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Abstract. In this paper, an adaptive beamformer 
algorithm LMS is presented and showed to improve the 
Bayesian Maximum Entropy–Variational Analysis 
(BMEVA) performance for high resolution radar 
imaging and denoising. A formalism to fuse the BMEVA 
and its integration inside the LMS structure is also 
presented. Finally, the image enhancement and 
denoising produced by the proposed Adaptive BMEVA 
method is analyzed, and the filter computational 
performance is demonstrated via SAR images scenarios. 

Keywords. Data fusion, adaptive filter, LMS, SAR images, 
Bayesian maximum entropy. 

Método BMEVA para formación 
mejorada de imágenes de radar 

basado en el algoritmo formador de 
haz adaptivo 

Resumen. En este artículo se presenta la aplicación del 
algoritmo formador de haz adaptivo: Mínimos 
Cuadrados Medios (LMS), para mejorar el desempeño 
del método fusionado Máxima Entropía Bayesiana con 
Análisis Variacional (BMEVA) para formación de 
imágenes de radar de alta resolución y reducción del 
ruido. Además, el formalismo para integrar el método 
BMEVA fusionado, así como la inclusión bajo la 
estructura del LMS, es presentado. Finalmente, el 
mejoramiento de la imagen y la reducción  del ruido 
producido por el método Adaptivo BMEVA es 
analizado, así como el desempeño computacional del 
filtro en función del IOSNR a través de diferentes 
escenarios con imágenes de Radar de Apertura 
Sintética. 

Palabras clave. Fusión de datos, filtrado adaptivo, LMS, 
imágenes SAR, máxima entropía bayesiana. 

1 Introduction 

Recently, the Bayesian maximum entropy (BME) 
method was developed in [10], where the 
Bayesian estimation method for high resolution 
radar image formation [6, 4] employs the 
maximum entropy (ME) information theoretical-
based windowing of the resulting images. 
Moreover, an alternative approach to radar image 
enhancement and denoising was proposed in [3] 
where the variational analysis (VA) paradigm was 
applied in [1, 5] to control the image gradient flow 
over the sensing scene using the difference-form 
approximations of the partial differential equations 
(PDE) to formalize different image processing 
problems including image segmentation, 
enhancement and denoising [3, 11, 2]. This 
strategy is adapted for a particular remote 
sensing system model and a priori robust 
information about the noise statistics and the 
desired image. The BME is associated in [10], 
[11, 13] with the spatial spectrum pattern (SSP) of 
the wavefield backscattered from the probing 
surface. As the SSP represents the power 
distribution in the RS environment, the power 
non-negativity constraint is incorporated implicitly 
in the BME strategy but specific VA geometrical 
properties of the image, e.g. its gradient flow over 
the scene/frame [5], are not incorporated. 
However, the so-called data fusion [12] strategy is 
a useful way to aggregate the BME statistical 
approach to optimize the VA-based radar image 
enhancement using a priori information [13]. The 
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fused BMEVA approach in [14] is presented and 
developed into a robust formalism without an 
efficient computational performance. However, 
recently, several efforts have been directed 
toward the high performance computing because 
of the computational load and implementation 
represents critical problem [9]. The latter 
produces the problem of finding a way to include 
the BMEVA method for performing the combined 
statistical-descriptive enhancement of the radar 
images based on adaptive algorithm. 

 

2 Inverse Problem Statement 

Based on [10], we define the model of the 
observation wavefield u by specifying the 
stochastic equation of observation of an operator 

form u = Se + n; e  E; u, n  U;  S: E  U, in 
Hilbert signal spaces E and U with the metrics 
structures induced by the inner products, [u1, u2]U 
and [e1, e2]E, respectively, where the Gaussian 
zero-mean random fields e, n, and u correspond 
to the initial scattered field, noise and observation 
wavefield, respectively. Now, recalling the 
experiment design (ED) theory-based projection 
formalism [10], one can proceed from the 
operator form equation of observation to its finite-
dimensional vector form, 

 

U=SE + N 

 

(1) 

where E, N, and U represent the zero-mean 
Gaussian vectors with the correlation matrices 
RE=RE(B) = diag{B}, RN ,and RU = SRES

+ 
+ RN, 

respectively, where diag{B} is a diagonal  K-by-K 

matrix with elements Bk = <EkEk
*
> and <> defines 

the statistical averaging operator. Vector B is 
referred to as the spatial spectrum pattern (SSP) 
vector that represents the average brightness 
image of the remotely sensed scene, and matrix 
S defines the signal formation operator (SFO). 

3 Bayesian Maximum Entropy and 
Variational Analysis 

3.1 BME Analysis 

The processing of the observation data U is used 

to obtain a unique and stable estimate B̂ . 
However, because of the ill-posed nature of such 
the image reconstruction problem [10], the SFO, 
in general, is ill-conditioned or even singular. 
Following the ME approach in [7], the a priori pdf 
p(B) of the desired image is defined via 
maximization of the entropy of the image 
probability that also satisfies the constraints 
imposed by the prior knowledge [10]. The vector 
B is viewed as an element of the K-D vector 

space  B(K)  B with the squared norm imposed by 
the inner product ||B||

2
B(K) = [B,MB], where M is 

the positive definite metrics inducing matrix [10]. 
In addition, the physical factors of the experiment 
can be generalized imposing the physically 
obvious constraint bounding the average squared 
norm of the SSP [10],  

 
C

cdp
B

BBMBB, 0)(][  (2) 

Thus, the a priori pdf p(B) is to be found as a 
solution to the Lagrange maximization problem, 

with the Lagrange multipliers , and . This  
problem is specified by the expression 

)(

0

max)1)(λ(

))(][α()()(ln

BB

B B

BB

BBMBB,BBB

pC

C C

dp

cdpdpp







 
 (3) 

for B  BC, and p(B) = 0 otherwise. The solution 
to (3) was derived in [10] that yields the Gibbs-
type a priori pdf 

}],[α)α(lnexp{)α|(   MBBBp  (4) 

where () represents the so-called Boltzmann 
statistical sum [10]. The log-likelihood [10] of the 
vector B is defined as  
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 p  
(5) 

and BME strategy for image reconstruction 
(estimation of the SSP vector B) is stated as  

)}α|(ln)Λ({minargˆ
α,

BU|BB
B

p  (6) 

The BME estimate of the SSP is a solution to 
the problem (6) and is given by the nonlinear 
equation [10] 

])ˆ()ˆ([)ˆ(ˆ BZBVBWB   (7) 

Here, V( B̂ ) = {F( B̂ )UU
+
F

+
( B̂ )}diag is a vector 

that has the statistical meaning of a sufficient 
statistics (SS) for the SSP estimator, the operator 

F( B̂ ) = D( B̂ )(I+S
+
R1

NSD( B̂ ))
1
S

+
R1

N is referred 

to as the SS formation operator, the vector Z( B̂ ) 

= {F( B̂ )RNF
+
( B̂ )}diag is the shift or bias vector, 

and W( B̂ ) = (T( B̂ )+2 α̂ D
2
( B̂ )M)

1
 has the 

statistical meaning of a solution dependent (i.e., 
adaptive) window operator with the stabilizer 

T( B̂ ) = diag{{S
+
F

+
( B̂ )F( B̂ )S}diag}.  

3.2 Variational Analysis 

Now, looking for a statistical interpretation of the 
Perona-Malik [1] anisotropic diffusion equation, it 
is possible to make the robustification of the VA-
based image model. The generalized robustified 
VA energy function is defined in [3] as 

    Ω| || |ρ
Ω

dVA   BB  (8) 

over the image domain , where  

 







 

222 σ
2

1
1logσ)()ρ( xdxxxgx  (9) 

is the Lorentz function, and  

 

    xxxg 'ρ  (10) 

is the auxiliary function that defines the relation 
between the different reconstructed images after 
applying the robust VA estimation method [1]. 

The VA approach assumes the minimization of 
(8) via gradient descendent flow using the 
calculus of variations as follows: 

Ω)| || |(ρminarg)ˆ(
Ω

dVA   BB
B

 (11) 

In such a VA approach, the critical issue is the 
choice of the variational functional. Recall that in 
this study we follow the Lagrangian model given 
by (8).  

4 Inverse Problem Statement 

The fused BMEVA method for image 
reconstruction presented in [13] combines the VA 
and BME approaches and the formalism used the 
following strategies: 

)}α|(ln)Λ({minargˆ
α,

BU|BB
B

p  (12) 

Ω)| || |(ρminarg)ˆ(
Ω

dVA   BB
B

 (13) 

It is important to understand that both the BME 
and VA approaches look for an enhanced 
reconstruction with edge preservation. 
Henceforth, the proposed fused BMEVA 
reconstruction strategy assumes the solution to 
the variational problem: 

}Ω)| || |ρ(

)α|(ln)({minargˆ

Ω

α,

d

pBMEVA

 



B

BU|BB
B

 (14) 

The logarithm series expression is a viable 
mathematical tool to obtain the numerical 
approximation from the energy function by series. 
Recalling [13], the conventional gradient method 
is used to solve (14), as follows:  



144  René. F. Vázquez Bautista, Luis J. Morales Mendoza, Andrés Blanco Ortega… 

 

Computación y Sistemas Vol. 15 No. 2, 2011 pp 141-148 
ISSN 1405-5546 

 
QBB

B

B 














 























 
 

2

1

2
1

2

2

2 2σ

| || |
1

σ
2σ

| || |
1logσ

n

n
n

n
 (15) 

where 

  LLLLLLQ 21 ττ21   (16) 

is the composed weighting matrix and the 

regularization parameters are 1= -1/8
2
 and 

2=1/24
4
, respectively. The new proposed 

weighting matrix (16) was obtained using the 
consideration, n=3. The matrix L represents the 
numerical approximation of the Laplacian 
operator [11]. Now, the solution to the problem 
(14) can be expressed in the form of a nonlinear 
equation 

.][]α[)α(ln

]))((,[

})({detln)α,(

1

QBB,MBB,

URSBSDU

RSBSDB

N

N











F

 
(17) 

  0α,  BBF
   and   

  0αα,  BF
 (18) 

As it was specified in [10], no unique regular 
method for solving (18) exists because of 
nonlinearity. However, one can represent the 
solution in a form convenient for further analysis. 
Finally, to proceed in this direction, we follow the 
methodology proposed in [10] which yields the 
following solution: 

])ˆ()ˆ()[ˆ(ˆ BZBVBWB   (19) 

where 

12 )2)ˆ(α̂2)ˆ(()ˆ(  QMBDBTBW  (20) 

represents the spatial window operator. 

5 The Adaptive Beamformer Algorithm 

The derived BMEVA estimator (19) can be 
converted into an efficient iterative algorithm to 
adjust the spatial window operator coefficients on 

(20), according to the received array data to 
achieve an adaptive approach to the specified 
scenario. This adaptive beamforming structure 
considers a reference signal to minimize the cost 
function based on the signal´s mean square error 

(MSE),=||Bk- kB̂ ||
2
. Then, the LMS algorithm is 

invoked to tackle the adaptive beamforming 
module, as follows: 

],)ˆ()ˆ([)ˆ()ˆ( )()()1( ttt
BWBRPBWBW E   (21) 

where, P=< U*Bk
*
 >, which leads directly to the 

least mean square algorithm [2]: 

Pursuing such an approach, we refer to the 
SSP estimate on the right-hand side in (19) as the 

current estimate W( B̂ )
(t)

 at the t-th iteration step, 
and associate the entire right-hand side of (19) 

with the rule for forming the estimate W( B̂ )
(t+1)

 for 
the next iteration step (t+1) that yields. Due to the 
performed regularized windowing (20), the 
iterative algorithm (22) converges in a polynomial 
time regardless of the choice of the balance factor 

 within the prescribed normalization interval, 

01. Moreover, the convergence and stability of 

the LMS algorithm depend on the factor . If  is 
small, adaptation is slow but the excess mean 
square error after adaptation is small. 

6 Simulations  

In this section, virtual simulations are presented 
based on the Synthetic Aperture Radar (SAR) 
systems, that are related to the Point Spread 
Function (PSF), e.g., Gaussian (system 1), and 
Sinc (system 2). These PSF represent particular 
SAR system to compute the Adaptive Algorithm 
under study. Figure 1 shows the simulated scene 
B and the computed results produced by the 
Match Spatial Filter (MSF), VA method, BMEVA 
method, in Figures 1.b-1.d, respectively. In 
addition, Figure 1.e, and Figure 1.f, present the 
ABMEVA enhanced imaging reconstruction and 
the improved identification is clearly seen. The 
scenes used in these simulations impose image 

]*[)ˆ()ˆ( )()*()()1( tttt
UBWBW   (22) 
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reconstruction challenges because the scenes 
include textures, edges, and clustered zones. 
Moreover, the radar imagery showed in Figure 1 
and Figure 3 are based on Gaussian-type PSF. 

However, the factor  was applied inside the 
normalized restriction to guarantee the stability 
through the new adaptive algorithm (24). On the 
other hand, Figure 2 and 4 show the results of the 
image enhancement using the sin(ax)/ax, i.e., 
sinc-type PSF. Figure 4 is composed by the 
reconstructed radar images via the family of 
algorithms previously reported in Table 2. 
However, both Figure 3 and Figure 4, show the 
results through a different radar scene (B’) with 
edges and flat zones clearly defined. The iterative 
algorithm used to evaluate the sub-optimal 

ABMEVA approach was conditioned to  ≤ 5e
-8

. 
Hence, Table 1 presents clearly the IOSNR-
based quantitative evaluation for the first scene 
oriented to sharp edges and to distinguish zones. 
However, the qualitative viewpoint is a critical 
reference to make decision because the zones 
are close. On the other hand, Table 2 describes 
the IOSNR-based quantitative evaluation for the 
second scene oriented to sharp edges and to 
preserve flat zones. Once again, the qualitative 
perspective supports the ABMEVA-based 
outstanding enhanced radar imaging. Finally, 
Table 1 and the Table 2 present the quantitative 
analysis that confirms the ABMEVA 
computational performance based on input-output 
signal-noise ratio (IOSNR) metric.   

Fig. 1. Simulation for B scene (1st system model) 

 
Fig. 2. Simulation for B scene (2nd system model) 

           
a. Original super-high 

resolution scene 
b. Image formed with the 

MSF method 

  
c. Image post-processed  

with the VA method 
d. SSP reconstructed with 

the BMEVA method 

  
 e. SSP reconstructed 

with the ABMEVA (=0.6) 

f. SSP reconstructed with  

ABMEVA method (=0.9) 

          
a. Original super-high 

resolution scene 
b. Image formed with the 

MSF method 

  
c. Image post-processed  

with the VA method 
d. SSP reconstructed with 

the BMEVA method 

  
e. SSP reconstructed with 

the ABMEVA (=0.25) 

f. SSP reconstructed with  

ABMEVA method (=0.7) 
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Table 1. Scene B-based results for two different simulated SAR systems 

SNR IOSNR [dB] IOSNR [dB] 

[dB]  System 1  System 2 

  Reconstruction Method Reconstruction Method 

 VA BMEVA 

ABMEVA ABMEVA 

VA BMEVA 

ABMEVA ABMEVA 

(=0.6) (=0.9) (=0.25) (=0.7) 

10 0.635 2.12 8.301 9.711 1.335 3.025 11.926 13.575 

15 0.638 2.625 8.322 9.753 1.351 3.128 11.941 13.581 

20 0.638 3.142 8.354 9.773 1.356 4.335 11.978 13.59 

25 0.64 4.43 8.369 9.781 1.358 5.498 11.982 13.603 

30 0.642 4.732 8.375 9.8 1.36 6.133 11.993 13.615 

 

          
 a. Original super-high 

resolution scene 
b. Image formed with the 

MSF method 

  
c. Image post-processed  

with the VA method 
d. SSP reconstructed with 

the BMEVA method 

  
e. SSP reconstructed with 

the ABMEVA (=0.6) 

f. SSP reconstructed with  

ABMEVA method (=0.9) 

          
a. Original super-high 

resolution scene 
b. Image formed with the 

MSF method 

  
c. Image post-processed  

with the VA method 
d. SSP reconstructed with 

the BMEVA method 

  
e. SSP reconstructed with 

the ABMEVA (=0.25) 

f. SSP reconstructed with  

ABMEVA method (=0.7) 

Fig. 3. Simulation for B’ scene (1st system model) Fig. 4. Simulation for B’ scene (2nd system model) 
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Table 2. Scene B’-based results for two different simulated SAR systems 

SNR IOSNR [dB] IOSNR [dB] 

[dB] System 1 System 2 

  Reconstruction Method Reconstruction Method 

 VA BMEVA 

ABMEVA ABMEVA 

VA BMEVA 

ABMEVA ABMEVA 

(=0.6) (=0.9) (=0.25) (=0.7) 

10 1.02 12.454 7.393 10.268 0.724 3.948 6.293 10.382 

15 1.132 12.625 7.444 10.465 0.751 4.339 6.445 10.662 

20 1.129 12.957 7.834 10.628 0.779 4.613 6.608 10.873 

25 1.166 13.032 8.102 10.831 0.822 4.903 6.868 11.241 

30 1.171 13.073 8.123 10.87 0.837 5.249 7.017 11.388 

 
 

 

7 Concluding Remarks 

The proposed approach termed ABMEVA 
presents a new iterative computational algorithm 
to improve the BMEVA performance. The key 
distinguishing feature of the ABMEVA method is 
the solution of image enhancement and denoising 
problem in the framework of a reference signal-
based LMS algorithm that incorporates the spatial 
window operator (20) as input. This iterative 
reconstruction strategy produces better qualitative 
results than no-iterative strategies. A new 
adaptive computational algorithm provides 
sufficient qualitative evidence to discuss the 
ABMEVA computational efficiency. The ABMEVA 
offers a sub-optimal computational approach for 
the algorithm options, and it may be concluded 
that the proposed ABMEVA method demonstrates 
a substantially improved image enhancement and 
reconstruction in performing the adaptive 
windowing in flat regions while preserving the 
edge features. 

The proposed ABMEVA manifests robust 
performance for different formation systems-
based radar imaging. 
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