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Abstract 
In this paper a mixed-integer linear programming (MILP) model is studied for the bi-objective public R&D 
projects portfolio problem. The proposed approach provides an acceptable compromise between the impact and 
the number of supported projects. Lagrangian relaxation techniques are considered to get easy computable bounds 
for the objectives. The experiments show that a solution can be obtained in less than a minute for instances 
comprising of up to 25,000 project proposals. This brings significant improvement to the previous approaches that 
efficiently manage instances of a few hundred projects. 
Keywords: R&D projects portfolios, mixed integer programming, multi-objective optimization. 
 
Resumen 
En este trabajo se presenta un modelo de programación lineal entera mixta (MILP) para el problema del portafolio 
de proyectos públicos R&D bi-objetivo. El enfoque propuesto provee un punto medio entre el impacto y el 
número de los proyectos. Se consideran técnicas de relajación Lagrangiana para obtener cotas fácilmente 
calculables para los valores objetivos. La experimentación muestra que puede obtenerse una solución en menos de 
un minuto incluso para casos de carteras  de más de 25,000 proyectos propuestos. Esto implica una mejora 
significativa a los enfoques previos que resuelven eficientemente casos con sólo algunos cientos de proyectos. 
Palabras clave: Portafolios de proyectos, programación entera mixta, optimización multiobjetivo. 

 
1 Introduction 
 
Portfolio optimization problems are very well known and intensively studied in capital investment, stock market, and 
private-sector R&D project selection, to mention a few. Somewhat surprisingly, the public sector has not shown a 
similar interest on this topic; the researches in the public-sector rather approach their project-selection problems by 
simple heuristics. Typically, public R&D projects can be considered as statistically independent with very small (or 
zero) correlation. Moreover, the amount of resources sufficient to realize the project is not known exactly and the 
budget is frequently overestimated by the proponent. 

In recent years various models and solutions to the R&D portfolio optimization problem were proposed [Hsu et 
al., 2003; Ringuest et al., 2004] and corresponding decision support systems were considered [Fernández et al., 2006; 
Stummer and Heidenberger, 2003; Tian et al., 2005]. But to the best of our knowledge, only the work of Fernández 
et al. (2004) and Fernández et al. (2006) and that of Navarro (2005) propose methods that have a theoretical 
foundation and robust heuristics. Those approaches are based on mathematical decision theory, fuzzy logic, rough 
sets, evolutionary optimization, such different tools incorporated in a decision support system. However, the 
proposed techniques lack scalability and only work with medium-sized instances (with at most 400 projects). 
Moreover, the existing approaches are directed towards the portfolio quality as the unique criterion. This can be 
acceptable only if the decision maker provides reliable and perfectly consistent information on his/her preferences. 

In practice, the information of preferences provided by the decision maker is generally rough and partially 
inconsistent. Litvinchev and López (2008) and Litvinchev et al. (2008) have shown that by introducing the quantity 
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of funded projects as an additional objective in the portfolio-optimization model this issue can be resolved. 

When solving a multi-objective portfolio-optimization model, one needs to optimize repeatedly the portfolio 
according to every objective included. Hence the optimization method has to be highly efficient: even for large 
instances, the response time should be very short to allow the decision maker to be concentrated and to allow him/her 
to explore a larger fraction of the set of feasible portfolios. 

In this work we consider an effective approach to the multi-objective portfolio optimization for large instances 
arising in real world public sector (with several thousands of project proposals). For example, thousands projects are 
considered every year by scientific foundations such as the NSF in the United States and the CONACyT in Mexico. 
In contrast to the work of Navarro (2005), presenting a genetic algorithm to explore the space of possible portfolios, 
the proposed method is based on the mixed-integer linear-programming (MILP). This model differs from the one 
proposed by Litvinchev and López (2008) in the way the integer variables are introduced. Using binary variables we 
give here an extremal MILP characterization of the original nonlinear discontinuous objective function. Lagrangian 
relaxations are considered to obtain simple computable bounds for the optimal values. Bi-objective formulation 
taking into account the quantity of funded projects is also studied using MILP approach. 
 
2 The portfolio-optimization problem in the public sector 
 
The proposed model is based on the normative solution approach proposed by Fernández et al. (2004), where a  
nonlinear preference model is constructed from the fuzzy generalization of the classic scheme of 0-1 programming 
and from the multi-attribute decision theory. 

For hundreds of variables, the complexity of the nonlinear optimization problem is not manageable by 
traditional algorithms. It has been addressed with genetic algorithms and neural networks [Navarro, 2005], and more 
recently by differential evolution [Castro, 2007]. Litvinchev and López (2008) reformulate the problem as a  multi-
objective problem on a mixed-integer linear-programming model. 

The original non-linear model can be stated, in matrix form, as follows [Fernández et al., 2004; Litvinchev and 
López, 2008; Litvinchev et al., 2008]: 

 
max ( , )

such that

( )

T

T

T
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⋅ ≤ ≤ ⋅

                  (1) 

 
where η and φ represent the objectives: quantity of funded projects and portfolio quality respectively. The total 
amount of funds available for distributing among projects is t. 

The components of the vector δ take binary values, depending on whether a project j is funded (δj = 1) or not    
(δj = 0). The decision variables of the vector d are the funding assignments: component dj corresponds to the amount 
of funding assigned to project j. 

The function μ is a fuzzy predicate that models the level of funding of a project. For the rest of this paper, we 
say that the funding of the project is sufficient if dj, being the amount of funds assigned, belongs to a certain interval, 

j jm d M≤ ≤ j , where Mj is the amount requested by the proponent and mj is the minimal funding with which it is 
possible to carry out project j. See Figure 1 for an illustration of the fuzzy predicate. The components of the vectors 
m and M are mj and Mj, respectively. 

Each project must be assigned to exactly one sector (being an application area, scientific discipline, etc.) The 
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division into sectors can incorporate organizational structure or the aspiration to balance the portfolio among 
different disciplines. The funding constraints for each sector are represented by the vectors p  and p  that contain the 
minimum and the maximum budget (respectively) to be assigned to each of the sectors. 

The impact measures of the projects are the components of the weight vector w. Information on how the 
projects have been evaluated is contained in their impact measures. Thus, the decision variables are d, δ, while c, w, 
p , p , m, M, q, h, and t are known coefficient vectors. 

 

μ 

1

m                      M d 
 

Fig. 1. A fuzzy piecewise linear function to model sufficient funding of a project 
 
The complexity of solving this model lies in the non-linearity and the discontinuous nature of both the feasible 

region and the quality-characterizing objective function. These unfortunate features make the model very hard to 
optimize with heuristic methods and directly rules out the use of exact methods. However, considering the problem 
structure, it may be possible to divide the objective function and the feasible region to less complex subproblems 
[Hooker, 2007; Jain and Grossman, 2001]. In the next section we present a linear mixed-integer representation of the 
non-linear discontinuous quality objective function and transform the original problem to a linear bi-objective mixed 
integer problem. 
 
3 The mixed-integer linear model 
 
Consider first the problem (1) taking into account only quality objective. Bearing in mind Figure 1 we will consider 
the quality of the project as a non-negative function z(x) defined for all 0 x M≤ ≤ , monotonously increasing for 

[ , ]x m M∈  with z(M) = 1, , and z(x) = 0 for 00 ( )z m< <1 x m≤ < . Respectively, expected utility of the project is 
defined as wz(x), where w > 0 is a known constant. The objective is to maximize the sum of individual utilities 
(portfolio quality) subject to limited funds. 

To formalize the problem we first give an extremal presentation of the nonlinear function  defined for ( ) 0z x ≥
[0, ]x M∈  as follows:  

0 for 
( )

 for m
x m

z x
x x Mα γ

<⎧ ⎫
= ⎨ ⎬+ ≤ ≤⎩ ⎭

.     (2) 

 
Here 0γ > , while α is free. In what follows we set ( ) 0.5z m =  Combining this with ( ) 1z M =  yields 

1
2( )M mγ −=  and 2( )1 M

M mα −= − . 

Proposition 1. For any fixed [0, ]x M∈  the function z(x) defined in (2) coincides with the optimal value of the 
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Proof. a) Suppose that 0 x m≤ < . Then by x my≥  we need to set y = 0. Hence by  we have z y≤ 0z ≤ , while 

z y xα γ≤ +  yields z xγ≤  with 0xγ ≥ . Combining with the last constraint in (3), we get z = 0. 
b) Suppose that m x . By definition of α, γ, for these values of x we have 0.5M≤ ≤ 1xα γ≤ + ≤ . Constraint 

x my≥

max{ |

 is fulfilled for any . If y = 0, then z = 0 as before. For y = 1 the problem (3) reduces to {0,1}y∈

}z z xα γ≤ +  giving 0xz α γ= + > . Hence, for m x M≤ ≤ , the optimal y = 1 and ( )z x xα γ∗ = +  as desired. 
Suppose we have J projects, each characterized by its own vector of parameters ( , , , , ) jw m Mα γ , 1, 2, ,j J= K . 

Based on Proposition 1, maximizing the overall expected utility subject to linear constraints Ax ≤ b  on funding 
1( , , , , )j Jx x x x= K K  can be stated as  

max j j
j

F w z∗ = ∑        (4) 
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K J       (5) 

Ax b≤        (6) 
 
By linear constraints (6) we can represent, for example, constraints for the overall funding of the projects. If the 

projects are grouped in certain areas of specializations, then similarly we can state constraints for the total funding in 
a particular area. 

Typically, the number of applicant projects is very large. Meanwhile, the number of project areas (i.e., the 
sectors into which the proposals are divided) is relatively small. That is, the mixed-integer problem defined by (4)-
(6) has a large number of variables and relatively few linear constraints 6. In real decision-making processes the 
problem of Equations 4-6 has to be solved repeatedly for different values of original data. So it is very desirable to 
have a fast method at least to estimate the optimal value F∗ . 
 
4 Lagrangian Relaxation and Bounds 
 
Most large scale optimization problems exhibit a structure that can be exploited to construct efficient solution 
techniques. In one of the most general and common forms of the structure the constraints of the problem can be 
divided into “easy” and “complicated”. In other words, the problem would be an “easy” problem if the complicating 
constraints could be removed. One typical example is a block-separable problem decomposing into a number of 
smaller independent subproblems if the binding constraints could be relaxed. 

A well-known way to exploit this structure is to form the Lagrangian relaxation with respect to complicating 
constraints. That is, the complicating constraints are relaxed and a penalty term is added to the objective function to 
discourage their violation. Typically, the penalty is a linear combination of corresponding slacks with coefficients 
called Lagrange multipliers. The optimal value of the Lagrangian problem, considered for fixed multipliers, provides 
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an upper bound (for maximization problem) for the original optimal objective. The problem of finding the best, i.e. 
bound minimizing Lagrange multipliers, is called the Lagrangian dual. The literature on Lagrangian relaxation is 
quite extensive. We refer here only to a few survey papers [Fisher, 1985; Rangioni, 2005; Guignard, 2003; 
Lemaréchal, 2001]. 

To derive an upper bound for F∗  we will use the Lagrangian relaxation, dualizing the constraints (6) with 
multipliers , where the vectors u and b are dimensioned correspondingly. The Lagrangian problem, considered 
for fixed multipliers, has the form 

0u ≥

{ }( ) max ( )t
j j j jjL u u b w z c x= + −∑             (7) 

subject to the constraints (5), 
 

where  is jth component of the vector ( )j jc c u≡ tA u . We have ( )F L u∗ ≤  for all . 0u ≥

This Lagrangian problem decomposes into J independent subproblems in variables ( , , ) jx y z . The later 
subproblems have the form 

max
,

,
0 , {0,1},

0 ,

wz cx
z y x

z y x my
z y

x M

α γ
,

= −
≤ +

≤ ≥
≤ ∈

≤ ≤

l

                                        (8) 

 
where we have omitted the indices j to simplify the notation. 

Problem (8) is solved by inspection. If y = 0, then z = 0, and constraint z y xα γ≤ +  is then satisfied for all 
. So the problem (8) becomes . 0x ≥ 0 max{ | 0 } max{0, }y cx x a ca= = − ≤ ≤ =l

For  y = 1 , the problem (8) results in 

1 max

,
0 1

,

y wz cx

z x
z

m x M

α γ
= = −

≤ +
≤ ≤
≤ ≤

l

               (9) 

 
By the definitions of α and γ we have 1xα γ+ ≤  for m x M≤ ≤ . Hence we may relax condition 1z ≤  since it 

follows from z xα γ≤ + . 
Remaining constraints of the problem (9) form the polyhedron 
 

{ | , 0, }P x z x z m x Mα γ= ≤ + ≥ ≤ ≤ , 
 

having four vertices , with the following components , 1, ,kV k = K 4 ( , )kx z  and objective values :  1
k
y=l

 V1 V2 V3 V4 
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Note that by definition of α, γ both mα γ+  and Mα γ+  are positive, such that  and 2 1
1y y= >l l 1=

4 3
1 1y y= =>l l . 

Thus the optimal objective value of the problem (9) is 
 

1 max{ ( ) , ( ) }y w m cm w M cMα γ α γ= = + − + −l . 
 
Since   we obtain for the optimal value of the problem (8): 0 1max{ , }y y= ==l l l

 
max{0, ( ) , ( ) }w m cm w M cMα γ α γ= + − + −l .    (10) 

 
Consider now the Lagrangian dual problem to find the best (the smallest) Lagrangian bound 
 

0
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where  is defined similar to (8) for each project. This dual problem can be stated as a linear program in 

variables 

( )j ul

, ju l : 

min

( )

( )

( ) ,

, 0,

t
j

j

,

,
j j j j j j j

j j j j j j j

t
j j

j

UB u b

w m c m

w M c

c A u

u

α γ

α γ

= +

≥ + −

≥ + −

=

≥

M

∑l

l

l

l

 

 
with F UB∗ ≤ . Here ( )t

jA u  is the jth component of the vector tA u  and variables jl  are used for max in (10). 
Suppose now that a number of sufficiently funded projects is limited from below. As it was shown in 

Proposition 1,  for 1jy = [ , ]jx m M∈  and 0jy =  for 0 jx m≤ < . So we consider the problem (4)-(6) with the 
additional constraint 

j
j

y p≥∑ , 

where p is the minimal number of sufficiently funded projects. Dualizing this constraint with multiplier 0θ ≥ , we 
get the corresponding Lagrangian problem 

{ }( , ) max ( )t
j j j j jjL u u b p w z c x yθ θ θ= − + − +∑  

subject to the constraints (5). 
This problem also decomposes into J independent subproblems different from the problem (8) only in the 

objective: max wz cx yθ= − +l . It can also be analyzed by inspection, resulting in the following expression for its 
optimal objective: 

max{0, ( ) , ( ) }w m cm w M cMα γ θ α γ θ= + − + + −l + . 
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,

( ) ,j j j j j j jw M c M

Respectively, the dual Lagrangian problem becomes 
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( )

t
j

j

j j j j j j j

UB u b p

w m c m

θ

α γ θ

α γ θ≥ + − +

= + −

≥ + − +

∑l

l

l

,

 

( )

, , 0.

t
j j

j

c A u

u θ

=

≥l
 

 

As was shown above, the number of sufficiently funded projects subject to constraints (5) can be presented by 
jj y∑ . Thus the bi-objective problem to maximize the number of funded projects and the portfolio quality can be 

stated as a bi-objective MILP:  

{ }max ,j j jj jw z y∑ ∑  

subject to the constraints (5) and (6). 
 
Due to the non-convexity of the feasible set to this problem, its efficient solution set in general can not be fully 

determined by parameterizing on [0,1]π ∈  the weighted-sum problem 
 

max (1 )j j jj jw z yπ π+ −∑ ∑  

subject to the constraints (5) and (6). 
 

that is, there may exist efficient solutions that can not be reached even if the complete parameterization in π is 
attempted (see, e.g., [Alves and Clímaco, 2007] and the references therein). Meanwhile, the parameterization of this 
weighted-sum problem provides efficient points and can be useful to get an initial rough representation of the 
efficient set. Note, that the proposed Lagrangian techniques can also be applied to get easily computable bounds for 
the weighted-sum problem. 

The characterization of all efficient points typically consists in introducing additional constraints into the 
weighted-sum problem. Generally, these constraints impose bounds on the objective function values, which can be 
regarded as a particularization of the general characterization provided by Soland (1979). The introduction of bounds 
on the objective function values enables the weighted-sum problem to compute all efficient solutions. Other 
characterizations based on reference points can be defined, using, for example, the augmented weighted Tchebycheff 
program (see, e.g., [Alves and Clímaco, 2007] and the references therein). We do not consider here the full 
characterization of efficient points for our bi-objective MILP leaving this interesting topic for our future research. 

In the next section we present numerical results obtained by parameterizing on [0,1]π ∈  the weighted-sum 
problem. For all problem instances the linear constraints Ax b≤  represent the limit for the overall funding of the 
projects, as well as the bounds for the total funding in a particular area. 
 
5 Numerical experiments 
 
Five instances were considered with 40, 400, 1,200, 10,000, and 25,000 projects, while π was moved from zero to 
one with the step-size 0.01. The small instances were included for comparability and were constructed based on the 
previous works of Navarro (2001) and Fernández et al. (2004). The larger instances with 1,200, 10,000 and 25,000 
projects, were generated with an instance-generation tool developed by Castro (2007). The ILOG CPLEX, version 
9.0 was used as optimization tool. For all instances and values of π used, the run time of CPLEX was below 20 
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seconds on a four-processor SunFire server running the Solaris operating system, also version 9.0. 

We compare our solutions with previously reported results only for the instances with 40 and 400 projects, since 
those methods cannot solve larger problems. For the 40-project instance, using 1π =  for comparability, we obtained 
a 28-project portfolio with quality indicator at 156.574, being very similar to that obtained by Navarro [2001]. 
Meanwhile, using 0.43π =  in our approach, the resulting portfolio quality was almost the same (154.704), but two 
more projects were supported as a 30-project portfolio was obtained. 

For the case of 400 projects, we did not generate the instance identical to that used by Fernández et al. (2004) 
and thus not compared with their method in terms of portfolio quality. For larger instances we did not find references 
presenting a method capable to handle such a number of projects. 

Optimizing the weighted-sum problem for a fixed π takes less than 20 seconds for all problem instances. Thus, 
for our bi-objective problem we could generate the Pareto front of 40 non-dominated solutions in a reasonable time 
using 40 different values of π. 

In Figure 2, the Pareto front for the 10,000-project instance is shown. For other instances the shape of the curve 
behaved similarly. Such a shape justifies the use of the multi-objective model as a tool to search for a compromise 
between portfolio quality and the number of supported projects. 

 

 
Fig. 2. The Pareto front of the 10,000-project instance 

 
6 Conclusions 
 
This paper presents a MILP model for the nonlinear multi-objective portfolio optimization for public R&D projects. 
The Lagrangian relaxation is studied to get simple computable bounds for the optimal objective. The weighted-sum 
scalarization of the bi-objective model is numerically tested for large and very large problem instances. In numerical 
tests only simple restrictions for funding were considered. Meanwhile, Lagrangian bounds derived in the paper are 
valid for the general form of funding constraints. Studying real problems with more complicated funding constraints 
is an interesting area for a future research. 

The proposed model allows a decision maker to find a compromise between the quality and the size of the R&D 
projects portfolio. The experiments show that optimizing instances with up to 25,000 projects takes less than a 
minute, which superiors significantly the existing solutions techniques capable to handle in a reasonable time only up 
to 400 projects. The fast optimization is very important for an interactive decision-support system. This gives the 
decision maker an opportunity to explore different Pareto-optimal solutions and choose an acceptable compromise 
between the portfolio quality and the number of projects supported. 
 

Computación y Sistemas Vol. 12 No. 2, 2008, pp 163-172 
ISSN 1405-5546 



Using MILP Tools to Study R&D Portfolio Selection Model…    171 
 
Acknowledgments 
 
The work of the first author was partially funded by CONACyT (grant number 61343) while F. López and E. 
Schaeffer were supported by PROMEP (grant number 103,5/07/2523). 
 
References 
 
1. Alves, M. and J. Clímaco, “A review of interactive methods for  multiobjective integer and mixed-integer 

programming”,  European Journal of Operations Research, 180: 99-115  (2007). 
2. Castro, M., “Diseño de  un sistema de soporte a la decision para la optimización de  carteras en organizaciones 

públicas”, Master's Thesis,  Universidad Autónoma de Nuevo León, San Nicolás de los  Garza, Mexico, 2007. 
3. Fernández, E., F. López and J. Navarro, “Decision support tools for R&D project selection in  public 

organizations”, IAMOT 2004, Washington, DC, USA,  2004. Available online at   
4. Fernández, E., F. López, J. Navarro and  A. Duarte, “Intelligent techniques for R&D projects  selection in 

large social organizations”, Computación y Sistemas, 10(1): 28-56 (2006). 
5. Fisher, M. L., “An  aplication oriented guide to lagrangian relaxation”,  Interfaces, 15: 10--21 (1985). 
6. Frangioni, A., “About  lagrangian methods in integer optimization”, Annals of Operations Research, 139: 163--

169 (2005). 
7. Guignard, M.,  “Lagrangean relaxation”, TOP, 11(2): 151--228 (2003). 
8. Hooker, J., Integrated Methods for Optimization. International  Series in Operations Research & Management 

Science,  Vol. 100. Springer, 2007. 
9. Hsu, Y-G., G-H. Tzeng and  J.Z. Shyu, “Fuzzy multiple criteria selection of  government-sponsored frontier 

technology R&D projects”,  R&D Management, (33)5: 539-551, 2003. 
10. Jain, V. and  I. Grossmann, “Algorithms for Hybrid MILP/CP Models for a  Class of Optimization Problems”, 

INFORMS Journal on Computing, 13(4): 258-276, 2001. 
11. Klapka, J. and  P. Pinos, “Decision support system for multicriterial R&D  and information systems projects 

selection”, European Journal of Operation Research, 140(2): 434-446, 2002. 
12. Lemaréchal, C., “Lagrangian relaxation”. In Computational Combinatorial Optimization, edited by M., Junger 

and D. Naddef,  pp.115-160. Springer Verlag, 2001. 
13. Litvinchev, I., and F. López, “An interactive  algorithm for portfolio bi-criteria optimization of R&D projects 

in  public organizations”, Journal of Computer and Systems Sciences International, (47)1: 25--32, 2008. 
14. Litvinchev, I., F. López, A. Alvarez and E. Fernández, “Large  scale public R&D portfolio selection by 

maximizing a biobjective  impact measure”, Technical Report PISIS-2008, Graduate Program in  Systems 
Engineering, UANL, San Nicolás de los Garza, Mexico,  2008. Submitted for publication. 

15. Navarro, J., “Modelo  difuso de preferencias para resolver problemas de cartera en  organizaciones públicas”, 
Master's. Thesis, Universidad  Autónoma de Sinaloa, Sinaloa, Mexico, 2001. 

16. Navarro, J., “Herramientas inteligentes para la evaluación y  selección de proyectos de investigación-desarrollo 
en el  sector público”, Doctoral Thesis, Universidad Autónoma de  Sinaloa, Sinaloa, Mexico, 2005. 

17. Ringuest, J.L., S.B. Graves and R.H. Caseb, “Mean--Gini analysis in R&D  portfolio selection”, European 
Journal of Operational Research, (154)1: 157-169, 2004. 

18. Soland, R.M., “Multicriteria optimization: A general characterization of  efficient solutions”, Decision Sciences, 
(10)1: 26--38,  1979. 

19. Stummer, C. and K. Heidenberger, “Interactive R/&D portfolio analysis with project interdependencies and 
time profiles of  multiple objectives”, IEEE Transactions on Engineering Management, (50)2: 175-183, 2003. 

20. Tian, Q., J. Ma, J. Liang, R. Kwok and O. Liu, “An organizational decision support system for effective R&D 
project selection”, Decision Support Systems, 39(3): 403-413, 2005. 

 

Computación y Sistemas Vol. 12 No. 2, 2008, pp 163-172 
ISSN 1405-5546 



172   Igor Litvinchev, Fernando López Irarragorri, Miguel Mata Pérez and Elisa Schaeffer 
 

Computación y Sistemas Vol. 12 No. 2, 2008, pp 163-172 
ISSN 1405-5546 

 
Igor Litvinchev received his D.Sc. degree in Systems Modeling and Optimization from the Computing Center 
Russian Academy of Sciences in 1995. Currently he is with the Faculty of Mechanical and Electrical Engineering of 
the UANL, SNI 2. His main research interests are large-scale system modeling, optimization and control, as well as 
decomposition, aggregation, and coordination in multilevel and hierarchical systems. 
 

 

Fernando López Irarragorri got his doctoral degree on Technical Sciences at the Politechnical Superior Institute 
Jose Antonio Echeverria from Havana, Cuba, in 1998. Currently he is an Associate Professor of Operations 
Research at the Faculty of Mechanical and Electrical Engineering of the UANL. His main research interests are 
development and application of decision support methods and techniques as well as the development of Decision 
Support Systems. 
 

 

Miguel Mata Pérez received his doctoral degree in Systems Engineering from the UANL in 2008. Currently he is 
with the Faculty of Mechanical and Electrical Engineering of the UANL. His main research interests are complex 
systems modeling and large-scale system optimization.
 

 

Satu Elisa Schaeffer got her doctoral degree on Computer Science and Engineering at the Helsinki University of 
Technology TKK in 2006. She is an associate professor at the Faculty of Mechanical and Electrical Engineering and 
research coordinator of IT & Software at the CIIDIT research center at the UANL, Mexico. Her specialty are 
complex systems and graph theory. 


