́ set (added noise from σ = 0.1 to σ =
2.0) and the most difficult dataset, Oil-Flow (added

noise from σ = 0.01 to σ = 0.2). The noise
scale magnitude is in correspondence with the
data scale. We also analyze the evolution of the
performance of these models as the percentage
of available labels for each dataset is increased
from 2% to 10%. Given that these datasets are
not class-unbalanced and that the accuracy results
are consistent with those of the MCC, as shown
in Table 1, in the following experiments only the
average classification accuracy is presented.

These new results are shown in Table 2, where
boldface, italics and normal fonts were used only
to visually follow the alternately results. Here,
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the geodesic variant SS-Geo-GTM consistently
outperforms SS-GTM (and LapEM) across data
sets and noise levels, with few exceptions. The
robustness of the semi-supervised procedure for
SS-GTM is surprisingly good, though. For the more
complex Oil-Flow set, both models deteriorate
significantly at high noise levels. Overall, these
results indicate that the resilience of the models
is mostly due to the inclusion of the geodesic
metric and not to the semi-supervised procedure
itself. It is worth noting that, in general, the
results for LapEM only become comparable as the
percentage of available labels increases. As in
Table 1, SS-GMM results are similar to those of
SS-Geo-GTM for the Dalı́ set across noise levels.
For Oil-Flow set, SS-GMM only can be run for the
highest noise levels, where a poor performance is
obtained. Furthermore, no benefit is shown when
the percentage of label availability is increased.

4 Conclusions and Future Work

The ultimate goal of this thesis was the
development of novel generative manifold learning
methods for the exploration of partially labeled
data. The first contribution is the definition of
Geo-GTM as a principled extension of GTM
to uncover underlying structures in convoluted
datasets. The second one is the definition
of SS-Geo-GTM as a principled extension
of Geo-GTM to semi-supervised problems.
Through several experiments, the performance
of SS-Geo-GTM has been assessed, in terms
of classification accuracy and MCC, and it has
been shown to be consistently better than that
of the semi-supervised version of the standard
GTM, even in the presence of high levels of noise.
Its performance has also been compared to that
of LapEM and SS-GMM in several datasets. It
has been shown that SS-Geo-GTM significantly
outperforms LapEM for all data sets and noise
levels, with few exceptions. Furthermore, it has
been reported that for datasets which present
convoluted geometric properties or when data
points are not linearly separable, SS-GMM obtains
poor performance compared to SS-Geo-GTM.

As future work, a semi-supervised extension
of Geo-GTM using pairwise constraints should
be defined in order to deal with semi-supervised
clustering tasks.
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