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Abstract 
The non-supervised classification algorithms determine clusters such that objects in the same cluster are similar 
among them, while objects in different clusters are less similar. However, there are some practical problems 
where, besides determining the clusters, the properties that characterize them are required. This problem is known 
as conceptual clustering. 
There are different methods that allow to solve the conceptual clustering problem, one of them is the conceptual k-
means algorithm, which is a conceptual version of the k-means algorithm; one of the most studied and used 
algorithms for solving the restricted non-supervised classification problem (when the number of clusters is 
specified a priori). The main characteristic of the conceptual k-means algorithm is that it requires generalization 
lattices for the construction of the concepts. In this thesis, an improvement of the conceptual k-means algorithm 
and a new conceptual k-means algorithm that does not depend on generalization lattices for building the concepts 
are proposed. 
Finally, in this thesis, two fuzzy conceptual clustering algorithms, which are fuzzy versions of the proposed hard 
conceptual clustering algorithms, are introduced. 
Keywords: Conceptual Clustering, Fuzzy Conceptual Clustering, Similarity Functions, Mixed Data. 
 
Resumen 
El estudio de la clasificación no supervisada ha sido enfocado principalmente a desarrollar métodos que 
determinen agrupamientos tales que objetos en el mismo agrupamiento sean similares entre ellos, mientras que 
objetos de diferentes agrupamientos sean poco similares. Sin embargo, para algunos problemas prácticos se 
requiere, además de determinar los agrupamientos, conocer las propiedades que describan cómo son dichos 
agrupamientos. A este problema se le conoce como agrupamiento conceptual.  
Existen diversos algoritmos que permiten resolver el problema de agrupamiento conceptual, entre los que se 
encuentra el algoritmo k-means conceptual, el cual es una versión conceptual del algoritmo k-means; uno de los 
algoritmos más estudiados y utilizados para resolver el problema de clasificación no supervisada restringida 
(cuando se especifica a priori el número de agrupamientos). La principal característica del algoritmo k-means 
conceptual es que requiere retículos de generalización para la construcción de los conceptos. En esta tesis se 
proponen dos algoritmos k-means conceptuales, el primero de ellos es una mejora del algoritmo k-means 
conceptual y el segundo es un algoritmo k-means conceptual que no requiere retículos de generalización para la 
construcción de los conceptos.  
Finalmente, en esta tesis se proponen dos algoritmos conceptuales difusos, los cuales son versiones difusas de los 
algoritmos conceptuales duros propuestos. 
Palabras Clave: Agrupamiento Conceptual, Agrupamiento Conceptual Difuso, Funciones de Similaridad, Datos 
Mezclados. 
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1 Introduction 
 
The clustering algorithms determine clusters such that objects in the same cluster are similar among them, while 
objects in different clusters are less similar. However, there are some situations where, besides determining the 
clusters, the properties that characterize them are required. This problem is known as conceptual clustering. 

The first conceptual clustering algorithms were proposed by Michalski (Michalski and Diday, 1981; Michalski 
and Stepp, 1983; Stepp and Michalski, 1986) and starting from these, other conceptual clustering algorithms have 
been developed (Lebowitz, 1986; Hanson, 1990; Fisher, 1990; Gennari et al., 1990; McKusick and Thompson, 1990; 
Béjar and Cortés, 1992; Ralambondrainy, 1995; Martínez-Trinidad and Sánchez-Díaz, 2001; Pons-Porrata et al., 
2002; Seeman and Michalski, 2006). These conceptual clustering algorithms can be divided in two types: restricted 
and non restricted. The restricted conceptual algorithms are those where the number of clusters, and concepts, to 
build is specified a priori, and usually they require seeds for working; while the non restricted conceptual algorithms 
are those where the number of clusters is not specified a priori. In this thesis, the restricted conceptual clustering 
problem based on seeds was addressed.  

In this thesis, two extensions of the conceptual k-means algorithm (Ralambondrainy, 1995), which allow 
working with mixed and incomplete data using any object comparison function were proposed. Also, two fuzzy 
conceptual clustering algorithms, which are fuzzy versions of the proposed conceptual clustering algorithms, were 
proposed. 
 
2 Restricted Conceptual Algorithms 
 
The conceptual k-means algorithm (Ralambondrainy, 1995) is a conceptual version of the k-means algorithm, one of 
the most studied and used algorithms for solving the clustering problem when the number of clusters is specified a 
priori. The conceptual k-means algorithm consists of two phases: an aggregation phase, where the clusters are built 
and a characterization phase, where the properties or concepts are generated. This algorithm allows working with 
objects described by mixed (quantitative and qualitative) features; and it does not allow missing data.  

In the aggregation phase, a distance for measuring similarities among objects is defined. The distance function is 
defined as the sum of the Euclidean distance, for quantitative features; and the Chi-square distance, for the 
qualitative features. In order to apply the Chi-square distance, a transformation of each qualitative feature into a set 
of Boolean features, must be done. This codification does not transform the representation space in ℜn, where means 
can be computed, because the 1’s y 0’s associated to the new features are codes not numbers; therefore, the obtained 
centroids (means) do not have an interpretation in ℜn. 

In the characterization phase, a generalization lattice for each feature is needed. For qualitative features, the 
generalization lattice must be given a priori. For quantitative features, a codification into qualitative features is done. 
The codification function, for each quantitative feature is the following: 
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where r is a value of the feature x; μx is the mean of the feature x in the cluster Ai and σx is the standard deviation of 
x in the cluster Ai. Using this codification, the following generalization lattice was proposed by Ralambondrainy:  
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Fig. 1. Generalization lattice for the quantitative features proposed by Ralambondrainy 
 

Before presenting the conceptual clustering algorithms proposed in this thesis, a formal outline of the conceptual 
clustering problems is given. 
 
2.1 Restricted Conceptual Clustering 
Let X = {O1,…,On} be a set of objects. Each object Oj is described by a set of features R = {x1,…,xm}. Each feature xs 
takes values in a set of admissible values Ds, xs(Oj) ∈ Ds, s = 1,…,m, j = 1,…,n; with xs(Oj) the value of the feature xs 
in the object Oj. The features can be of any nature (qualitative: Boolean, multi-valued, etc. or quantitative: integer, 
real). Also, it is assumed that Ds contains the symbol “?” which denotes missing data; thus, incomplete object 
descriptions can be considered. 

For each feature xs, a comparison function FCs : Ds×Ds → Ls s=1,2,...,m, is defined, where Ls is a completely 
ordered set. The FCs function gives an evaluation of the similarity degree between two values of the feature xs. In 
addition, let Γ : (D1×…×Dm)2 → [0,1] be a similarity function, which allows evaluating the similarity degree 
between two object descriptions.  

The restricted conceptual clustering problem consists in structuring the objects in k clusters {A1,…,Ak}, k>1, and 
generating properties or concepts, Ci, for characterizing the clusters Ai, i = 1,…,k.  

A concept Ci will be represented as a disjunction of predicates P = (x1,a1) ∧ … ∧ (xm,am), with xs ∈ R and as ∈ 
Ds. The predicate P covers an object Oj if xs(Oj) = as or as is more general than  xs(Oj) according to the generalization 
lattice of xs, s = 1,…,m. Also, a concept Ci covers an object Oj if at least one predicate P in the concept Ci covers the 
object Oj. 

A concept Ci for the cluster Ai must satisfy that if the object Oj belongs to the cluster Ai then the object Oj should 
be covered by the concept Ci; and if the object Oj does not belong to the cluster Ai then the object Oj should not be 
covered by the concept Ci. 
 
2.2 Quality Function 
For comparing the algorithms that solve the conceptual clustering problem, a function for evaluating the quality of 
the concepts is required. In order to measure this quality, some characteristics of the concepts that can be taken into 
account are: the percentage of objects belonging to a cluster that are covered by the concept, the number of objects 
outside the cluster covered by the concept, the size of the concepts, or the simplicity of the concepts. 

Ralambondrainy (1995) proposed to take the percentage of objects belonging to the cluster that are covered by 
the concept as quality measure. However, it is also necessary to take into account the objects outside the cluster that 
are covered by the concept; because this allows to evaluate not only how the concepts characterize the clusters, but 
also how much the concepts differentiate objects of a cluster from objects in other clusters. 

The quality function that we propose in this thesis takes into account the number of objects in a cluster covered 
by the concept (examples) as well as the number of objects outside the cluster covered by the concept 
(counterexamples). A concept will have better quality if it recognizes more examples and less counterexamples. The 
maximum quality is reached when the concepts cover to all the objects in their clusters and any object outside of 
them. 
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The proposed quality function is the following: 
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where: 
k is the number of clusters. 

Ci is the concept associated to the cluster Ai, i = 1,…,k. 
examples(Ci) is the number of objects in the cluster Ai covered by the concept Ci. 

counterexamples(Ci) is the number of objects outside the cluster Ai covered by the concept Ci. 
 
This function takes higher values if the number of covered examples increases and the number of covered 

counterexamples decreases. This function takes 1.0 when the concept Ci covers all the objects in the cluster Ai and it 
does not cover any object outside of Ai. 

 
2.3 Conceptual K-means Algorithm based on Similarity Functions 
The first algorithm proposed in this thesis is the conceptual k-means algorithm based on similarity functions 
(CKMSF), which is a modification of the conceptual k-means algorithm (CKM) (Ralambondrainy, 1995). The 
CKMSF algorithm consists of two phases: a clustering phase and a characterization phase.  
 
2.3.1 Clustering Phase 
In this phase, we propose to use the k-means with similarity functions algorithm (KMSF) (García-Serrano and 
Martínez-Trinidad, 1999) for building the clusters. This algorithm, opposite to the CKM algorithm, allows using any 
comparison function to compare feature values and any similarity function to compare objects. Also, in the KMSF 
algorithm objects of the sample are selected as centroids instead of using means. 
 
2.3.2 Characterization Phase 
In this phase, a generalization lattice for each feature is required. The generalization lattices for qualitative features 
must be given a priori by the user; while, for quantitative features, the same codification than CKM and the 
generalization lattice proposed by Pons-Porrata (1999) (Figure 2) were used.  
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Fig. 2. Generalization lattice for quantitative features proposed by Pons-Porrata 
 
First, an initial predicate P = (x1,a1) ∧ … ∧ (xm,am) for each object Oj ∈ Ai, j = 1,…,|Ai| is built, where as is the 

value of the feature xs in the object Oj. 
Starting from these predicates and based on the generalization lattices generalized predicates are generated. Two 

predicates P1 = (x1,a1) ∧ … ∧ (xm,am) and P2 = (x1,b1) ∧ … ∧ (xm,bm) will be generalized if, for each feature xs,              
s = 1,…,m, the values as and bs are equal or they can be generalized in the generalization lattice defined for the 
feature xs. If the values as and bs can not be generalized, then P1 and P2 will not be generalized. 

The generalization of the values as and bs of each feature xs is made as follows: if the values as and bs are equal 
then, the generalized predicate will take this value for the feature xs; if the values are different then the value for the 
feature xs in the generalized predicate will be the generalization of as and bs given by the lattice. If a value is more 
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general than the other then the value for the feature xs that the generalized predicate will take is the most general 
value of them. 

A generalized predicate is stored if it is α-discriminating (the number of objects outside of Ai covered by the 
predicate is smaller or equal than α) and β-characterizing (the number of objects in Ai covered by the predicate is 
greater o equal than β), in other case it is eliminated. If a new predicate is stored then the predicates, starting from 
which this predicate was generated, are eliminated. This generalization process is repeated until no more generalized 
predicates can be generated. 

The obtained set of predicates can contain predicates that recognize the same objects; therefore, this set can be 
reduced (eliminating those predicates recognizing the same objects than another predicate). This reduction is made 
using the strategy proposed by Ralambondrainy (1995) which works as follows: the predicates are descendently 
ordered according to the number of objects that each one covers. The first predicate is stored. For the remaining 
predicates, if a predicate covers any object not covered by the stored predicates then this predicate is added to the 
concept; otherwise, it is eliminated. Finally, the concept will be formed by the disjunction of the stored predicates. 

In a generalization lattice the symbol * indicates that the feature can take any value; therefore, in order to 
simplify a concept we can eliminate from the predicates those features that contain *; which are not useful as 
descriptors for the concept. 

The main problem of using generalization lattices is that they could be difficult to define; moreover, there are 
not automatic methods to build these lattices, therefore this task must be done by the user. For this reason, in the next 
section, we propose a new k-means conceptual algorithm that does not depend on generalization lattices for the 
construction of the concepts. 
 
2.4 Conceptual K-means Algorithm based on Complex Features 
In this section, a conceptual k-means algorithm based on complex features (CKMCF) which, as CKM and CKMSF 
algorithms, has a clustering phase and a characterization phase is proposed.  
 
2.4.1 Clustering Phase 
In this phase, as in the CKMSF, we use the k-means with similarity functions algorithm for building the clusters.  
 
2.4.2 Characterization Phase 
The complex features (De-la-Vega-Doria, 1994) are combinations of values for a subset of features such that these 
values appear in objects of the cluster Ai and, they do not appear in objects of other clusters. These values 
characterize objects in the cluster Ai and they do not characterize objects outside of Ai. Therefore, the complex 
features can be used for generating concepts. A complex feature is defined as follows:  
Definition 2.1: Let { }

pss x,...,x
1

=Ω  be a set of features and let ( )pa,...,a1  be values associated to the features 

taken from an object of the cluster A
pss x,...,x

1
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where ΩOj is the subdescription of the object Oj taking into account only the features of Ω; βi is the minimum 
similarity that the objects of the cluster Ai should have with the subdescription ( )pa,...,a1  and λi is the maximum 
similarity that the objects outside the cluster should have with ( )pa,...,a1 . 

In order to obtain the complex features, subsets of features Ω that indicate the subdescriptions of the objects 
where the complex features will be searched; these subsets are called support sets. The following support sets are 
used for the CKMCF algorithm: 
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1. Γ-discriminating support sets (Alba-Cabrera, 1997); which are subsets of features such that the difference among 
objects from different clusters is greater than the difference considering all the features. 

2. Γ-characterizing support sets (Alba-Cabrera, 1997); which are subsets of features such that the similarity among 
objects in the same cluster is greater than the similarity considering all the features. 

3. Γ-testors support sets (Alba-Cabrera, 1997); which are subsets of features satisfying the properties Γ-
discriminating and Γ-characterizing at the same time. 

The support sets are obtained through a genetic algorithm, which is described in (Guevara-Cruz, 2004) and the 
complex features are computed using these support sets and verifying the definition 2.1. 

In order to generate the concepts, a predicate P is associated to each complex feature. The predicate P is a 
conjunction of feature values, where the features that appear in the complex feature take the value as and the features 
that do not appear in the complex feature take the value *. The symbol * means “any value is possible”. 

The set of predicates obtained from the complex features can contain predicates that recognize the same objects; 
therefore, this set of predicates can be reduced (eliminating predicates that recognize the same objects than another 
predicate). This reduction is made using the same strategy used for reducing the predicates in the CKMSF algorithm. 
 
2.5 Experimental Results 
In order to illustrate the performance of the proposed algorithms (Sections 2.3 and 2.4), the results obtained by 
applying the CKMSF and CKMCF algorithms on different databases are presented in this section. The databases 
used for the experiments were taken from the UCI databases repository (Blake et al., 1998). For these experiments, 
we ignored the labels of the classes. In addition, a comparison among our algorithms and the conceptual k-means 
(CKM) algorithm is shown.  

In the experiments, the following similarity function was used: 
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where FCs(xs(Op),xs(Oj)) is the comparison function used for comparing values of the feature xs. 
The comparison functions used for the experiments were the following: 

1. For quantitative features: 
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      where σ is the standard deviation of the feature xs in the sample. 
2. For qualitative features: 
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The treatment given, in this thesis, to missing data is the following: when a value of the feature xs is missing 
(“?”) then it is considered as different from any other value, even from another missing value. 

In Table 1, the quality and the number of predicates of the concepts obtained by each algorithm (CKM, CKMSF 
and CKMCF) are shown.  

In Figure 3 the results of Table 1 are shown in a graph. For the CKMCF algorithm, only the results obtained 
with the Γ-discriminating support sets, which were the support sets that obtained the best results, are depicted. 

In Table 1 and Figure 3, we can observe that, in average, the best quality is obtained with the CKMSF and 
CKMCF algorithms. In average, the CKMCF algorithm using Γ-discriminating support sets obtained concepts with a 
slightly lower quality than the quality of concepts obtained by the CKMSF algorithm; however, the CKMCF does 
not require generalization lattices and it obtains concepts with less predicates. 
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Table 1. Quality and number of predicates of the concepts obtained by the CKM, CKMSF and CKMCF algorithms 

CKMCF Algorithm CKM Algorithm CKMSF 
Algorithm Γd Γc Γt Databases 

Quality # 
Pred. Quality # 

Pred. Quality # 
Pred. Quality # 

Pred. Quality # 
Pred. 

Diabetes 0.53 261 0.83 218 0.89 44 0.89 44 0.89 44 
Glass 0.54 67 0.89 83 0.66 21 0.66 20 0.66 21 
Iris 0.85 52 0.92 10 0.88 3 0.88 3 0.88 3 

Wine 0.29 47 1.00 40 1.00 30 1.00 27 1.00 29 
Hayes 1.00 18 0.99 17 1.00 13 1.00 13 1.00 13 
Lenses 1.00 5 0.95 8 1.00 8 1.00 8 1.00 8 

Zoo 1.00 9 1.00 14 1.00 21 1.00 17 1.00 19 
Auto-mpg 0.75 164 0.61 136 0.62 43 0.62 43 0.62 43 

Echocardiogram 0.40 43 0.88 89 0.94 48 0.94 40 0.95 53 
Hepatitis 0.53 50 0.99 46 0.98 68 0.92 39 0.99 97 
Import85 0.47 57 0.98 63 0.98 113 0.86 46 0.98 114 

Tae 0.89 30 0.97 71 0.95 40 0.95 40 0.95 40 
Average 0.69 67 0.92 66 0.91 38 0.89 28 0.91 40 
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Figure 3. Quality and number of predicates of the concepts obtained by the CKM, CKMSF  
and CKMCF (using Γ-discriminating support sets) algorithms 

 
3 Fuzzy Conceptual Algorithms 
 
In some practical problems, to determine the membership degree of an object to a cluster instead of determining only 
if the object belongs or not to the cluster is required. In addition, to obtain fuzzy concepts that provide us a 
description of the objects belonging with a certain degree to the clusters is very important. This problem is called 
Fuzzy Conceptual Clustering. 

There are some works where the fuzzy conceptual clustering problem has been faced (Martínez-Trinidad and 
Ruiz-Shulcloper, 1998; Martínez-Trinidad, 2000; Quan et al., 2004a; Quan et al., 2004b). These works address the 
problem when the number of clusters is not specified a priori. However, there are not algorithms for solving the 
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restricted fuzzy conceptual clustering problem; i.e., when the number of clusters is specified a priori. Therefore, in 
this thesis two restricted fuzzy conceptual clustering algorithms, which are fuzzy versions of the conceptual 
algorithms proposed in Section 2 are introduced. 
 
3.1 Fuzzy Restricted Conceptual Clustering 
The fuzzy restricted conceptual clustering problem is similar to the restricted conceptual clustering problem, but the 
clusters and the concepts are fuzzy. 

The fuzzy restricted conceptual clustering problem consists in structuring the objects in k fuzzy clusters 
{A1,…,Ak}, k>1, and generating fuzzy properties or concepts, Ci, i = 1,…,k.  

In this thesis, a fuzzy predicate will be a pair (P,μP), where P is a hard predicate that describe some objects and 
μP is a value that will be asociated to the objects covered by P, i.e., P describes the objects that belong with degree 
μP to the fuzzy cluster Ai.  

The degree in that each object is covered by the concept is determined as follows: If an object Oj is covered by 
only one fuzzy predicate (P,μP) of the concept Ci, the degree in that the object Oj is covered by the fuzzy concept Ci 
will be the value μP. If the object Oj is covered by more than one fuzzy predicate of Ci, the degree in that the object 
Oj is covered by the fuzzy concept Ci will be the maximum of the μP associated to the predicates that cover Oj; on the 
other hand, if any predicate covers the object Oj, then the fuzzy concept Ci covers the object Oj with degree 0. 

 
3.2 Quality Funtion 
A fuzzy concept Ci for a fuzzy cluster Ai must satisfy: if the object Oj belongs with high degree to the fuzzy cluster Ai 
then it should be covered with high degree by the concept Ci and if the object Oj belongs with low degree to the 
fuzzy cluster Ai then it should be covered with low degree by the concept Ci. Therefore, for evaluating the quality of 
the concepts obtained by the proposed fuzzy conceptual clustering algorithms, a generalization of the quality 
function for the hard algorithms (2.2) is defined as follows:  
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is the set of objects that belong more to the cluster Ai than to other clusters. 

k is the number of clusters. 
Ci is the concept associated to the cluster Ai. 

( )jA O
i

μ  is the membership degree of the object Oj to the cluster Ai. 

( )jC O
i

μ  is the degree in which the object Oj is covered by the concept Ci. 

 
The function (3.1) takes high values if the difference between the membership degree of the objects to the 

clusters and the degree in which they are covered by the concepts is small. The function takes 1.0 when the concepts 
cover all the objects in the same degree that they belong to the cluster. 

If the membership degrees are hard (0’s y 1’s) then this function is the same quality function defined for the hard 
conceptual clustering problem. 
 
3.3 Fuzzy Conceptual K-means Algorithm based on Similarity Functions 
The fuzzy conceptual k-means algorithm based on similarity functions (FCKMSF) is an extension of the conceptual 
k-means algorithm based on similarity functions (CKMSF). The FCKMSF algorithm consists of two phases: a 
clustering phase and a characterization phase.  
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3.3.1 Clustering Phase 
In this phase, we propose to use the fuzzy k-means with similarity functions algorithm (FKMSF) (Ayaquica-
Martínez and Martínez-Trinidad, 2001) to build the fuzzy clusters. The FKMSF algorithm is a fuzzy version of the 
KMSF algorithm (García-Serrano and Martínez-Trinidad, 1999), which was used in the clustering phase of the 
proposed hard algorithms.  

 
3.3.2 Characterization Phase 
In this phase, a generalization of the CKMSF characterization phase is proposed. This generalization allows generate 
fuzzy concepts starting from fuzzy clusters. 

It is important to remind that, due to the FCKMSF is based on the KMSF algorithm; a generalization lattice for 
each feature is required. For qualitative features, the generalization lattice must be given a priori, while for 
quantitative features, the codification function (2.1) and the generalization lattice showed in Figure 2 are used. 

In order to build the initial predicates, for each fuzzy cluster Ai, only the objects that belong more to the cluster 
Ai than to other clusters are taken into account. A fuzzy predicate (P,μP) is associated to each object Oj. The predicate 
P  is built as in the hard case and μP takes as value the membership degree of the object Oj to the cluster Ai.  

Starting from these predicates and based on the generalization lattices generalized fuzzy predicates are 
generated. Two fuzzy predicates ( )

11 P,P μ  and ( )
22 P,P μ  will be generalized if εμμ <−

21 PP , with ε ∈ [0,1] and P1 

and P2 can be generalized. Thus, only predicates with similar value of μP are generalized. The predicate P for the 
generalized fuzzy predicate, will be the generalization of P1 and P2, and the value of μP for the generalized fuzzy 
predicate will be the average of 

1Pμ and 
2Pμ . 

It is important to note that if the value of ε is close to 1, then we will obtain fuzzy concepts with low quality, 
because we allow to generalize fuzzy predicates which represent objects with no similar membership degrees; while 
if the value of ε is close to 0, the fuzzy concepts obtained will have high quality, because we allow to generalize only 
fuzzy predicates with very similar membership degrees; if ε = 0 the final fuzzy predicates will be all the initial fuzzy 
predicates and each predicate will cover only one object. 

A generalized fuzzy predicate is stored if it is α-discriminating (the number of objects outside of Ai covered by 
the predicate is smaller or equal than α) and β-characterizing (the number of objects in Ai covered by the predicate is 
greater o equal than β), in other case it is eliminated. If a generalized fuzzy predicate is stored then the fuzzy 
predicates, starting from which this predicate was generated, are eliminated. This generalization process is repeated 
until no more generalized fuzzy predicates can be generated. 

The α-discriminating and β-characterizing properties are verified as in the hard case; therefore, it is necesary 
hardening the clusters. In order to harden a cluster Ai, only the objects that belong more to the cluster Ai than to other 
clusters are taken into account.  

The obtained set of fuzzy predicates can contain predicates that do not contribute to improve the quality of the 
concepts; therefore, this set can be reduced. This reduction is made using a generalization of the strategy proposed by 
Ralambondrainy (1995), which works as follows: the fuzzy predicates are descendently ordered according to μP. The 
first predicate is stored. For the remaining predicates, if a predicate improves the quality of the concept (measured 
with the expression (3.1)), then the predicate is added to the concept; otherwise, it is eliminated. Finally, the concept 
will be formed by the disjunction of the stored fuzzy predicates. 
 
3.4 Fuzzy Conceptual K-means Algorithm based on Complex Features 
In this section, a fuzzy version (FCKMCF) of the conceptual k-means algorithm based on complex features 
(CKMCF) is proposed. The FCKMCF algorithm consists of a clustering phase and a characterization phase.  
 
3.4.1 Clustering Phase 
In this phase, as in the FCKMSF algorithm, the fuzzy k-means with similarity functions algorithm is used for 
building the fuzzy clusters.  
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3.4.2 Characterization Phase 
In this phase, for generating the concepts, the fuzzy complex features are used. A fuzzy complex feature is defined as 
follows:  
Definition 3.1: Let { }

pss x,...,x
1

=Ω  be a set of features and let ( )pa,...,a1  be values associated to the 

features  taken from an object of the cluster A
pss x,...,x

1
i, then { }

pss x,...,x
1

- ( )pa,...,a1  is a fuzzy complex feature (De-
la-Vega-Doria, 1994) of the cluster Ai, if and only if: 

1)  ( )( ) ( )[ ] i
XO

jApj
j

i
Oa,...,a,O βμ ≥ΩΓ∑

∈
1

)2)  ( )( ) (( )[ ] i
XO

jApj
j

i
Oa,...,a,O λμ <−ΩΓ∑

∈

11

where ( )jA O
i

μ  is the membership degree of Oj to the cluster Ai ; ΩOj, βi y λi are defined in the same way as in the 
hard case. 

In order to obtain the fuzzy complex features, support sets are needed. In this thesis, besides the Γ-
discriminating, Γ-characterizing and Γ-testors, the fuzzy Φ-testors are used. The Γ-discriminating, Γ-characterizing 
and Γ-testors support sets can be obtained only for hard clusters; in a similar way for evaluating the α-discriminating 
and β-characterizing properties the clusters were hardening. In order to calculate the Γ-discriminating, Γ-
characterizing and Γ-testors support sets a genetic algorithm, which is described in (Guevara-Cruz, 2004) was used; 
and for calculating the fuzzy Φ-testors the genetic algorithm proposed by Santos-Gordillo et al. (2003) was used. 

In order to generate the concepts, a fuzzy predicate (P,μP) is associated to each complex feature. The predicate P 
is built as in the hard case and the value of μP is the average of the membership degrees of the objects covered by the 
predicate P. 

The set of fuzzy predicates obtained from the complex features can contain predicates that do not contribute to 
improve the quality of the concepts. Thus, this set of predicates can be reduced using the same strategy used for 
reducing the predicates in the FCKMSF algorithm. 
 
3.5 Experimental Results 
In order to show the performance of the proposed algorithms (Sections 3.3 and 3.4), in this section the results 
obtained by applying the FCKMSF and FCKMCF algorithms on different databases are presented. These databases 
are the same that in the hard case. Also, the similarity function and the comparison functions are the same that in the 
hard case.  

For the fuzzy case, the FCKMSF and FCKMCF algorithms were compared only between them because there are 
not restricted fuzzy conceptual algorithms for comparing with. 

In Table 2 the quality and the number of predicates of the concepts obtained by the FCKMSF and FCKMCF 
algorithms are shown. 
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Table 2. Quality and number of fuzzy predicates of the concepts obtained by the FCKMSF and FCKMCF algorithms 

FCKMCF Algorithm FCKMSF 
Algorithm Γd Γc Γt Φt Databases 

Quality # 
Pred. Quality # 

Pred. Quality # 
Pred. Quality # 

Pred. Quality # 
Pred. 

Diabetes 0.66 230 0.68 72 0.68 72 0.68 72 0.70 105 
Glass 0.69 69 0.65 21 0.65 21 0.65 21 0.68 40 
Iris 0.78 37 0.75 3 0.75 3 0.75 3 0.78 10 

Wine 0.62 99 0.57 99 0.57 94 0.57 112 0.60 99 
Hayes 0.71 66 0.63 23 0.63 23 0.63 23 0.65 25 
Lenses 0.77 11 0.66 14 0.66 14 0.66 14 0.70 11 

Zoo 0.64 41 0.59 17 0.50 13 0.58 15 0.60 22 
Auto-mpg 0.60 96 0.72 22 0.72 22 0.72 22 0.75 60 

Echocardiogram 0.64 84 0.57 58 0.57 58 0.56 70 0.63 70 
Hepatitis 0.74 43 0.45 40 0.58 73 0.48 49 0.62 60 
Import85 0.60 112 0.45 18 0.50 37 0.47 31 0.58 90 

Tae 0.72 96 0.52 21 0.52 21 0.52 21 0.60 50 
Average 0.68 82 0.60 34 0.61 38 0.61 38 0.66 54 

 
 
In Figure 4, the results of Table 2 are shown in a graph. For the FCKMCF algorithm only the results obtained 

with the Φ-testors support sets, which were the support sets that obtained the best results, are depicted. 
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Fig. 4. Quality and number of fuzzy predicates of the concepts obtained by the FCKMSF and  
FCKMCF (with Φ-testors support sets) algorithms 

 
In Table 2 and Figure 4, we can observe that, the FCKMCF algorithm using Φ-testors support sets obtained, in 

average, concepts with a slightly lower quality than the quality of the concepts obtained by the FCKMSF algorithm; 
however, the FCKMCF does not require generalization lattices and it obtains concepts with less predicates. 
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4 Conclusions and Future Work 
 
4.1 Conclusions 
In this thesis, two restricted conceptual clustering algorithms (CKMSF and CKMCF) and fuzzy versions of them 
(FCKMSF and FCKMCF) were proposed. 

We observed, from the experimentation, that the CKMSF and CKMCF algorithms obtained concepts with better 
quality than those obtained by the CKM algorithm. Also, the CKMCF algorithm generated concepts with less 
number of predicates than those obtained by the CKM and CKMSF algorithms.  

We can conclude that the CKMCF algorithm is a good alternative for solving restricted conceptual clustering 
problems when the objects are described by mixed and missing data. On the other hand, when the generalization 
lattices are known, the CKMSF algorithm is a good alternative for solving this kind of problems. 

In the experimentation with the proposed fuzzy conceptual clustering algorithms we observed that the FCKMCF 
algorithm using Φ-testors support sets obtained, in average, concepts with a slightly lower quality than the quality of 
the concepts obtained by the FCKMSF algorithm; however, The FCKMCF algorithm does not require generalization 
lattices and it obtains concepts with less number of predicates. 

Finally, we can conclude that the FCKMSF and FCKMCF algorithms are a first approximation for solving fuzzy 
restricted conceptual clustering problems where the objects are described by mixed and missing data.  
 
4.2 Future Work 
Based on the experimental results we observed that the proposed algorithms obtain concepts with good quality; 
nevertheless, these qualities can be improved. For that reason, we propose to find new strategies, in the 
characterization phase, for generating better concepts. 

The proposed function for evaluating the quality of the concepts takes into account only the number of objects 
covered by the concepts, without taking into account their size. As future work we propose to define a quality 
function that takes into account both characteristics. 
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