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Abstract 
This paper presents a new method for the design of linear phase IIR filters with flat magnitude response. The 
method is based on the design of flat digital allpole filters with complex coefficients. Depending on the parity of 
the allpole filter order the resulting IIR filter have either real or complex coefficients. The parameters of the 
design are the same as in traditional IIR filter design, i.e., passband and stopband frequencies, ωp and ωs, passband 
droop Ap, and stopband attenuation As. Several design examples are provided to illustrate the method. In addition, 
a design of linear phase modified two-band IIR filter banks and a design of stable IIR filter with an improved 
group delay are presented as two applications of the proposed method.  
Keywords: IIR filters, linear phase, allpole filters, allpass filters, filter banks, improved group delay. 
 
Resumen 
Este artículo presenta un nuevo método para el diseño de filtros IIR de fase lineal con respuesta en magnitud 
plana. El método esta basado en el diseño de filtros todopolo con respuesta plana y coeficientes complejos. 
Dependiendo de la paridad del orden del filtro todopolo, los filtros resultantes IIR tienen coeficientes reales o 
complejos. Los parámetros de diseño son los mimos que en el diseño tradicional de filtros IIR, esto es, frecuencias 
de paso y rechazo, ωp y ωs, y atenuaciones en la banda de paso y rechazo, Ap y As. Varios ejemplos de diseño son 
dados para ilustrar el método. Finalmente, el diseño de bancos de filtros modificado de dos bandas de fase lineal y 
el diseño de filtros IIR con retardo de grupo mejorado se presentan como dos aplicaciones del método propuesto. 
Palabras clave: Filtros IIR, fase lineal, filtros todopolo, filtros pasatodo, banco de filtros, retardo de grupo 
mejorado. 

 
1 Introduction 
 
A filter H0(z) has  linear phase if  (Vaidyanathan, 1993), 
 

)(~)( 00 zHczzH k−= , (1) 
 
where z−k is the delay, c is the complex constant with unit magnitude and )(~

0 zH is the paraconjugate of H(z), that is, 
it is obtained by conjugating the filter coefficients and by replacing z with z−1. 

It is well known that causal Finite Impulse Response (FIR) filters can be designed to have linear phase. 
However, Infinite Impulse Response (IIR) filters can have linear phase only in the noncausal case (Mitra, 2006; 
Vaidyanathan, 1993; Vaidyanathan and Chen, 1998), (the phase response can be 0 or π). It has been recently shown 
that filters with a linear phase property are useful in the filter bank design and Nyquist filter design (Argenti et al., 
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1996; Djokic et al.,1998; Powell and Chau, 1991; Selesnick, 1998; Willson and Orchard, 1994; Zhang et al., 2001, 
2000). 

As a difference to methods presented in (Djokic et al., 1998;Powell and Chau, 1991;Willson and Orchard, 
1994), our goal is to propose here a new technique to design linear phase IIR filter with flat magnitude response 
based on complex allpole filters. Additionally, the design specification must be the same as in traditional IIR filter 
design based on analog filters, i.e.,  the passband and stopband frequencies, ωp and ωs, the passband droop Ap, and 
the stopband attenuation As, as shown in Fig. 1. 
 

 
Fig. 1. Design parameters 

 
The challenge with the proposed approach is in how to include the parameters of the design into the desired 

linear phase IIR filter design. Using results from (Fernandez-Vazquez and Jovanovic-Dolecek, 2004), it follows that 
an auxiliary complex allpole filter with certain characteristics can be used to solve this problem.  

The rest of the paper is organized as follows. In Section 2 we therefore use the known relation between linear 
phase IIR filter and the corresponding allpass filter. First, we establish design conditions which the allpass filter 
needs to satisfy, and later we determine design conditions for the auxiliary complex allpole filter. In Section 3, we 
present closed form equations of the singularities of the corresponding linear phase filter (1) which are used in the 
design procedures described in Sections 4-6. Detailed description of the algorithms for the lowpass and highpass 
filters are given in Sections 4 and 5, and are illustrated with different examples. Section 6 presents the applications of 
the proposed algorithm, including a design of linear phase modified two-band IIR filter banks and a design of a flat 
IIR filter with an improved group delay. 
 
2 Design of allpole filter with complex coefficients 
 
In this section we design allpole filters with complex coefficients. First, we derive the design conditions that an 
allpass filter needs to satisfy such that the design of lowpass filter is obtained. Second, to design the corresponding 
allpole filters, we relate the allpole filter and the allpass filter. 

It is well known that a linear phase lowpass IIR filter H0(z) can be expressed in terms of complex allpass filters 
as (Zhang et al., 2001), 

 

[ ])(~)(
2
1)(0 zAzAzH += , (2) 

 
where A(z) is an allpass filter with complex-coefficients. Note that the filter H0(z) defined in (2) satisfies the relation 
(1) if k = 0 and c = 1. 

From (2), the magnitude response of H0(z) can be expressed as, 
 

πω0  )),ω(cos()e( jω
0 ≤≤= AH φ , (3) 

 

Computación y Sistemas Vol. 10 No. 4, 2007, pp 335-356 
ISSN 1405-5546 
 



      Design of Linear Phase IIR Filters with Flat Magnitude Response using Complex Coefficients Allpole Filters           337
 

where φA(ω) is the phase response of A(z).  
Furthermore, we can observe that |H0(ejω)| has flat magnitude response at ω = 0, and ω = π, and the resulting 

values |H0(ej0)| and |H0(ejπ)| equal 1 and 0, respectively.  
Since |H0(ejω)| has a flat magnitude response at ω = 0, and ω = π, the corresponding allpass filter A(z) has a flat 

phase response at the same frequency points. As a consequence, the resulting group delays τA(0) and τA(π) of the 
allpass filter are equal to 0. Moreover, the values of φA(ω) at these two frequency points can be 0 and ±π/2, 
respectively. 

Considering the value Ap in dB and using (3), it can be shown that the phase value φA(ω) evaluated at ωp is 
given by 

( )20/1
ppA

p10cos)(ω A
A

−−== φφ , (4) 
 
In summary, the conditions that the auxiliary complex allpass filter in (2) needs to satisfy, are the following: 
A.1.  The phase values of  φA(ω) at ω = 0 and ω = π are 0 and ±π/2,  respectively (see Fig. 2). 
A.2.  The phase response of A(z) is flat at ω = 0 and ω = π. Therefore, τA(0) = τA(π) = 0. 
A.3.  The phase value φpA is controlled by Ap (see (4) and Fig. 2). 
 

 
Fig. 2. Relation between the passband droop and the phase value φpA

 
From the design conditions A.1-A.3, we can note that the complex allpass filter A(z) has causal component Ac(z) 

and anticausal component Aa(z), such that A(z) = Ac(z)Aa(z). Figure 3 illustrates an implementation of the complex 
allpass filter. The block TR denotes the time reversal operator, i.e., r(n) = s(−n), and Aa(z−1) is now a causal allpass 
filter  (Vaidyanathan and Chen, 1998). The anticausal filter works perfectly in a block by block manner if one 
correctly chooses initial conditions in the time reverse difference equations (Vaidyanathan and Chen, 1998). 
 

 
Fig. 3. Structure for the complex allpass filter A(z) 
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In the following we relate a complex allpass filter satisfying conditions A.1-A.3 to the corresponding complex 
allpole filter. 

A complex allpass filter A(z) is related to an allpole filter as follows (Vaidyanathan, 1993), 
 

)(α

~α
)(~)( * zF

(z)Fz
zD

D(z)zzA NN −− == , (5) 

 
where D(z) is an allpole filter of order N given by, 
 

)(
α)(
zF

zD = , (6) 

 
the complex constant α has unit magnitude, and F(z) is a polynomial of degree N, that is,  
 

∑
=

−+=
N

n

n
n zfzF

1
1)( . (7) 

 
The filter coefficients fn , for n = 1,…,N, are complex and are expressed as fn = fRn + jfIn, where fRn and fIn are the 

real and imaginary part of fn, respectively. 
Note that the desired phase of the allpole filter φD(ω) depends on the phase φA(ω) of A(z) (see (5)). Therefore, it 

can be shown that, Selesnick (1999), 
 

2
)ω(ω)ω( A

D
N φφ +

= . (8) 

 
Similarly, the group delay of the allpole filter can be expressed as, Selesnick (1999), 
 

2
)ω(τ)ω(τ NA −

= , (9) 

 
where τA(ω) is the group delay of complex allpass filter. 

Using (8) and the phase values φA(ω) at ω = 0 and ω = π (see Condition A.1), we arrive at φD(0) = 0 and 
φD(π) = (2N ±1) π/4. 

From the relation (9) and Condition A.2, we further get τ(0) = τ(π) = −N/2. 
Finally, the following relation is obtained using Condition A.3 and (8), 
 

( )
2

ω10cos
)ω( p

20/p1

pp
NA

D
+

==
−−

φφ . (10) 

 
As a consequence, the corresponding conditions that the allpole filter D(z) has to satisfy are: 

B.1. The phase values of D(z) at ω = 0 and ω = π are 0, and π (2N ± 1)/4, respectively. 

B.2.  The group delays τ(ω) of D(z) at ω = 0 and ω = π are −N/2. 

B.3.  The phase value of D(z) at ωp, φp = φD(ωp), is given by (10). 
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Substituting conditions B.1 and B.2 into the set of linear equations proposed in (Fernandez-Vazquez and 
Jovanovic-Dolecek, 2004), we arrive at 
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22
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where φα is the phase of α.  

Unlike the method of Selesnick (1999), which proposes the design of flat allpole filters with real-value 
coefficients and different degree of flatness at ω = 0 and ω = π, in this method the degree of flatness at ω = 0 and ω = 
π is N−2.1 It makes that the passband frequency ωp becomes a continuous variable. Consequently, the values of k are 
0,…, N−1. 

Solving the set of equations (11) with the symbolic tool MAPLE (Heck, 2003), the filter coefficients are 
expressed as, 

( )
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⎪
⎪
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φ

 (12) 

 
Finally, from the general phase equation proposed in (Fernandez-Vazquez and Jovanovic-Dolecek, 2004), the 

following relation gives the desired phase φp of the allpole filter (Condition B.3), 
 

0)ωcos()ωsin(
0

Ipαp
0

Rpαp =−+−−+ ∑∑
==

N

n
n

N

n
n fnfn φφφφ . (13) 

 
From (15), the corresponding value of φα, for N even, is equal to  
 

⎪⎭

⎪
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2/
α
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where ∠{⋅} stands for the angle of {⋅} and 
 

                                                 
1

 The degree of flatness is defined as the number of null derivatives of the group delay (Fernandez-Vazquez and Jovanovic-Dolecek, 2004). 
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1
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Similarly, for odd values of N, we have 
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3 Closed form equations for the singularities of H0(z) 
 
In this section, we focus on the computation of the singularities of H0(z). 
 
3.1 Poles 
Substituting (12) into (7) and using the two-polyphase components of (1 + z−1)N, we arrive at 
 

[ ]NN zzzF )1(sin)1j()1)(sin(cose)( 1
α

1
αα

j α −− −−−+−= φφφφ . (17) 
 
From (17), it can be shown that the corresponding poles of H0(z) are 
 

1
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where k = 0,…,N−1, and  
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3.2 Zeros 
It follows from (17) and (2) that the transfer function H0(z) is, 
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Where 
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Observe that the transfer function H0(z) has N zeros at z = −1 and the other zeros at (cf. (21)), 

1β
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where k = 0,…,N−1, and the parameter βk is given by, 
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Note that there are N zeros away from the origin, which contribute to the passband (see (23) and (24)). 

It is easily shown that the absolute values of zk in (23) for even values of N are always different from 1. 
However, for N odd, there is one absolute value of zk equal to 1, i.e., there is a zero on the unit circle. The resulting 
angle of zk is denoted by ω0. Furthermore, there exists a frequency ω1 at which H0(ejω) equals  −1. Consequently, for 
odd values of N, the filter H0(z) has complex-valued coefficients. 

Accordingly, the corresponding frequencies ω0  and ω1 are expressed as,  
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4 Algorithm for lowpass filter design 
 
In the following we describe the algorithm for the design of linear phase lowpass IIR filters. At first, we compute the 
allpole filter order N using either (14) or (16). 

To satisfy the design condition at ωs, we replace the passband frequency ωp with the stopband frequency ωs and 
the passband droop Ap with the stopband attenuation As in (14). Consequently, the relationship (14) becomes 
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Where 
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Solving (14) and (26) with respect to N, we arrive at 
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where ⎣⋅⎦ denotes the ceiling function and  
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As we pointed out before, if the allpole filter order were odd, the resulting filter H0(z) would have complex-

valued coefficients, otherwise it has real-valued coefficients. 
The proposed algorithm consists of the following steps. 

1. Estimate the order N of the allpole filter using (28). 
2. From the values N, ωp and Ap, compute the phase value of the allpole filter φα using (14) for N even, and 

using (16) for N odd. 
3. Compute the allpole filter coefficients fn, using (12). 
4. The poles and zeros of the desired filter H0(z) are computed using (18) and (23), respectively. Additionally, 

if N is odd, compute the frequencies ω0 and ω1, using (25). 
5. Calculate the filter coefficients of H0(z) using (2). 
We illustrate the procedure with the following two examples. The first one uses an even allpole filter order N, 

whereas the second one use N odd. 
Example 1. We design an IIR linear phase lowpass filter with the passband and stopband frequencies ωp = 0.25π and 
ωp = 0.45π, respectively. The passband droop is Ap = 1 dB, while the stopband attenuation is As = 40 dB.  

1. Using (28), we estimate N = 8. Accordingly, the resulting filter H0(z)  has real-valued coefficients. 
2. We calculate the phase value φα= −2.355044. Therefore, the value of α is −0.706293 − j0.707920.  
3. The filter coefficients fn are computed from (12) and are shown in Table 1. 
 

Table 1. Allpole Filter coefficients in Example 1 

n fn
0 8 1 
1 7 −7.978022 + j0.021917 
2 6 28 
3 5 −55.846158 + j0.153420 

4 70 
 

4. Using (23) and (18), we compute the poles and zeros of H0(z), which are given in Table 2. 
 

Table 2. Poles and zeros of the transfer function H0(z) in Example 1 

Poles and zeros 
p1, p5*, 1/p9*, 1/p13 1.966489 − j1.075212 z1,…, z8 −1 
p2, p6*, 1/p10*, 1/p14 0.836993 − j0.929015 z9, z11*, 1/z13*, 1/z15 2.115040 − j0.879601 
p3, p7*, 1/p11*, 1/p15 0.481181 − j0.492215 z10, z12*, 1/z14*, 1/z16 0.942554 - j0.946345 
p4, p8*, 1/p12*, 1/p16 0.378588 − j0.127470  

 
5. The magnitude response of the designed filter is given in Fig. 4(a) in solid line.  For comparison purpose, 

we design two filters using the methods (Djokic et al., 1998;Powell and Chau, 1991;Willson and Orchard, 
1994). These designs are based on traditional Butterworth filter design. Figure 4(a) shows the resulting 
filters using 8 and 16 zeros at z = −1. The passband and stopband details of the proposed filter are shown in 
Fig. 4(b). 
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Fig. 4. Magnitude response of H0(z) in Example 1 
 

Observe that for the same number of zeros at z = −1 (8 zeros) the proposed method exhibits better magnitude 
characteristic. 
Example 2. In this example, we illustrate the algorithm for the IIR filter design based on a complex allpole filter 
with odd order. The IIR filter specification includes the passband and stopband frequencies being 0.5π and 0.7π, and 
the passband droop and the stopband attenuation being 1 dB and 40 dB, respectively. 

1. From (28), it follows that N = 9. Therefore, the resulting IIR filter H0(z) has complex filter coefficients.  
2. The phase value φα is obtained from (18), i.e., φα = −2.906242  and α = −0.972433 − j0.233184. 
3. The filter coefficients of F(z), which are obtained using (12), are shown in Table 3. 

 
Table 3. Filter coefficients of F(z) in Example 2 

n fn n fn
0 1 5 55.155296 + j43.439940 
1 3.939664 + j3.102853 6 84 
2 36 7 15.758656 + j12.411411 
3 36.770198 + j28.959960 8 9 
4 126 9 0.437740 + j0.344761 

 
4. From (23) and (18), we compute the poles and zeros of H0(z), which are shown in Table 4. Additionally, the 

frequencies ω0 and ω1 are 1.483715π and 1.459303π, respectively (see (25)), where ω0 and ω1 are the 
frequencies at which H0(ejω) is 0 and −1, respectively. 

 
Table 4. Poles and zeros of H0(z) in Example 2 

Poles and zeros 
P1, 1/p10* −0.045592 − j0.131383 z1,…, z9 −1 
P2, 1/p11* −0.047014 + j0.221228 z10, 1/z15* −0.025782 − j0.087431 
P3, 1/p12* −0.062954 + j0.635273 z11, 1/z16* −0.031146 − j0.465936 
P4, 1/p13* −0.120521 + j1.296186 z12, 1/z17* −0.378513 + j3.695906 
P5, 1/p14* −0.485810 + j3.102542 z13, 1/z18* −0.077670 + j1.425310 
P6, 1/p15* −11.469800 − j11.130423 z14 −0.051140 − j0.998691 
P7, 1/p16* −0.302484 − j2.381486 
P8, 1/p17* −0.097956 − j1.086518 
P9, 1/p18* −0.056930 − j0.519239 

 

Computación y Sistemas Vol. 10 No. 4, 2007, pp 335-356 
ISSN 1405-5546 

 



  Alfonso Fernández Vázquez and Gordana Jovanovic Dolecek 344
 

5. Figure 5(a) shows the magnitude response of the designed filter.  Figure 5(b) zooms the frequencies ω0 and 
ω1, while Fig. 5(c) gives the passband  and stopband details. 
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Fig. 5. Magnitude response of the designed lowpass filter in Example 2 
 
5 Algorithm for linear phase IIR highpass filter design 
 
Now, we consider the design of highpass filter using complex-valued allpole filters.  

The relationship between a highpass filter and a corresponding allpass filter is expressed by (Vaidyanathan et 
al., 1987), 

[ ])(~)(
j2

1)(1 zAzAzH −= . (30) 

  
Using (30) and Ap in dB, the phase value φpA is expressed as, 
 

( )20/1
p

p10sin A
A

−−=φ . (31) 
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The frequencies defined in (29) become 
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cotω p'
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2
ωcotω s'

s . (32) 

  
Similarly, the phase value φα is now given by, 
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Following example illustrates the design. 
Example 3. The parameters of the design of the highpass filter are as follows. The passband frequency ωp = 0.7π and 
stopband frequency ωs = 0.4π. The stopband attenuation and passband droop are 45 dB and 2 dB, respectively. 

The resulting filter order is equal to 6. The magnitude response, the passband and stopband details of the 
designed filter are shown in Fig. 6.  
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Fig. 6. Magnitude response of H1(z) in Example 3 
 
6 Applications 
 
This section consider two applications of the proposed design of linear phase IIR filter, i.e., design of  modified two-
band filter banks and the design of IIR filter with improved group delay. 
 
6.1. Design of Modified Two-Band Filter Banks 
The modified two-band filter bank (Galnad and Nussbaumer, 1984), is shown in Fig. 7. The analysis filter H0(z) and 
the synthesis filter G0(z) are lowpass filters, while the analysis filter H1(z) and the synthesis filter G1(z) are highpass 
filters. The difference from the traditional structure is manifested in two extra delays, one before the filter H1(z) and 
another after the filter G0(z) (see Fig. 7). 
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Fig. 7. Modified two-band filter bank 

 
To avoid alias distortion, the synthesis filters are related to the analysis filter H0(z) in the following form 

(Vaidyanathan et al., 1987),  
)(2)(),(~2)( 0100 zHzGzHzG −== . (34) 

 
where )(~

0 zH is the paraconjugate of H0(z), and )(~)( 01 zHzH −= . 
According to (Vaidyanathan, 1993), the amplitude and phase distortions are eliminated if the analysis filter 

H0(z) is chosen to satisfy (Vaidyanathan et al., 1987),  
 

1)(~)()(~)( 0000 =−−+ zHzHzHzH . (35) 
 

From (35), the relation between the passband droop Ap and the stopband attenuation As is given by 
(Vaidyanathan et al., 1987),  

11010 10/10/ sp =+ −− AA . (36) 
 

Additionally, using (34)  and (35), we have (Vaidyanathan et al., 1987),  
 

πωω sp =+ . (37) 
 
Methods for designing real linear phase modified two-band IIR filter banks based on complex allpass filter are 

proposed in (Argenti et al., 1996; Zhang et al., 2001; Zhang and Yoshikawa, 1999). 
The analysis filters are given by (Argenti et al., 1996), 
 

[ ])(~)(
2
1)(0 zAzAzH += , (38) 

[ ])(~)(
j2

1)(1 zAzAzH −= , (39) 

where A(z)  is a complex allpass filter. 
In (Argenti et al., 1996; Zhang and Yoshikawa, 1999), the corresponding analysis IIR filters are real and have a 

flat magnitude response in both passband and stopband.  More general design of (Zhang and Yoshikawa, 1999) is 
given in (Zhang et al., 2001) and includes flat as well as equiripple design. In both cases the designed filters are real. 

The perfect reconstruction condition for the modified two-band IIR filter banks is established in (Argenti et al., 
1996; Vaidyanathan et al., 1987; Zhang et al., 2001; Zhang and Yoshikawa, 1999), which implies that the poles of 
H0(z) and H1(z) must appear on the imaginary axis and in pairs jp and 1/jp, where p is a pole. From this condition, it 
follows that the filter coefficients given in (12) must be imaginary for even values of n. 
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Consequently, the values of  φα in (14) for an even N, must be 
 

⎪
⎩

⎪
⎨

⎧

−

−
=

odd.2/forπ
8
3

even,2/forπ
8
7

α
N

N
φ . (40) 

 
The corresponding zeros of H0(z) are computed from (23) and (40) 
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where k = 0,…,N−1, while the poles are computed using (see (18)), 
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Similarly, the values of  φα when N odd are, 
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The zeros of H0(z) are now given by, 
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where k = 0,…,N−1, and the poles are expressed as, 
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where  k = 0,…,N−1. 
 
Using (25), we arrive at 

( )N2/11
0 2tan2πω −+= ,  ( )N2/11

1 2tan2πω −−+= . (46) 
 
6.1.1 Description of the algorithm 
In the following we describe how the proposed algorithm can be used for a design of linear phase modified two-band 
IIR filter banks. The algorithm has the following steps: 

1. Calculate the order N of the allpole filter using (28), (36) and (37). 
2. Depending on the parity of N, compute the filter coefficients fn using (12) and either (40) or (43). The 

corresponding poles and zeros are obtained using (42) and (41) for N even. For N odd use (45) and (44). 
3. Additionally, if N is odd, compute the frequencies ω0 and ω1 using (46). 

 
We illustrate the method with the next two examples. 
Example 4. Passband frequency ωs of the analysis filter H0(z) equals 0.6π, whereas the stopband attenuation As is 45 
dB 

1. From (36) and (37), it follows that Ap = 1.373381 × 10−4 and ωp = 0.4π. Using (28), the order of the 
complex allpole filter is 18.  

2. We compute the filter coefficients using (12) and (40), which are shown in Table 5. Poles and zero of H0(z) 
are presented in Table 6. 

 
Table 5. Filter coefficients of F(z) in Example 4 

n fn n fn
0 18 1 5 13 −20684.981802j 
1 17 −43.455844j 6 12 18564 
2 16 153 7 11 −76829.932409j 
3 15 −1969.998267j 8 10 43758 
4 14 3060 9 −117379.063403j 
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Table 6. Poles and zeros in Example 4 

Poles and zeros 
p1, 1/p10*, p19*, 1/p28 j45.829351 z1,…, z18 −1 
p2, 1/p11*, p20*, 1/p29 j5.027339 z19, 1/z24*, z28, 1/z32 0.009926 + j0.176310 
p3, 1/p12*, p21*, 1/p30 j2.571496 z20, 1/z25*, z29, 1/z33 0.010902 + j0.363932 
p4, 1/p13*, p22*, 1/p31 j1.647949 z21, 1/z26*, z30, 1/z34 0.012835 + j0.577279 
p5, 1/p14*, p23*, 1/p32 j1.140281 z22, 1/z27*, z31, 1/z35 0.016404 + j0.838967 
p6, 1/p15*, p24*, 1/p33 j0.802585 z23, 1/z36 0.009626 
p7, 1/p16*, p25*, 1/p34 j0.548619 
p8, 1/p17*, p26*, 1/p35 j0.339454 
p9, 1/p18*, p27*, 1/p36 j0.153915 

 

 
Figure 8 shows the corresponding magnitude responses of  H0(z) and H1(z). 
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Fig. 8. Magnitude responses of the analysis filters in Example 4 
 

As a difference to the methods (Argenti et al., 1996; Zhang and Yoshikawa, 1999), we give here a closed form 
equations to compute the IIR filter order and the singularities of H0(z). Furthermore, the proposed method includes 
the complex case. 

 
The following example illustrates the complex case (N is odd).  

 Example 5. We design an IIR filter banks with the following specifications for the analysis filters H0(z): 
stopband frequency ωs = 0.8π and stopband attenuation As = 60 dB. 

1. The estimated value of  N is 7. 
2. The allpole filter coefficients, and poles and zeros are shown in Tables 7 and 8, respectively. The magnitude 

response of H0(z) is shown in Fig. 9. 
 

Table 7. Allpole filter coefficients in Example 5 

n fn N fn
0 0.38268 + j 0.92388 4 13.39392 + j32.33578 
1 15.61300 − j6.46716 5 46.83929 − j19.40147 
2 8.03635 + j19.40147 6 2.67878 + j 6.46716 
3 8.06549 − j32.33578 7 2.23044 − j 0.92388 
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Table 8. Poles and zeros of H0(z) 

Poles and zeros 
p1, 1/p8* j17.80665 z1,…, z7 −1 
p2, 1/p8* j1.80936 z8, 1/z11* 0.22576 − j2.84187 
p3, 1/p8* j0.70954 z9, 1/z12* 0.02506 + j0.11260 
p4, 1/p8* j0.16991 z10, 1/z13* 0.03451 + j0.62780 
p5, 1/p8* −j0.28810 z14 0.04947 − j0.99877 
p6, 1/p8* −j0.89365 
p7, 1/p8* −j2.41421 

 

 
3. From (46), we have ω0 = 1.51575π and ω0 = 1.48425π (see Fig. 9). 
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6.2. Stable and causal flat IIR filters with an improved group delay 
In this section, we relate the linear phase filter with the corresponding causal IIR filters. 

Using (1) and (2), we rewrite the relation for a linear phase IIR filter H0(z) as, 
 

)(~)( 00 zHzH = . (47) 
  
Considering that the Fourier transform of H0(z) is real and positive for all ω, we have 
 

)(~)()( cc0 zHzHzH = , (48) 
 
where Hc(z) is a causal and stable IIR filter. 

Note that the condition (48) is satisfied using (2) for even values of N. Therefore, we design the filter Hc(z) from 
the linear phase filter H0(z). 

From (20), it is easily shown that the polynomials E(z) and F(z) are symmetric for even values of N. 
Consequently, they can be expressed as, 

 
)()()( 1

00
2/ −−= zEzEzzE N , (49) 

)()()( 1
00

2/ −−= zFzFzzF N , (50) 
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where E0(z) and F0(z) are subfilters of E(z) and F(z), respectively. 
Substituting (49) and (50) into (20), the transfer function H0(z) can be rewritten as 
 

)(~)()(~)(
)()()1()(

0000

00
12/

0 zFzFzFzFz
zEzEzzzH N

NN

−−
−+

= −

−−

. (51) 

 
Using (48) and (51), it follows that 
 

)(~)(
)()1()(

00

0
2/1

c zFzF
zEzzH

N

−
+

=
−

. (52) 

 
Therefore, the transfer function Hc(z) has N/2 zeros at z = −1. 
In order that Hc(z) be stable, all zeros of F0(z) must be inside the unit circle. There exist different polynomials 

E0(z) satisfying (52). The number of polynomials Npoly of E0(z) is expressed as,  
 

⎣ ⎦4/
poly 2 NN = . (53) 

 
In the next example, we illustrate how we can get a causal stable IIR filter Hc(z) starting from a linear phase IIR 

filter H0(z), using (47) and (52). 
Example 6. First, we design an IIR filter H0(z) with the passband frequency, ωp = 0.25π, and passband droop, Ap = 1 
dB. The order of the filter is 24. 

Consequently, H0(z) has 12 zeros at z = −1, while the remaining poles and zeros are calculated using (23) and 
(20), respectively. Table 9 shows the poles and zeros. 
 

Table 9. Poles and zeros of H0(z) when N = 12, ωp = 0.25π and Ap = 1 

Poles and zeros 
p1, 1/p7 0.394884 + j0.139937 z1,1/z4 0.578620 + j0.590536 
p2, 1/p8 0.451398 + j0.374154 z2,1/z5 0.454151 + j0.339308 
p3, 1/p9 0.587022 + j0.634737 z3,1/z6 0.403978 + j0.110475 
p4, 1/p10 0.542650 + j0.566504 
p5, 1/p11 0.431535 + j0.313685 
p6, 1/p12 0.389148 + j0.083698 

 

 
According to (53), there are eight different polynomials for E0(z), shown in Table 10. The group delays of Hc(z) 

for all , l = 1,…,8, are shown in Fig. 10. )(0 zEl

 
Table 10. Different polynomials for E0(z) 

 z1, z1* z2, z2* z3, z3* z4, z4* z5, z5* z6, z6* 
E0

1 × × ×    
E0

2 × ×    × 
E0

3 ×  ×  ×  
E0

4 ×    × × 
E0

5  × × ×   
E0

6  ×  ×  × 
E0

7   × × ×  
E0

8    × × × 
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Fig. 10. Different group delays for the IIR filter Hc(z) in Example 6 
 

Figure 10 shows that there is one group delay for each polynomial , l = 1,…,8. We observe that the group 

delay for  is less nonlinear in the passband than the others. Therefore, for this example the best polynomial is 

. 

)(0 zEl

)(2
0 zE

)(2
0 zE

The next issue we address is how to select the best polynomial for E0(z) in general. 
We have designed many IIR filters and observed that only when the following two conditions are satisfied, the 

IIR filter with an improved group delay can be obtained. 
• The number of zeros of Hc(z) inside and outside the unit circle, Ni and No, respectively, are related as 
 

io NN ≤ , (54) 
 
Where 
 

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎩
⎨
⎧

−−
=

, ofparity  same  thehas 12/ if12/
, ofparity  same  thehas 2/ if2/

o NNN
NNN

N , (55) 

 
and ⎡⋅⎤ indicates the floor function. 

• For each zero zm inside, and each zero zl outside of the unit circle, we have, 
 

|||/1| ml zz < . (56) 
 
6.2.1 Description of the algorithm 
The design parameters of the causal stable IIR filters are passband and stopband frequencies, ωp and ωs, passband 
droop Ap, and stopband attenuation As. The algorithm has the following steps: 
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1. We estimate the order of the allpole filter D(z) using results from Section 4, 
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If the estimation filter order N is odd, increase it by one. 
2. Using the estimated value of N, we calculate the value of φα as, 
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Compute poles and zeros of Hc(z) in the following form: 

• Poles and zeros of H0(z) are obtained using (23) and (18), respectively. 
• The first N poles of H0(z) which are inside the unit circle become poles of  Hc(z). 
• There are N/2 zeros of the filter Hc(z)  at z = −1 (see (52)). The other N/2 zeros are zeros of H0(z) 

satisfying conditions (54)  and (56). 
3. Using the poles and zeros, find the transfer function Hc(z). 

Example 7. We design an IIR filter with the following specifications: the passband and stopband frequencies are 
0.2π and 0.4π, respectively, the passband droop Ap = 1 dB and the stopband attenuation As = 25 dB.  

1. From (59), it follows that N = 8. 
2. Using the estimated value N and (59), we have  φα = −2.356315. 
3. The resulting poles and zeros of Hc(z) are shown in Table 11, whilst the pole/zero pattern is shown in Fig. 

11(a). 
 

Table 11. Poles and zeros of Hc(z) 

Poles and zeros 
p1,2 0.675540 ± j0.493940 z1,…, z4 −1 
p3,4 0.617787 ± j0.416300 z5,6 1.767678 ± j0.489703 
p5,6 0.517503 ± j0.186396 z7,8 0.661569 ± j0.442466 
p7,8 0.502595 ± j0.111476  
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The group delay of the designed filter is shown in Fig.  11(b), while Figs. 11(c) and 11(d) provide the 
magnitude response. 
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Fig. 11. Example 7 
 

We compare our result with the direct method proposed in (Selesnick, 1999), where the parameters of the 
design are cutoff frequency ωc, degree of delay d, and the number of constraints assigned to ω = 0 and ω = π, are K 
and L, respectively. Additionally, the parameter d allows a trade-off between phase-linearity, delay and magnitude 
response. Using ωc = 0.248925π, K = 1, L = 7 and d = 6, the resulting filter has the degree of the denominator equal 
to 8. Figures 11(b) and 11(c) show the group delays and magnitude responses of the designed filter using the method 
(Selesnick, 1999) and the one proposed here. 

We observe that the method (Selesnick, 1999) results in an improved overall group delay whereas the proposed 
filter Hc(z) has a better group delay in the passband.  

 
7 Conclusions 
 
A new method, based on complex-valued allpole filters, for designing real and complex IIR filters with linear phase 
and flat magnitude response is presented. Since the complex-valued allpole filter can be expressed by the 
corresponding allpass filter, it follows that, the proposed IIR filter can be efficiently implemented using allpass 
filters, i.e., the structure based on allpass filters is less sensitivity to filter quantization, Mitra, (2006).  
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As a difference with others methods, this method is a direct design, i.e., it does not require the design of analog 
filters and bilinear transformation. Moreover, the parameters of the design are the same as in traditional IIR filter 
design, that is, passband and stopband frequencies, ωp and ωs, passband droop Ap, and stopband attenuation As. In 
contrast to the traditional design of IIR filters, the proposed method can design not only lowpass filters but also 
highpass filters. 

Going to this goal, we establish the conditions that the auxiliary complex allpole filter needs to satisfy in order 
to design a linear phase IIR filter with the given design parameters. The resulting filter has flat magnitude response 
in both passband and stopband. Furthermore, closed form equations for the allpole filter coefficients and singularities 
of the resulting linear phase IIR filter are given. In the proposed filter, N zeros at z = −1 control the stopband 
attenuation while N zeros inside and outside the unit circle contribute to the passband.  

Finally, we consider applications of the proposed method. We demonstrate that the new technique can be useful 
to design linear phase modified two-band filter banks. Other interesting application of the new method, presented in 
this paper, is the design of stable IIR filters with an improved group delay in the passband. 
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