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Abstract 
This paper presents a group of evolutionary mechanisms for the design of analog circuits, embedded on a genetic 
algorithm that performs the synthesis of an analog filter. The algorithm interacts with SPICE, to evaluate the 
fitness of evolved circuits. In order to model an analog circuit, a linear representation is introduced and its 
corresponding reproduction operators that preserve the valid topological analog circuit class closed. The novelty 
of this paper consists of the use of a linear representation in combination with the generation mechanism and 
closed operators that keep the non SPICE simulable circuits below one percent. Furthermore, the concept of 
preferred values is used into the generation mechanism and genetic operators in order to reduce the gap between 
the real circuits and the evolvable ones. The performance of the system at designing passive low pass filter is 
discussed and experiments performed show its efficiency.  
Keywords: Analog Circuit Synthesis, Analog Filter Design, Genetic Algorithm, SPICE Simulation. 
 
Resumen 
Este artículo presenta un grupo de mecanismos evolutivos para el diseño de circuitos analógicos, integrados en un 
algoritmo genético que desarrolla la síntesis de un filtro analógico. El algoritmo interactúa con SPICE para 
evaluar la adaptabilidad de los circuitos evolucionados. Para modelar un circuito analógico, se emplea una 
representación lineal y operadores de reproducción que mantienen cerrada la clase de los circuitos 
topológicamente válidos. La novedad de este artículo consiste en el uso de la representación lineal en combinación 
con el mecanismo de generación y los operadores cerrados, de manera que se conserve el porcentaje de los 
circuitos no-simulables por SPICE, debajo del 1%. También se ha integrado el concepto de valores comerciales 
dentro de los mecanismos de generación y operadores genéticos, para reducir las discrepancias entre los circuitos 
implementados y los circuitos evolucionados. Este trabajo describe el desempeño del sistema mediante el diseño 
de un filtro pasa-bajas y su eficiencia. 
Palabras clave: Síntesis de Circuitos Analógicos, Diseño de Filtros Analógicos, Algoritmo Genético, Simulación 
con SPICE. 

 
1   Introduction 
 
Although digital circuits have become very popular nowadays, almost all electronic circuits in today’s era use analog 
circuits as essential building blocks [Das and Vemuri, 2007].  

The difficulty of the design process of analog circuit is well known, since implies vast knowledge, experience 
and time, even for experienced designers. Another reason of its difficulty compared with digital design is related 
with the fact that analog design does not have regular structures [Tlelo et al, 2007]. Analog design is also described 
by Das (2008), as traditionally less systematic, and more heuristic and knowledge intensive than the digital one. 
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Circuit synthesis is the process of designing and constructing a network to provide a prescribed response to a 
specified excitation [Goh and Li, 2001]. This process is composed for two phases: the selection of a suitable 
topology and the sizing of all its components.  While topology consists of the determination of the type of 
components and its connections; sizing refers to the selection of the components values. 

Several successfully efforts have been made in the automated analog circuit synthesis for  about a decade; 
especially those that use non-conventional search techniques like genetic programming (GP) [Hu et al., 2005; Koza 
et al., 1997] and genetic algorithms (GA) [Das and Vemuri, 2007; Go and Li, 2001, Torres et al., 2007] among 
others. The non-conventional search techniques have been successfully introduced to circuit design problems due to 
the creativity to derive completely new topologies and its adaptation through the adjustment of circuit parameters 
[Ando and Iba, 2000]. 

Koza et al. (1997), developed a GP based approach, that let them to evolve both circuit topologies, as well as 
component sizes. Some other researchers have made similar approaches using GA. Lohn and Colombano (1998) for 
example, developed a linear representation for the automated circuit synthesis using passive elements, they used 
arrays of four bytes for representing a circuit. The first one was used for the opcode and the next three represented 
the component value. This implied the need of using a decode phase and limited the circuit topology. The papers 
[Zebulum et al., 1998] and [Lohn and Colombano, 1998] showed the use of GA on the passive filter synthesis while 
in [Zebulum et al., 1999], the goal was to evolve an active filter. In most recent works, researchers look for fixing the 
drawbacks detected in previous efforts. Go and Li (2001), incorporated some practical constraints into the 
development process, while Dastidar et al. (2005), presented a system representation scheme that employs a 
topological reuse-based approach. Khalifa et al. (2007), presented a technique to compare circuit sensitivities to 
changes in component values; Das and Vemuri (2007), worked on the assumption that two parents with comparable 
fitness function, produce better offspring. Hilder and Tyrrell (2007) proposed an evolutionary platform using an 
interconnected matrix of cells. Moreover Hu et al. [Hu et al., 2005], worked on the concept of robust design; they 
proposed a design paradigm for genetic programming. Among other aspects, the reliability of the circuits, the 
computational effort, the size of the circuit and the cost should be considered on the synthesis process in order to 
improve it.  

In this paper, we present a robust group of mechanisms for the encoding, the generation and the evolution of 
analog circuits into a modified genetic algorithm; “Generator of Analog Circuit by a Genetic Algorithm” (GACGA 
System).  Specifically, our goal is to eliminate the amount of topological incorrect circuits and reduce those that are 
non SPICE (Simulation Program with Integrated Circuits Emphasis) simulable in an evolvable process and, thus, 
reduce computational effort since to fix a non valid circuit implies a lot of computational resources and time. The 
results obtained by applying the GACGA system to the synthesis of passive low pass filter and the experiments 
performed are discussed.  

The next sections have been organized in the following way; section 2 presents the general approach and some 
basic concepts. The core of section 3 is the description of the encoding and generation mechanisms working together 
with the genetic algorithm as well as evolvable operators. Section 4, describes the performed experiments and the 
results, conclusions and future work are discussed in section 5. 
 
2 The approach 

 
2.1 General Approach 
The heuristic nature of analog circuit design [Das, 2008], makes this process much amenable for evolutionary 
techniques [Tlelo et al., 2007]; thus, we decided to use evolutionary computation techniques to create a system to 
represent, to generate and to combine circuits in order to explore the huge search space of this problem.  

Early efforts on analog circuit synthesis were focused on the determination of the sizing (numerical values of all 
the circuit’s components) on user supplied topologies. Later, the attention was put on the synthesis of both, topology 
and sizing [Koza et al. 1997].  
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Looking for an efficient topology representation, several data structures have been used; [Goh and Li, 2001 and 
Das and Vemuri, 2007] used arrays, [Hu et al., 2005 and Koza et al., 1997] chose trees and we selected linked lists. 
Linked lists let us create a very simple and flexible generation mechanism. 

Since the most of computational resources and time in analog circuit synthesis is consumed by the fitness 
evaluation; and due to SPICE and some variations of it are the most used simulation tools in this area [Das and 
Vemury, 2007; Goh and Li, 2001, Lohn and Colombano, 1998, Koza et al., 1997, among others], we decided to 
create a group of evolvable mechanisms that reduce the amount of non SPICE simulable circuits generated in an 
evolvable process, preserving the valid topological analog circuit class closed.   

The evolvable mechanisms are: 1) A linear representation technique, based on Ansi C linked links. 2) A robust 
generation mechanism and 3) A group of reproduction operators. These mechanisms were inserted into a modified 
genetic algorithm and the whole group was named GACGA system; that is discussed later in section 3.   

To prove the effectiveness of the mechanisms; they were put to perform the synthesis of a high-order elliptic 
filter under different execution conditions. Three parameters of the system (genetic operator, growth index and 
maximum size) were tuned with three possible values each one and six replications were executed. Section 4 
discusses these aspects in detail.  

Next subsections include some basic concepts related with the mechanisms discussed later.  
 

2.2 Preferred Values 
Usual design approaches produce circuits in which component values are selected without any restriction. Then, this 
values are rounding to the nearest on a set of manufacturer’s preferred ones; so it is not surprise that the performance 
of the real circuit differs from the evolvable one. 

To ensure that the algorithm produces a circuit as close as possible to the actual circuit, we used manufacturer’s 
preferred component values into the generation mechanism, according to E12 and E6 series, that were used due to 
their availability and low cost. The E-12 series is made up of 12 values per decade (10, 12, 15, 18, 22, 27, 33, 39, 47, 
56, 68 and 82), while E-6 series has only 6 values per decade (10, 15, 22, 33, 47, 68). Also genetic operators have 
included this important aspect, so the offspring has only the manufacturer’s preferred component values.    

 
2.3 Low-pass Filter  
Filters are circuits that block certain frequencies or bands of frequencies [Johnson, 2005]. A low pass filter is one 
that let pass low frequencies only and blocks high frequencies. Figure 1, illustrates the frequency response of an ideal 
low-pass filter. A real filter however, has a different behavior as shown in figure 2. 
 

 
 
Fig. 1. The frequency response of an ideal low-

pass filter 

 

 
 

Fig. 2. The frequency response of a real 
low-pass filter 

 
The low pass filter allows all signals below fc (cutoff frequency) to pass through and blocks those above it. Due 

to practical filter circuits, deploy variation of amplitude rejection with frequency (at the beginning of frequency, the 
signal is passed without effect; but as frequency grows up, the signal is effectively blocked), we left one don’t care 
band located between the higher limit of the pass band (fp) and the lower limit of the stop one (fs). The attenuation of 
the filter is defined in terms of the maximum signal in its pass and stop bands. The low pass filter designed is 
described in section 4. 
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2.4 Encoding and Generation 
One of the most important aspects in the success of any search algorithm is the representation of a solution. The 
encoding has to have several features that make it more or less suitable from problem to problem.  

According to Mattiussi and Floreano (2007), there are two different encoding systems: Direct and 
developmental. Our approach uses the second one, since the genotype directs the construction of the electrical 
networks.  

The generation mechanism is intimately related to the representation technique. Some desirable properties that 
were always in our minds are: Most circuits created are valid circuit graphs, the maximum number of elements in the 
circuit is a variable parameter, and the combination of the generation and encoding mechanisms of analog circuits 
lets us to perform quasi-closed genetic operators.  

Avoiding non valid topologies, “GACGA” save worthy processing time and computational effort, considering 
that evaluation time is the longest. 
 
3 Algorithm 
 
The modified genetic algorithm developed, builds circuits located between initial and final nodes according to the 
template showed in figure 3, by means of an evolvable process. VS is an ideal voltage source, RS is the source 
resistance and RL is the circuit load resistance.  
 

 
Fig. 3. The circuit template used by the modified genetic algorithm 

 
3.1 Encoding Mechanism 
As mentioned in section 2.4, a key for the success of a search algorithm, leans on the flexibility and robustness of the 
encoding system. In our experiments, we used the representation mechanism reported in [Torres et al., 2007] that is 
discussed later. In this encoding system, each candidate solution (chromosome) is represented by a dynamic data 
structure and thus its size adapts according to the number of elements on a circuit. A chromosome consists of several 
genes; each one represents an element of the circuit and its connections. An individual gene contains the information 
shown in figure 4. As can be seen from this figure, three parts of the gene are used to save topological information 
and the others keep the sizing circuit data. Even though in this work, three kinds of two terminals passive elements 
are used, this encoding may be extended to include any kind of two terminal elements. 
 

 

Fig. 4. The gene description 
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In figure 4, “Node 1” and “Node 2” refer to the nodes in each terminal of one element; while “Current N” is a 
node pointer used for the generation mechanism on the circuit creation process. Element “Type” could be 
0(Capacitor), 1(Resistor) and 2(Inductor). “Decade” is the multiplier factor that forms components values together 
with “Value”. Along the present work, initial node is name “I”, final node is referred as “F” and ground as “T”. 
Table 1 shows how we encode the sizing data into each gene.  

 
 Table 1. Sizing encoding system  

Type Decade Value 

C(0) 10-6 – 10-9 (0-3) E6       (0-5) 
R(1) 10+3 – 10+6 (0-3) E12    (0-11) 
L(2) 10-3 – 10-6 (0-3) E12     (0-11) 

 
E6 and E12 series were selected because they are the most common and versatile. Also Goh & Li (2001), 

demonstrated the advantage of using preferred values compared with unrestricted values, since when values are 
rounded off, the error increases and the response no longer falls within the specifications.  

With regard to the sizing encoding system, the extension to another type of elements, values and decades, is not 
difficulty, since there is enough to use at different ranges.   

As an example of the encoding system, figure 5 shows an element and its corresponding gene. 
 

 
A) 

  

 
 
B) 

Fig. 5. A) An example of a circuit’s element and its connection nodes. B) The gene’s representation 
 
3.2 Generation Mechanism and Genetic Algor ithm 
The generation mechanism works by means of a randomly generated operation code. In order to encourage the 
growth of circuits, we used a parameter named growth index. The GACGA system, also uses a maximum circuit size 
parameter that ends the generation circuit process if the circuit size reaches this parameter. Each instruction connects 
the actual node pointer to an existed or new node. The operation codes and their meaning are depicted in table 2. 

 
Table 2. The operation code of the generation mechanism 

Op code Instruction 

0 Connect to grown 
1 Connect to final node 
2 Connect to x node 
3 Connect to new node 

 
As seen in table 2, this circuit creation process is very flexible and easily implementable. Although it looks 

similar to the opcodes of Lohn and Colombano (1998), we have reduced the number of possibilities to four and we 
let the generation mechanism to finish the circuit building. Besides, the “Connect to x node” opcode, extends the 
search to very diverse topologies. 
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Once the operation code has been chosen, the type, the decade and the value of the new element are generated, 
and the corresponding instruction is executed. The circuit is built on linked lists to manage variable chromosome 
length. 

The GACGA system is a modified genetic algorithm able to generate evolvable analog circuits. This system 
interacts with SPICE in the circuit evaluation and it has embedded the generation and encoding mechanisms 
discussed. The next pseudo code describes the general behavior of the GACGA system. 

 
Algorithm 1. Pseudocode of the GACGA 

1. Generate a Population of Pop_size individuals                  
2. Order Population by fitness                    
3. Select two progenitors                          
4. Select and execute the genetic operators producing     
  two new members of the NewPopulation                  
5. Repeat from step 3 until NewPopulation has Pop_size            
  members 
6. Assign NewPopulation on Population              
7. If the termination criterion is not satisfied then            
  return to step 2 

 
The Population generated is built by the generation mechanism previously discuss; after each circuit has been 

finished, its fitness and number of elements are calculated and saved for future use; once Population has Pop_size 
individuals, it is sorted by fitness and the building of NewPopulation begins. 

The creation of NewPopulation consists on an iterative process; first the roulette method is started to select a 
pair of progenitors from Population and genetic operators are applied to them, as a result of this, two new members 
of NewPopulation are produced and their fitness and number of members are calculated and save and so forth until 
NewPopulation has Pop_size members. Then NewPopulation is assigned to Population and the NewPopulation 
building is repeated until termination criterion has been satisfied. 

The fitness computation is made with the results of the simulation performed by SPICE on each circuit. This 
simulation is performed based on the circuit description (built by the generation mechanism) and leaded by the 
algorithm. Finally, the resulting frequency response is returned again to the genetic algorithm; see figure 6.   
 

 
Fig. 6. The frequency response is obtained from SPICE 

 
3.3 Fitness Function 
The system created uses SPICE (Simulation Program with Integrated Circuit Emphasis) to evaluate the fitness of 
evolved circuits. The circuit description delivered to simulation, instructs SPICE to perform an AC sweep analysis.  

The low-pass filter problem was extracted from [Koza et al., 1997] and is also discussed on [Hilder and Tyrrel, 
2007 and Hu et al., 2005]; thus, the frequency response performance for a candidate filter is similar to those defined 
by Koza and other researchers. The fitness function is defined as a function of the sum of errors between the ideal 
frequency response and the actual candidate over N sampling points. The normalized version of the fitness function 
is shown in equation 3. This equation is a function of errors equations 1 y 2. 

A sample error function “ε” give us the absolute deviation between the actual output response and the target 
response over the “i” sampling point. In equation (1), M(fi)Target  denotes target magnitude at a fi frequency, M(fi)Actual 
is the magnitude of the actual evolved circuit at a fi frequency and fi is the sampling frequency. 
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εi = ActualietTi fMfM )()( arg −   (1) 

The sampling points range from 1Hz to 100 KHz, logarithmically distributed. If the deviation from target 
magnitude is inacceptable according to the frequency band, then a penalty factor “λ” has to be assigned to the error 
function. Equation (2), expresses the total error function “ξ” over the N points. 

 

ξ = i

N

i
i εελ∑

=1
*)(   (2) 

 
As the error (ξ) is smaller, the better is the filter. A ξ=0 means the generated filter is the ideal one. The fitness 

“F” we employed is showed in equation (3).  

F = 
ξ+1

1
  (3) 

 
According to equation (3), F is given by a normalized expression and a fitness of unit represents an ideal circuit, 

since ξ=0 means that there is not difference between the target and the actual filter.  
Equation (3) transforms the problem of minimizing deviation from target frequency response, into a 

maximization problem. 
 

3.4 Genetic Operators 
Starting from two parents randomly chosen by roulette, an offspring is produce through three possible operators:  
crossover, crossover and mutation; and mutation. The way an operator is selected from these three possibilities is 
random.  Section 4 shows how the algorithm parameters were tuned. 

Crossover operation, introduces new solutions into the genetic algorithm beginning from previous circuits; this 
operator is the responsible of changing some parts of a circuit by parts from another one. According to Dastidar et al 
(2005) and Das and Vemuri (2007), to avoid invalid circuits topologies, achieved through suitable connectivity rules, 
can reduce the unwanted search space for both, active and passive circuit synthesis. Once a structurally correct first 
population is generated by means of our generation mechanism, genetic operators maintain very low the amount of 
non SPICE simulable circuits.  

The crossover operator generates topological modifications because it alters the connection order of the 
offspring. Crossover performed by this version of the GACGA system is single crossover point, but we have already 
designed two-point crossover.  Figure 7 illustrates how crossover operator is performed. For simplicity, each gene 
representation includes only the information about Node1, Node2 and Type of the element. This operator is 
performed in a way that avoids the generation of open circuits as well as short circuits; thus, the topologically correct 
class is keep closed. 

  

Fig. 7. An example illustrating the crossover operator 

I20 2T2 211 2F2Progenitor 1

I21 230 3T1 340 451Progenitor 2 5F2
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The mutation operator is executed at gene level; and it works by altering a randomly chosen gene with another 
one randomly generated. A mutated gene corresponds to a different type of element with different value, but 
connected to the same pair of nodes.  Figure 8, shows an example of the use of this operator.  
 

 
A) 

 
B) 

Fig. 8. A) An example of the mutation operator. B) The meaning of each allele  

 
The crossover and mutation refers to the sequential application of both genetic operators. This operator has 

effects over both sizing and topology of the evolved circuits. This operator also has the objective to maintain closed 
the class of structurally correct circuits.  
 
4 Experiments and results  
 
As our design’s benchmark, an analog low-pass filter was selected because it has been extensively studied by several 
researchers. The selected filter fulfills the next desired facts. 

1. Is one of the most well defined passive analog circuits having a wide range of applications [Huelsman, 
1993]. 

2. Its domain is established due to there are some well known design solutions and behavior specifications. 
This gives us an ample scope to verify our algorithm’s performance. 

 
The general filter specifications were extracted from [Koza et al., 1997], similar filters are also discussed in 

[Hilder and Tyrrel, 2007; Hu et al., 2005 and Torres et al., 2009]. This filter design was used in several approaches 
like genetic programming, genetic algorithms and estimation of the distribution algorithms among others. Figure 9 
shows the general target behavior in our experiments. 

 

 
Fig. 9. Low-pass filter’s specifications 

 
The low pass filter shown in figure 9, allows all signals below 1 KHz to pass through (pass band) and blocks 

those above 2 KHz (stopband). We also established a “don’t care” band, between 1KHz and 2KHz, in such a way 
that the fitness had not penalties independently of the output magnitude. 

In the pass band, the allowable variation in the voltage magnitude variation is ±30mV (ripple voltage) whereas, 
in the stop band, this specification was fixed at ±10mV. The penalty factor “λ” used was 10, and the AC sweep 
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analysis, performed by SPICE, measured the output voltage between 1 Hz and 100 KHz input, with twenty points per 
decade. The voltage values are then compared to the target voltages. Since the voltage source was set at 1V and the 
maximum acceptable voltage in the stopband is 10mV, the attenuation has to be at least 40dB (20xlog(0.010/1000)) 
between 1Kz and 2Khz. This goal can be satisfied by a high-order elliptic filter. 

In order to demonstrate the effectiveness of the developed system, a set of experiments was performed. Table 3 
shows the set of parameters that were altered as well as the used values to accomplish 6 replications of each 
parameters combination. 

 
Table 3. Set of parameter values used on the experiments 

Parameter Tested Values 
Population size 20 

Number of generations 30 
 Genetic Operator  A, B, C 

Growth Index X, Y, Z 
Maximum size 10, 15, 20 

 
From table 3, it can be seen that each algorithm execution (from a total of 162), consist of 600 individuals 

(20x30). This is a very small amount when it is compared with Koza’s (Population size about 320000) and other 
reported works (100000 circuit evaluations); thus, it is not surprising that the fitness values are low. However, the 
emphasis of this work was focused on the amount of non SPICE simulable circuits generated by means of the 
evolvable mechanisms, and the obtained results in this aspect are encouraging. 

The genetic operator is a parameter that refers to the probability assigned to each one of the three genetic 
operators. The meaning of A, B and C values for this operator are shown on table 4. 

The growth index is a parameter that our algorithm uses to establish different possibilities of node connections 
to the initial process of circuits generation. The later construction process has a uniform probability distribution. 
Table 5 shows the probability assigned to each possible node connection.  
 

Table 4. The genetic operator values  Table 5. The growth index values 

Genetic Operator  Growth Index 
 Mutation Crossover Both   Ground Final New 

A 10% 60% 30%  X 30% 20% 50% 
B 30% 30% 40%  Y 20% 20% 60% 
C 20% 50% 30%  Z 10% 10% 80% 

 
The maximum size refers to the maximum number of elements that a circuit could have. Although we 

maintained this parameter in low value, this restriction can be released. Again, the size of the generated circuits is 
adjusted, but the emphasis of this work was focused on the effectiveness of the mechanisms of generation and 
representation. 
 

 Table 6. Best parameters combinations and results 

Parameters combination Obtained results 
 

Genetic 
Operator 

 
Growth 
Index 

Maximum 
size 

 
Fitness 

Time 
(s) 

Circuit 
size 

Non SPICE  
simulations 

(%) 
B Z 15 0.003224 73.6

 
7 4.00% 

A Y 15 0.003052 33.4
 

3 0.17% 
 Average  executions  0.002889

 
52.2

 
5 5.97% 
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The variation parameters was introduced to demonstrate the effectiveness and robustness of our evolvable 
mechanisms in building simulable SPICE circuits, even though the GACGA’s conditions are changing. We also use 
these experiments to calibrate our system for further work. Table 6 presents the best parameter combinations with 
regard to the fitness results and time; and the last line refers to the average results of the whole experiment. 

The results were statistically analyzed and it was found that “Genetic Operator” is the parameter that most 
rebounds on execution time. The average time for each operator value is shown in table 7. 

 
Table 7. Average of Time  and Fitness according to Operator value 

Genetic 
Operator 

Time (s) Fitness 

A 40.083 0.002868 
B 67.299 0.002870 
C 49.246 0.002931 

 
It can be seen (table 7) that operator B is the one who takes the longest time. To prove if there was a significant 

difference among group variances, homogeneity of variance in one-way model was used. The result was that there is 
not homogeneity of variances. Thus Shapiro-Wilk and Brown Forsythe tests were performed, obtaining that 
differences shown in the table 7 (respecting to time) are significant. In relation to Fitness, the average of the whole 
experiment was 0.002889, and using Kruskal-Wallis test, we found that there is not statistical evidence that 
parameters affect it. 

In account of the amount of “Non SPICE Simulable Circuits”, the average of non simulable circuits generated 
by each execution of the algorithm was less than 1%. Again, we used Kruskal-Wallis test and the results gave not 
significant differences among combination parameters of groups. Thus, the algorithm is stable.  

In summary, these results allow us to conclude that the mechanisms that constitute the GACGA system 
described are very efficient to generate and reproduce SPICE simulable circuits; and that these mechanisms 
contribute to reduce the computational resources and the time in the artificial evolution of analog circuits. 
 
5 Conclusions and future work  
 
A robust group of evolutionary mechanisms was implemented into a genetic algorithm for the synthesis problem of a 
passive low pass filter. These mechanisms were tested under different algorithm operation conditions. Three solution 
parameters were taken into account to measure the system’s performance: time, fitness and non SPICE simulable 
percentage. The GACGA system built topological correct circuits that were consistently SPICE-simulable (99%).  

The best fitness function was obtained with BZ15 parameter combination while the best run time was reached 
with AY15. With respect to time, the genetic operator parameter was found to impact significantly, in such a way, 
that option “A”(10% mutation, 60% crossover and 30% of both) is the quickest combination. The parameters have 
not statistical effect on fitness nor the number of non SPICE simulable circuits produced.  Due to this fact, we can 
postulate that independently of parameters values, the system avoids the generation of structurally wrong and non 
simulable circuits that normally consume a big deal of computational resources and time in the artificial evolution of 
analog filters. The evolvable process performed by the modified genetic algorithm and its operators, in combination 
with the proposed generation mechanism and the described circuit representation, do maintain the rate of non SPICE 
simulation circuits under a 1%. Consequently this set of mechanisms can be trustfully used for the synthesis problem 
of passive filters.  

Currently we are working on the generation of new genetic operators and the problem models for its 
implementation in an EDA algorithm, looking to reduce the computational time in the whole evolvable process. 
Furthermore, we are analyzing the mechanisms of different metaheuristics to build robust hybrid design tools. 
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