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Abstract 
In this paper we solve the stabilization problem of the strongly damping inertia wheel pendulum around its 
unstable equilibrium. The stabilization is accomplished by using nested saturation functions. The use of nested 
saturation function is possible because this system can be rewritten approximately as a chain of integrators with 
and nonlinear perturbation. The proposed control strategy makes the closed-loop system globally asymptotically 
and locally exponentially stable around the unstable inverted vertical position, even when the physical damping is 
presented in the model. 
Keywords: Nested saturation functions, Lyapunov function, nonlinear systems. 
 
Resumen 
En este artículo resolvemos el problema de estabilización del péndulo con rueda de inercia fuertemente 
amortiguado alrededor de su punto de equilibrio inestable- La estabilización el lograda mediante el uso de 
funciones de saturación anidadas. El uso de funciones de saturación anidadas es posible porque se puede escribir 
una aproximación del sistema como una cadena de integradores con una perturbación no lineal. La estrategia de 
control que se propone hace que el sistema en lazo cerrado sea asintóticamente estable de forma global y 
exponencialmente estable de forma local alrededor de la posición vertical inestable, aún cuando el 
amortiguamiento físico está presente en el modelo. 
Palabras Clave: Funciones de saturación anidadas, Función de Lyapunov, Sistemas no lineales. 

 
1 Introduction 
 
The inertia wheel pendulum (IWP) has attracted the attention of several researchers as a test bed for the 
effectiveness of control design techniques proposed by control theory [1, 2, 3]. The IWP is made up from a rotating 
wheel at the end, that freely spins about an axis parallel to the pendulum axis of rotation. The disk is moved by a DC-
motor, while the pendulum is un-actuated. This system is controlled by the torque generated by the disk angular 
acceleration. Since the pendulum torque cannot be directly driven, it is an example of an under-actuated mechanical 
system. That is, it has fewer controllers than degrees of freedom. Basically two control maneuvers are related with 
this system; the first is swinging the pendulum up from the hanging position to the upright vertical position; the 
second consists of stabilizing the IWP around its unstable equilibrium point, with the two angular positions of the 
system at the origin. According to this issue, we mention some of the most remarkable works related to this topic. In 
[1] a control energy approach based on a collocated partial feedback linearization and passivity of the resulting zero 
dynamics is used to solve the swinging and balance problem of the IWP; also, it is shown that this system is 
feedback linearizable with respect to some suitable output, under the assumptions that the pendulum angle lies in the 
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upper half plane and the physical damping force is ignored. In [2], the authors transform the dynamics of the original 
system into a cascade nonlinear system in a strict feedback form, by using some global transformations. Based on 
this, a globally asymptotically stabilization around its unstable top position is presented, by means of the standard 
backstepping procedure. A similar idea was used in [15] to control de inverted pendulum. In [3] two nonlinear 
swinging-up control strategies for solving the swinging and balance of the pendulum about its unstable inverted 
position are used. These approaches are based on the total energy stored in the system and guarantee convergence of 
the pendulum to a homoclinic orbit. In [4] the interconnection and damping assignment passivity based control is 
used for the asymptotic stabilization of the IWP around its top position. The obtained closed-loop system guarantees 
the asymptotical convergence of all the states, for all the initial conditions, except for a set of zero measure. To do 
this, two necessary matching conditions have to be satisfied in order to obtain a stabilizing controller. In [5] a control 
strategy which combines sliding modes and generalized PI (GPI) control for the swinging up and stabilization around 
its unstable vertical position of the IWP is presented. We emphasize that to our knowledge only in [6] the 
undesirable effect of the damping force was considered in the control strategy, as we did it. 

In this paper we deal with the asymptotic stabilization of the under-actuated and strongly damping inertia wheel 
pendulum (IWP) around its unstable top position. Our main contribution is to present a suitable set of 
transformations that allows us to accomplish a nested saturation based controller to bring the system to the unstable 
top position. That is, the obtained closed-loop system makes the strongly damping IWP globally asymptotically and 
locally exponentially stable at the origin, which coincides with the upright equilibrium point. As far as we know, the 
stabilization of the strongly damping IWP has been barely studied in the literature. In most cases, the problem has 
been solved designing a simple control law, made it possible by ignoring the physical damping, in the hope that this 
force cannot affect the closed-loop stability. However, this is not always true, because, if the physical damping is 
presented, it tends to destabilize the closed-loop solution, especially in the top position (see [6] and [7]). This fact 
can be shown by a simple linearization around the origin (for a deep study of the undesirable effect of physical 
damping we suggests to read [8] and [9]). 

This paper is organized as follows. In Section 2 we present the dynamical model of the strongly damping IWP 
and the transformation of the original system in such a way that the obtained system looks like an integrator chain 
with an additional nonlinear perturbation. In Section 3 we develop the control strategy based on saturation functions. 
In Section 4 we present some computer simulations. Finally, we devote Section 5 to the conclusions. 
 
2 The Inertia wheel Pendulum 

 
Fig. 1. The under-actuated inertia wheel pendulum (IWP) 

 
The IWP, depicted in Figure 1, is a planar inverted pendulum with a revolving wheel at the end. The wheel 

pendulum is actuated while the pendulum join at the base is unactuated. The model of this system is described by [3] 
as  
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where θ1 is the pendulum angle, θ2 is the disk angle and τ is the torque input applied on the disk. The remaining 
parameters are described in the following table: 

m1,2: pendulum and wheel masses 
l1,2: pendulum length and distance to the center of the pendulum mass 
I1,2: moments of pendulum and wheel inertia 
δ1,2: damping coefficients of the unactuated and the actuated coordinates and η=m1l2+m2l1. 

 
As can be seen, θ1 and θ2 are the non-actuated and the actuated system coordinates, respectively. This is 

because τ acts directly on the disk position. Now, to simplify the algebraic manipulations in the forthcoming 
developments, we divided the first equation of system (1) by I2 and substituted 
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in the second equation, having that system (1) can be expressed as: 
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Problem Statement  
The control objective is to design a continuous feedback v to bring the pendulum to the upright p osition with the 
disk position at the origin for any arbitrary initial conditions, even if the linear dissipation force is presented in the 
non-actuated coordinate. 
Comments 1: When damping is not physically available, several techniques can be employed to circumvent this 
problem (see [2, 3, 4, 10]). However, if damping is physically present in the system, then, the passivity and flatness 
properties are lost, i.e., the closed-loop system may become unstable in the top position or the closed-loop solution 
may converge to other equilibrium points [7, 11]. This fact can be shown by simple linearization of the closed-loop 
position around the top position. On the other hand, it is not possible to directly accomplish a model matching 
approach to solve the asymptotic stabilization of this system [6], due to the fact that the damping force breaks the 
symmetric property of the original Euler-Lagrange or Hamilton systems. However, in this case, by means of suitable 
transformations, it is possible to indirectly apply the model matching control energy method to locally stabilize the 
IWP, for all initial conditions except for the set equilibrium points given by,  1θ = 2,θπk± = 0 with  k ∈  N – {0}. 
 
Transforming the original structure of the system: 
Now we introduce a global transformation that allows us to express system (2) as a chain of integrators with an 
additional nonlinear perturbation. Then, a nested-saturation controller can be used for rendering asymptotically stable 
the origin of the latter model. 

Let us introduce the following global change of coordinates:  
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which leads to the following nonlinear system  
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The perturbation φ and the new controller u are defined as  
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(6) 

 
Note that the structure of the above system has a similar form to the four cascade integrators with an additional 

nonlinear perturbation. On the other hand, the new controller u directly acts on the non-actuated coordinate θ1, which 
is the pendulum position. Contrarily, in system (2) the torque τ directly drives on the disk position. That is, we 
slightly change the structure of the original strongly damping IWP. 
 
3 Control Strategy 
 
In this section we establish the framework of our control strategy. The idea behind it consists of bringing all the 
states very close to the origin, where the nonlinear perturbation can be bounded by the square of the pendulum angle 
position. Afterwards, the stability analysis can be carried out by using a robust linear system stability analysis. In 
other words, we force the states of system (5) to behave as an exponentially linear system with a very small 
perturbation. For this purpose we use a nested saturation based controller. This technique was first introduced by 
Teel in the seminal works [12, 13] and used in [14] to solve the stabilization of the “Ball and Beam System”. 
Thereafter, this technique has been extensively used for controlling a wide class of under-actuated systems [15, 16, 
17, 18, 19] 

So, we proceed as follows: first, a linear transformation is used to directly propose a stabilizing controller. 
Secondly, it is shown that the proposed controller guarantees the boundedness of all states. Finally, we show that the 
closed-loop system is locally exponentially asymptotically stable after some finite time. 
 

Before developing the control strategy, we introduce some convenient definition: 
A linear saturation function ([13]): 
We say that function σm[s]:R→R is a linear saturation function, if it satisfies: 

[ ]
⎩
⎨
⎧

>
≤

=
.)(

,
msifssignm

msifs
smσ  

 
(7) 

A nested based controller: based on the previous work of [13], we propose a convenient linear transformation that 
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allows us to propose, in a direct way, the necessary stabilizing controller u for the nonlinear system (5). 
Let us first introduce a global linear transformation q=Sx, which is selected such that 
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After some simple algebraic manipulations, we can propose S, as: 
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So that system (5) can be rewritten as: 
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To stabilize the above system, we propose the following nested based controller u, as: 
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(10) 

 
where k is a scaling positive constant. 
 

Note that the closed-loop system, defined by equations (9) and (10), is globally Lipschitz. Consequently, all the 
states {qi}1 cannot have a finite time escape [18]. 
Boundedness of all states: Now, we show in four simple steps that the closed-loop solution of the proposed closed-
loop system, (9) and (10), ensures that all the states are bounded. Moreover the bound of each state directly depends 
on the designed parameters of the controller (10). 
 
Step 1: To show that the state q4 is bounded, we introduce an auxiliary positive function V1, as:  
 

                                                 
1 Here after, we use {xi} to denote x=[x1, x2, x3, x4]T. 
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Differentiating (11) and using the fourth differential equation of (9), we have:  
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If αkq >4  then, from the above, we have that . Therefore, there is a finite time T1 after which, we have:  01 ≤V&
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That is, q4 is bounded after some finite time T1. 
 
Step 2: We proceed to analyze the behavior of the state q3. To do this, we introduce an auxiliary positive function V2, 
as:  

2
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Substituting the proposed controller (10) into the third differential equation of (9), we have: 
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Differentiating (12) and using (13), we obtain:  
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where the control parameters, α and β, have to be selected such that α>2β/k. If β>3q  then, . Therefore, 
there is a finite time T2>T1, after which, we have:  
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Consequently, q3 is also bounded after some finite time T2. On the other hand, defining the auxiliary variable  
 

[ ][ ],123 qqqw γβ σσ ++=  
 

we have that β+≤ tqtw 3)(  for all t>0, and, evidently, β2)( <tw  after t>T2. Since k/2βα >  clearly then 
 

.;1
2Ttww

k
k >=⎥⎦

⎤
⎢⎣
⎡

ασ  

From the above, we have that control u turns out to be  
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Because control parameter k can be selected as we desired, we can fix it as 1<kμ . Consequently, 
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Step 3: Substituting (14) into the second differential equation of (9), we obtain:  
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Where β  and γ  must satisfy 22 kμθγβ +> . In order to show that is bounded, we need to introduce the 
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Differentiating (19) and using (18), it produces:  
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Consequently, q2 is bounded and control u turns out to be  
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To show that q1 is bounded, we define the auxiliary positive function , as:  4V
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That is, all the states {  are bounded after . }iq 4Tt >
We summarize this section with the following Lemma that allows to compute the set of control parameters 

{ k}μγβα ,,, , needed to guarantee the boundedness of all the states. 
 
Lemma 1: Given the positive constants δ  and  and fixing 2k ( )1,0∈kμ ,2 the following inequalities 
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Where 1>λ . 
 
Convergence of all states to zero 
We will prove that the closed-loop system given by (9) and (14) is asymptotically stable and locally exponentially 
stable, under the assumption of Lemma 1. That is, if the control parameters γ,k  and β are selected according to 
Lemma 1, then the vector state q converges to zero. 

                                                 
2 Recalling that . 
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We must note that after , the control law is no longer saturated, that is, 4Tt >
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and the closed-loop system turns out to be  
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Now, in order to demonstrate the convergence of all the states to zero, we use the following Lyapunov function  
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Note that { } 2/1min =Mλ  and therefore M>0. Recalling that after t>T4, the states {q1, q2} and function 
φ satisfy the following inequalities  

 

( ) ( )24343
2

2
2

2

2
1 ;4;3 qqqq

k
q

k
q kk −<−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+< θφδμθδμθ  

Substituting the above inequalities into the second term of relation (28), we have after using the triangle 
inequality that  
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Notice that K  can be as small as needed because ( )1,0∈kμ  is selected as desired.  
Therefore applying the inequality (29) into the time derivative of V (28), we evidently have  
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If we force the positive constant 4/1<K , then , for all 0<V& 0≠q . That is, if K  is selected such that 

4/1<K , then vector state  locally exponentially converges to zero. q
From the above discussion, we have: 

Proposition 1: Consider the strongly damping IWP system, as described in (2), in closed-loop with  
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where q is obtained via { } , where matrix S is given in (8), and the set of  are defined as  { }ixSq =1 ix
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Under the assumption that the control parameters { }k,,, γβα  are selected according to Lemma 1, then, the 

closed-loop system is globally asymptotically and locally exponentially stable, provided that 4/1<K  where the 
estimated K  is given in (30). 
 
Characteristic of the proposed control strategy 
We must recall that the control strategy consists of bringing the pendulum to its upright unstable position, while the 
wheel spins almost freely. Once the system is close enough to its upright position, the control strategy stars to 
decrease the wheel’ and pendulum’ angular velocities. Under these conditions, the system turns out to be almost a 
linear system, because all the saturation functions are disabling. Finally, because the system is confined to move very 
close to the unstable equilibrium point, then it behaves as a local exponential linear system. Obviously the closed-
loop system is locally robust with respect to small dynamics not considered in the model. On the other hand, an 
observer can be accomplished to use the estimated velocities instead of the actual ones. An exhaustive stability 
analysis could be carried out to assure that the proposed control strategy works well when using a high-gain observer 
or a reduced observer. However, this analysis is beyond the scope of this paper. 

It is worth to mention that the time response when using saturation functions is, in general, very slow in 
comparison with other techniques. 
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Simulation results 
In order to test the performance of the obtained control law we carried out two numerical simulations using the 
MATLABTM system. The IWP physical parameters were set as kgm 01.01 = , , kgm 1.02 = ml 5.01 = , 

, and . We include the additional linear damping term ml 35.02 =
23

1 105.2 kgmI −×= 21
2 1004.1 kgmI −×=

1.01 =δ . Consequently, the structural parameters, defined in (3), are given by 4013.5,16587.0 21 == κκ  and 
96154.0=δ . The control parameters, designed according to Lemma 1 and Proposition 1, were fixed as 

1035.0,23.0,46.0 == γβα and 35.0=kμ . 
 In the first experiment, we transferred the pendulum position from the lower stable equilibrium point to the 

upright unstable equilibrium point. That is, we fixed the initial conditions as [ ] 0)0(,0)0(,)0( 121 === θθπθ &rad  

and . Figure 2 shows the close-loop system response. As we can see from this figure, the state 0)0(2 =θ& 1θ  

converges to zero faster than the state 2θ . This means that, while the wheel angular position is decreased, the 
pendulum angular position moves to within a very small vicinity of the origin. Once the pendulum is very close to 
the origin, the control action starts to regulate the wheel dynamics. In other words, firstly the control action brings 
the pendulum into a small vicinity of zero, while the wheel angular position decreases until it reaches its minimum; 
secondly the control, little by little, brings the wheel angular position to the origin. Note that this particular control 
maneuver cannot be carried out if we use energy based control methods, because the rest lower point is not inside of 
the stability domain of these kinds of control strategies (see for example, [4] and [5]).  

The robustness of the proposed control law was tested in the second experiment. This experiment was set using 
the same parameter values and the initial conditions except for [ ]radπθ =)0(1 . Figure 3 depicts the closed-loop 
performance of the system when it is subject to a unknown and stochastic variation on the parameter δ , uniform 
distributed in (-0.05, 0.05). On the other hand a significant unknown constant (i.e. unmodeled) perturbation in the 
parameters  was introduced (up to 1% of its nominal values). As can be seen from Figure 3, the closed-loop 
response is shown to have good performance even when the system is subject to not considered perturbations. It is 
worth to mention that a robustness stability it out of reach of the goals of this work. 

2k

 

 
Fig. 2. Closed-loop response of all states 
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Fig. 3. Closed-loop performance for unknown and stochastic perturbations 

 
4 Conclusions 
 
A nested saturation based controller allows us to solve a number of interesting non-linear control stabilization 
problems. This powerful technique allows us to propose the necessary stabilizing controller without the necessity of 
having a candidate Lyapunov function for the whole system. In this case, we have applied this technique for the 
stabilization of the strongly damping IWP around its upright equilibrium point. Intuitively, the proposed controller 
consists of two stages. Firstly, we bring the pendulum close enough to the vertical unstable equilibrium point; 
secondly, we start to regulate the wheel angle position, until all the system states are confined inside a very small 
vicinity of zero, which can be estimated and contracted as desired. Afterwards, the closed-loop system behaves as an 
exponential linear system with a small perturbation, where it can be bounded by the square of the pendulum angular 
position. The latter closed-loop system, which is almost a linear system, turns out to be asymptotically stable at the 
origin. Convergence to zero of the closed-loop system is assured by using a simple Lyapunov method. 
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