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Abstract 
In this article, we present a real-time machine-vision system to detect vehicles running on red light or performing 
forbidden turns at crossroads. The system operates during daytime by receiving video streams from two different 
sources. One of them is a camera viewing the crossroads to detect unusual activity, while a second camera 
watches the semaphore to keep synchrony with the traffic controller. The system performance and reliability have 
been tested on a real vehicular intersection during extended periods of time.   
Keywords: Machine vision, real-time systems, unusual activity detection, automatic surveillance. 
 
Resumen 
En este artículo, presentamos un sistema de visión por computadora para detectar, en tiempo real, vehículos 
pasándose el alto o realizando vueltas prohibidas en cruceros viales. El sistema opera durante el día recibiendo 
secuencias de video de dos diferentes fuentes. Una de ellas observa el crucero para detectar actividad inusual, 
mientras que la segunda monitorea el semáforo para mantener la sincronía con el controlar de tráfico. El 
desempeño y confiabilidad del sistema  han sido probados en una intersección vehicular real durante períodos de 
tiempo que abarcan días.  
Palabras clave: Visión por computadora, sistemas en tiempo real, detección de actividad inusual, vigilancia 
automática.  

 
1 Introduction 
 
In this paper, we present a real-time machine-vision system to detect unusual activity at a semaphore-controlled 
vehicular intersection during daytime. The system includes two cameras. While one of the cameras oversees the 
crossroads to detect unusual activity, the other one watches a nearby semaphore to keep the first camera running in 
synchrony with the traffic lights. This kind of arrangement is especially suitable when interacting with the controller 
electronics is troublesome or expensive. Crossroads are an important part of the modern transportation infrastructure 
because (Fuerstenberg and Roessler 2006): a) they redirect the vehicular flow, b) people spend a lot of time at 
intersections, and c) they are the place where many accidents occur. We are interested in improving crossroad 
operation, in particular, through the detection of abnormal activities. We are mainly interested in activities such as 
vehicles making forbidden turns or running on a red light. The machine-vision system described is an extension of a 
previously presented model by Salas et al. (2007). In this paper, we describe the operation of the synchronization 
subsystem and its subsequent implementation in real time. 

Detecting and tracking vehicles is a challenging problem due to a variety of factors that include the presence of 
shadows and the partial occlusion of moving objects. Kato et al (2004, 2002) and Kamijo et al. (2000) used Hidden 
Markov Models (HMM) and Markov random fields (MRF) to classify pixels into shadows, foreground, and 
background, even in the presence of occlusion. This low-level approach can be combined with high-level reasoning, 
as Cucchiara et al. (2000) have reported. During daytime, these authors use spatio-temporal analysis. At nighttime, 
they detect cars by the analysis of their headlights. This multilevel tracking model has also been explored by 
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Veeraraghavan et al. (2003). At low-level, they track blobs using heuristics to compensate for blob splitting and 
merging. At high level, they use Kalman filtering to track blobs.  

There are many important applications that can result from monitoring vehicular traffic. Dailey et al. (2000) 
have estimated traffic speed using a sequence of images taken from an uncalibrated camera. They rely on a number 
of geometric, physical, and even legal constraints to simplify the problem. Such a technique could simplify the 
deployment of applications. Nonetheless, under some circumstances, the calibration can be achieved naturally using 
the scene intrinsic properties. For instance, Schoepflin and Dailey (2003) detect the speed of vehicles in a rectilinear 
roadway. Based on vehicle trajectories, they detect scene vanishing points to calibrate camera parameters. Also, 
Angel et al. (2003) use images collected from a helicopter to estimate speeds, travel times, densities, and queuing 
delays. Under some circumstances specialized hardware could be employed to solve specific tasks. For instance, 
Yamada and Soga (2003) developed an integrated single-chip visual sensor which detects direction and velocity of 
motion on a focal plane. 

Different strategies have been utilized to detect unusual activity in video. For instance, while Jung et al. (2001) 
represent trajectories with polynomial models, Brand et al. (1997) discover patterns of activity by inferring the 
internal structure of an HMM. Also, Bioman and Irani (2005) interpret abnormal activity detection as the problem of 
building up the current image from pieces of data of previously extracted examples. Irregularities are detected when 
not enough evidence is found to compose the current observation. Similarly, Xiang and Gong (2005) base their 
approach on both, the discovery of the natural grouping of activity patterns and the introduction of an accumulating 
expression, where the relative importance of the visual information is taken into account for the detection of 
abnormalities. Instead of analyzing the resulting behavior, Dee and Hogg (2004) use a model of psychological 
function, where they attempt to deduce the cause of the behavior by comparing their observations with a model of 
those goals and obstacles known to be on the scene. On the other hand, Stauffer and Grimson (1999) learn patterns of 
activity by constructing a hierarchical classifier representing individual trajectories. Furthermore, Zhong et al. (2004) 
extended Stauffer and Grimson’s method by considering spatio-temporal templates and their description in a color 
histogram as prototypes for a co-occurrence matrix. 

 In this paper, we describe a machine-vision system to detect, in real-time, unusual activities at vehicular 
intersections. The system illustrated in Fig. 1 is described in the rest of the document. Firstly, in §II, we review some 
of the techniques used. Then, in §III, we describe the module that deducts the traffic light status, useful for system 
synchronization. Next, in §IV, we explore the module that detects unusual events. In §V, we show experimental 
evidence concerning the performance of the system. Finally, we summarize our development, discuss the results and 
point out future lines of study.   
 

  

(a) System Flow (b) Synchronization (c) Unusual Events 

Fig. 1. The control unit iterates between two modules: synchronization and unusual events. Based on the elapsed 
time t , the change of the green light from off  to on  marks the beginning of the traffic controller light cycle. 
Once the time cycle T  is estimated, the appropriate usual event space descriptor  is sent to the Unusual Events 
module which returns a description of the crossroads state Q  
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2 Preliminaries 
 
Central in our method is the use of a mixture of Gaussians (MOG) to model both the intensity and the direction of 
motion at each particular pixel. Given a set of n  observations, nγγ ,...,1 , and a family ℑ  of probability density 
functions on ℜ , the problem is to find the probability density ℑ∈)(γf  that is most likely to have generated the 
given observations. In this scheme, each member of the family ℑ  has the same general Gaussian form. Each 
member is distinguished by different values of a set of parametersΓ , Duda et al. (2001). That is, 
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a3 -dimensional vector containing the mixing probabilities ap  as well as the mean aμ  and standard deviation aσ  
of the Gaussian function a  in the mixture. When a new observation iγ  is available, it is compared against the 
parameters of the Gaussian models. After a considerable number of frames have been processed the MOG consists of 
a set of Gaussians along with their respective weight. The MOG is then pruned to eliminate Gaussians that have little 
support.  

Another problem we face in our system is the detection of motion. The problem of estimating where a feature  
moves from one frame to the next has many interesting facets that include objects undergoing partial or total 
occlusion or are being subject to complex appearance transformations. Lucas and Kanade (1981) propose a strategy 
for additive image alignment based on a Newton-Raphson type of formulation. In their report, the translation of a 
feature between frames is computed with a steepest descent minimization strategy. In principle, a more general 
transformation including affine wrapping and translation could be sought. However, in practice, Shi and Tomasi 
(1994) showed that this procedure can be numerically unstable. The procedure uses the optical flow constancy 
constraint, assuming that the feature reflected light intensity remains equal from frame to frame. That is, let )(1 x+iJ  

and )(xiJ  be two consecutive images, it has been shown (Lucas and Kanade 1981, Tomasi and Shi 1994) that the 

displacement d  of a feature  can be computed using the recursive equation 
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3 Synchronization 
 
The semaphore green light status is used as the prime signal for synchronization. When the green light goes on , a 
synchronization signal is generated. Two continuous signals of this type span the time cycle T , whose value is an 
indicator of how long each individual light lasted in the previous light cycle at the crossroads. In what follows, we 
describe the synchronization signal, useful for a number of tasks that include vehicles running on red light. 
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3.1 Training 
At any given moment , the semaphore state )(iS  can be either on or off , corresponding to classes 1ω  and 2ω , 
respectively. To characterize the semaphore state, we define a region of interest (ROI) inside the green light. Then, 
the ROI is sampled to find out its mean intensity value. Let )(uiR  be the image ROI of dimensions sr×  at instant 

. The patch integer mean value can be computed as ⎣ ⎦∑ ∈
=

Wu ii Rrsx )()/(1 u , for the neighborhood  where the 

ROI is defined. After a considerable number n  of frames has been processed, there will be a collection of observed 
intensity mean values { }nxx ,..,1=x . A histogram )(ah  can be used to describe the frequency at which a certain 
integer mean intensity value a  appears. Next, the threshold ϕ  that maximizes inter-class variance between both 
classes  and  is computed using Otsu’s algorithm (Otsu 1978). It is assumed that the intensity distribution 
within the classes  and  follows a Gaussian distribution with mean values 1x and 2x , and standard deviation 

1s  and 2s , respectively.  A new observation kx  will be assigned to the class iω with the minimum weighted 

Euclidian value ( ) 22 / iki sxx − .  
During learning initial mean class values 1x  and 2x  are acquired. The learning light module is only activated 

when the system starts operating. The results for a 120-s training period are shown in Fig. 2.  
 

  

 

(a) Semaphore typical view 
(b) The mean values 1x  and 2x describe classes  and , 

respectively 
 

Fig. 2. A camera is used to monitor the semaphore green light. In (a) the dark rectangle shows the area established 
to estimate the intensity value for the ROI inside the green light. In (b) a 120-hour observation period was used to 
generate the histogram presented here and to acquire the initial mean values 

 
3.2 Operation 
During operation, each mean class value is dynamically updated using the Estimation-Maximization procedure 
described in Stauffer and Grimson (2000). Let Q  be a logical predicate that identifies the instant τ  when the 
semaphore green light state has undergone a transition from to . That is  
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The time difference jj ττ −+1  between two consecutive times when transitional events take place, defines the 

time cycle  .  
However, the semaphore green light blinks when it is transiting from to . This phase lasts approximately 

0.5 s. This period is used to warn drivers that the yellow light is about to start. So, the condition given in (3) had to 
be adjusted to verify that at least its state was in two frames ))5((S))6((S gg offoff ≡−∧≡− ττ and then 

 in the next five frames ...))1((S))2((S))3((S))4((S gggg ∧≡−∧≡−∧≡−∧≡− onononon ττττ  

))((Sg on≡τ . This change warrants that the transition from to  is not part of the blinking phase. 
This module is initiated once the mean class values have been acquired or the system is out of synchrony. That 

is, if the number of unusual events occurring in one cycle is greater than a previously established value, unusualsT , 
the beginning of the state of the green light is searched and the time cycle  is determined. In this way, the 
system can operate for long periods of time and the detections of unusual events are accurate most of the time. 

The traffic light control at a crossroads may be seen as a deterministic machine that cycles around a number of 
states 121 ... SSSS n →→→→ . When the time cycle   is known, the duration of every state iS is also 
known because, in our case, there is a direct correspondence with the individual light time and the rest of the lights at 
the crossroads.  In other words, the synchronization module provides a way to let the usual activity detection module 
know that a new state has arrived.  
 
4 Unusual Activity Detection 
 
Our unusual activity detection algorithm relies on what happens at pixel level. That is, during training, a background 
model is constructed to detect, via subtraction, the moving objects. Then, the moving objects are tracked down along 
their trajectory. Unusual activity is detected when there is a departure from the normal activity model that is learnt 
during training. 
 
4.1 Training 
In our model, the visual perception system consists of a double layer background structure (Salas, Jiménez, et al. 
2007). In the first layer, the appearance of moving objects is obtained by subtracting the image of the static scenario 
to the current image in the sequence. In the second one, a probabilistic model of the orientations that moving objects 
could follow at each individual pixel, is constructed. In this manner, unusual events are described as foreground 
objects with outstanding regularity in the direction of motion.  
 
4.2 Appearance Model 
An important processing stage includes how to arrive to the initial background model (Gutchess, et al. 2001). In our 
system, we compute the mean value within a certain number of images, as in (Tai and Song 2004). For a given pixel 
at x , its intensity values )(xkJ  in a certain time span are recorded in a histogram. The mean value is then used as 
an estimator of the appearance of the background model. This strategy works well whenever the vehicles are moving, 
which is assumed to be the case for the crossroads at the ROI.  

Background updating is the problem of keeping an accurate representation of what remains fixed on the scene, 
despite variations in illumination conditions. Even in the situations where the image ROI is composed mainly of 
moving objects, it has been shown that a multiple layer background representation gives better results (Stauffer and 
Grimson 2000). In our case, a MOG model, as defined in Eq. (1) was used to update the background. 
 
4.1.2 Motion Model 
A second layer of the background is made out from the regular trajectories that moving objects describe on the scene, 
so the principal directions of motion are modeled with a MOG at every pixel in the ROI. In our case, the objects are 

on off

off

on

off on

on
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assumed to be rigid and hence, although there are some effects due to perspective and scene location, the 
transformations observed involve primarily rotations and translations. Furthermore, we are assuming that a 
sufficiently high frame processing rate can be achieved, so that the appearance of the vehicles is effectively similar 
from frame to frame.  

During training, the observed blob displacement is spread to all the pixels that compose it. Occlusion seems to 
be a crucial problem for robust tracking. Strategies to deal with it include the use of sub-features (Beymer, et al. 
1997), high-level reasoning modules (Veeraraghavan, Masoud and Papanikolopoulos 2003), bounding box models 
(Atev, et al. 2005), temporal templates produced with interframe differences (Medioni, et al. 2001), active models 
(Johnson and Hogg 1996), and multiple hypotheses (Stauffer and Grimson 2000). In this study, we do not deal 
explicitly with occlusion because in the practice we have made two observations. Overall, occlusion accounts for a 
small portion of the cases, and second, it is common that unusual maneuvers are performed by isolated vehicles. 
When the latter is not the case, the event is likely to be detected as an unusual activity for all the vehicles in the 
group. This assumption reduces the computing burden without affecting the system effectiveness. 

Each state kS  of the crossroads defines a usual activity space )(xkU  which represents the description of the 
normal directions of motion present at each pixel location x . Let us suppose that a blob is detected in the 
neighborhood A . When the blob is tracked down from frame to frame, an estimation of its current direction of 
motion θ  is obtained. The MOGs corresponding to all the pixels A∈x  are updated with the measured value of θ . 
This process is followed for a large number of frames corresponding to the same state , thus creating in the 
process its respective usual space description kU . At each pixel position, we have a MOG describing the usual 
directions of motions present in the training sequence. 
 
4.2 Operation 
During operation, observations are matched with the double layer background structure, Salas et al. (2007), 
constructed during training.  
 
4.2.1 Appearance Model 
During operation, each pixel of the ROI is compared against a background MOG model. If it fits, it is considered as a 
background pixel and is dynamically updated using the Estimation-Maximization procedure described in Stauffer 
and Grimson (2000). If not, it is treated as a moving pixel. The image of blobs obtained with all the moving pixels is 
analyzed in the second layer described in the next subsection. 
 
4.2.2 Motion Model 
During operation, the displacement computed when tracking a vehicle gives the direction of motion that is compared 
against the MOG of the pixel at x ,  the pixel centroid.  Thus, to a particular observation, a probabilistic measure 
that assesses its likelihood is assigned. Unlikely observations are called unusual events. This is different to other 
approaches, such as those of Chan et al. (2004) and Johnson and Hogg (1996), where the whole trajectory of the 
vehicle is needed before a decision can be taken. Since there is no need to build a high level representation of the 
situation, decisions can be taken faster and there are no problems associated with the comparison of curves or 
segments of curves. 

Let },...,{ 1 nX xx=  be the ordered set of pixel points in the vehicle trajectory. The probability of observing 

this particular trajectory is )()()...,...,(),...,(),...,( 112121111 xxxxxxxxxxx ppppp nnnnn |||= −−− . By 
assuming a Markovian condition, where each observation depends solely on the previous one, the expression can be 
rewritten as )()()...()(),...,( 1122111 xxxxxxxxx ppppp nnnnn |||= −−− . Since, ix  and 1−ix  are dependent, 

that is, the new position is the previous position plus a displacement. Then, 111 −−− += iiii a uxx , where a  is a 

constant related to the vehicle speed, and 1−iu  a unitary vector describing the direction of motion, hence 

kS
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)( 1−| iip xx  can be written as )()( 1111 −−−− |=| iiiii app xuxx . Consequently, a possible measure for the 
likelihood of the trajectory X  can be expressed by 
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The previous condition expresses temporal and spatial coherence of motion and can be part of the information 

carried out by the blob being tracked. When the score drops below a certain threshold for a number of consecutive 
frames, an unusual event declaration can be emitted.   

At each specific state kS
 of the crossroads, certain routes may be considered normal. Skipping a red light or 

making a forbidden turn may be considered abnormal because either it is happening in the wrong moment or because 
it is infrequent. The synchronization vision system described in the previous section provides a way to let the usual 
activity detection module know which state is active.  
 
5 Experimental Results 
 
For experimentation, we set up a system to monitor a heavily transited crossroads in the city of Querétaro, México. 
The system consists of two cameras and a desktop computer. One of the cameras was placed on top of a tower, about 
28 m above ground level. The second one was located approximately 6 m above ground level constantly viewing a 
semaphore located 42 m away. The computer had an Intel processor running at 3GHz, 2GB of internal RAM, and a 
Matrox Corona II frame grabber. The computer programs were written in Visual C++ to process gray scale images 
with a resolution of 320 columns times 240 rows.  
 

(a) The upper and lower lines show the green light descriptor 
on  and off , respectively (b) Traffic light controller time cycle  

Fig. 3. A camera is used to monitor the semaphore to synchronize the detection of unusual activities. A 72-hour 
observation period was used to generate the graphs shown in (a) and (b) 

 
To set the system, a small area was sampled and its mean intensity value was computed to determine whether 

the light was on  or off . Due to vibrations, there was a perceptible change in the position of the semaphore relative 
to the camera. We therefore defined a highly distinctive area T  in the semaphore that was tracked down during the 
system operation. Relative to it, we sampled another area L  that would tell us whether the light was  on  or off . As 
might be predicted, reduced activity during nighttime made the semaphore steadier. The observation started on a 
Saturday at 22:53:12h and ended on the next Tuesday at 23:31:08h, about 72h later. Overall, the horizontal and 
vertical displacements did not exceed the six pixels relative to the original feature position.  
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The green light status was monitored to determine whether it was  on  or off . During training, we took images 
for about 120 s. The sampling and posterior characterization created a bimodal histogram; the distinction between the  

offon / status was done using Otsu’s thresholding algorithm (Otsu 1978). Subsequently, the class descriptor was 
updated following an online Estimation-Maximization criteria. Fig. 3(a) shows the behavior of the two descriptors 
for extended periods of time. During nighttime, the on class presented a large intensity value (almost the maximum 
illumination level, 255), while the off class remained low. On the other hand, the off class had a noticeable increase 
in value at around 8h while an abrupt decrease was detected around 18h. In between, both classes showed a 
parabolic-like behavior with a minimum at around 14:30h. In any case, a large distance between both values was 
measured during the experiment which made observations easier to classify. The semaphore was monitored during 
three consecutive days and the transition from off to on  was recorded. The result is plotted on Fig. 3(b). During 
daytime, the vision system worked well. It extracted uniform descriptors that clustered around 95 s, 110 s, 130 s and 
135 s. The current implementation achieved a peak performance of about 20 frames a second.  

Once the time cycle was characterized, it was possible to start detecting unusual events such as forbidden turns 
or vehicles running on red light. The results reported in this article, are based on a sequence of 113,195 images taken 
in an interval that started on a Tuesday at 14:33:25 h and ended on the next Friday at 10:00:00 h. One must bear in 
mind that the traffic light control is composed of three states and the sequence has more than 870 complete cycles 
around these states. Previously, 10 cycles were used for training and the complete sequence for testing. Each training 
cycle sequence is formed of subsequences corresponding to the three different states. The subsequences of the same 
state were processed to obtain the usual event space for each particular state. As a result of the training phase, we 
obtained (a) a region of interest, (b) an initial model of the background, and (c) a description of the normal event 
space for each of the individual states that are part of the traffic light controller cycle. Fig. 4 shows the ROI obtained 
and an example of foreground objects.  

A preliminary 120-s period, in both the training and testing sequence, was used for background initialization. 
The most frequent gray level for each pixel in the image was computed. Then, a MOG model was used to interpret 
the variations observed along the sequence. When the variations could be interpreted by a particular Gaussian model, 
the sample was used for learning. Otherwise, it was assumed that a foreground object was occluding the background. 
During operation, the event space was switched to the image corresponding with a state change. The appropriate 
event space was loaded and the execution continued. So the observed events were compared with respect to what 
was considered normal for that particular state. The probabilities along the trajectory were evaluated and those with 
low values were considered unusual events. Fig. 5 shows some examples of unusual activity detected with our 
system. The current implementation performs about nine frames a second. The numerical results are summarized in 
Table 1. Two kind of unusual event are reported (a) running on red light and (b) forbidden movement that refers to 
vehicles performing movements not allowed in the current state. The last two columns are false positives (Table 1,c), 
that means false detections. Most of the time, they are caused by irregular movements of the vehicle or by blob 
splitting. In all cases, the percentage (%), was calculated considering the total of the images analyzed each day.   
  

Table 1. Statistics of the performed experiment. Four days are considered in the interval. The fourth column 
shows the number (#) and percentage (%) of vehicles running on red light. The fifth column shows the number (#) 
and percentage (%) of vehicles doing forbidden movements. The last pair of columns shows the number (#) and 
percentage (%) of false unusual detected events 

Day Hours 
 

Images 
# 

Red light  
(a) 

Forbidden movement 
(b)  

False positives  
(c) 

#  %  #  % # % 
1   4.5 15,995 125 0.781 110 0.688 463 2.895 
2  12.0 43,200 161 0.372 354 0.819 888 2.056 
3  12.0 43,200 151 0.349 261 0.604 662 1.532 
4  3.0 10,800 40 0.370 100 0.926 322 2.981 

Total  31.5  113,195 477 0.421 825 0.729 2,335 2.062 
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Conclusion 

In this document, we present a machine-vision system suitable for the detection, in real-time, of unusual events 
occurring at a variable time cycle, traffic-light controlled, vehicular intersection. The method is based on the local 
processing (at pixel level) of the detected direction of motion at a crossroads. The use of a double layer background 
model, which combines appearance and motion, resulted in a model suitable for online processing. Under our 
perspective, unusual events were readily identified as outstanding objects, in the usual space description, either 
because they did not happen at the right time or because there were not enough samples of them during training.  

Since the time cycle is variable and the traffic light controller electronics is not accessible, a vision system was 
developed to monitor the green light status. The current approach works fine during daytime. With the system, we 
were able to discover the predominant pattern for light switching. Our strategy for discovering the offset between the 
computer and the crossroads controller time could be used to devise intelligent strategies to monitor both the 
synchronization factor and other image analysis tasks related to it, such as vehicular flow.  

The current implementation provides an excellent test bed for studies on pattern learning that occur at different 
time spans, such as days or weeks. We aim to develop algorithms to understand what happens at different time scales 
in order to implement an automated deduction of a normal/abnormal situation with respect to a given time frame.   
 

   
(a) ROI  (b) Foreground objects   

Fig. 4. Moving objects can be detected by subtracting the current image from the background model. The result is 
segmented into groups of connected pixels. This procedure is useful both to detect moving objects in a region of 
interest (ROI) and to update the background model considering only those regions in which variations are small 

 
 

  

 

(a) Vehicle is running on red light.   (b) Vehicle is making a too-wide 
turn.  

 (c) Vehicle is making a forbidden 
turn.  

Fig. 5. Some unusual events detected with our method. The dotted line shows the unusual trajectory 
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