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Abstract 
In this paper we state how Cognitive Maps can be used to model causal phenomena. In addition, we show the 
application of the Cognitive Maps to the field of the Student Modeling. Conceptually speaking, Cognitive Maps 
set and simulate the systems dynamics based upon qualitative knowledge. A Cognitive Map is a tool that gives 
away the entities of the issue of study. Moreover, Cognitive Maps bring out the causal phenomena as cause-effect 
relationships between concepts. According to the relationships, a topology and a workflow of causal effects is 
designed. Cognitive Maps aim to predict the evolution of a model through simulation. During the process are 
achieved causal inferences that estimate the variation on the state of the concepts. The simulation breaks down 
when the concept values reach a fixed point, a pattern of states or a chaotic region in the search space. Wherefore, 
in this paper we depict the underlying concepts for Causal Modeling by means of Cognitive Maps. In addition, 
three versions of Cognitive Maps are outlined. Besides to reveal their mathematical baseline, we illustrate their 
application through the development of a case of study focus on Student Model. 
Keywords: Cognitive Maps, Causal-effect relationships, Concepts, Causal inference, and Student Model. 

 
Resumen 
En este artículo se establece como usar los Mapas Cognitivos para modelar fenómenos causales. Además, 
mostramos su aplicación en el Modelado del Estudiante. Conceptualmente hablando, los Mapas Cognitivos 
definen y simulan la dinámica de sistemas por medio de conocimiento cualitativo. Un Mapa Cognitivo es una 
herramienta que revela las entidades del objeto de estudio. Así mismo, los Mapas Cognitivos expresan el 
fenómeno causal como relaciones causa-efecto entre conceptos. De acuerdo con las relaciones, una topología y un 
flujo de efectos causales es diseñada. Los Mapas Cognitivos buscan predecir la evolución del modelo mediante 
simulación. Durante el proceso se realizan inferencias que estiman la variación del estado de los conceptos. La 
simulación termina cuando los valores de los conceptos arriban a punto fijo, a un patrón de estados, o a una región 
de caos en el espacio de búsqueda. Por tanto, en este artículo se definen los conceptos base para el modelado 
causal a través de Mapas Cognitivos. También se presentan tres versiones de Mapas Cognitivos. Además se 
expresa la base matemática y se ilustra su aplicación en el desarrollo de un Modelo del Estudiante. 
Palabras clave: Mapas Cognitivos, Relaciones Causales, Conceptos, Inferencia Causal, y Modelo del Estudiante. 

 
1 Introduction 
 
Cognitive Maps (CM’s) is a term with a broad meaning that has been used to focus on specific targets, as the ones 
based on cause-effect relationships. The interest about Causal CM’s is that the causality is a post hoc explanation of 
real world events. The baseline of the causality rest on the philosophical principle that states: Any fact has a cause, 
and given the same conditions, the same causes produce the same consequences [Carvalho, 2001]. The earliest 
version of Causal CM’s corresponds to the model proposed by Axelrod in 1976. In that time, Axelrod outlined an 
international affairs issue through the sketch of pure causal links between concepts [Peña and Gutierrez, 2004]. Since 
then a broad spectrum of applications has been carried out in many fields like: Decision support [Nakamura et al., 
1982], Multi-Agent Systems [Chaib-draa, 2002], virtual reality [Dickerson and Kosko, 1997], Probabilistic causality 
[Wellman, 1994], On-Line Analytical Process [Zhang, 2003], and much more [Aguilar, 2003]. Nowadays Causal 
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CM’s research is working on systems dynamics, automatic generation and integration with other families of CM’s 
[Peña et al., 2005a], [Peña et al., 2005b]. 

In order to provide an overview of the CM’s, besides to show the baseline of three CM’s versions and depict how 
to use them for Student Modeling, the organization of the paper is as follows: In second section the Conceptual 
Model of the CM’s is introduced. Sections 3, 4, and 5, are devoted to set the formal model for the Qualitative, Fuzzy, 
and Rule-Base Fuzzy CM’s versions. Moreover, a Student Model application is carried out from those perspectives. 
In section 6 we discus the advantages and weakness of the three versions of CM’s, besides of outline the further 
work. 
 
2 Cognitive Maps Profile 
 
This section is oriented to introduce the Conceptual Model for the CM’s that sets the underlying elements behind any 
version. In addition, the components that shape the cognitive mapping process are stated. So the first part is 
dedicated to present a proposal of an underlying model for the CM’s. Moreover, key concepts about qualitative 
knowledge, causal reasoning, and systems dynamics are introduced. Afterwards, the second section is devoted to 
give away the elements used to sketch CM’s, as: Graphs, values for the concepts, types of relationships and causal 
effect’s estimation. 
 
2.1 Underlying Concepts 
In short, a CM is a graphical mental model that externalizes as a person understands, believes and organizes a subject 
of analysis. So a CM is a partial, incomplete and monotonic representation of the individual’s point of view. This 
type of perspective pursues to reveal the thoughts of the individual through concepts, relationships and inferences. A 
CM points out the entities that correspond to objects or phenomena from the context of study, and it calls them as 
concepts. What is more, a CM states the individual’s beliefs about how a given concept is the responsible for the 
perturbation on the state of another concept. These kinds of judgments are known as cause-effects relationships 
between concepts. According to the experience, analogy, intuition and common sense of the individual, causal 
inferences are carried out to estimate behavior and outcomes. The conclusions stemmed are exclusively considered 
to be true and valid in the context of analysis.  

Concepts, cause-effect relationships and causal inference compose a kind of qualitative knowledge. Such mental 
repository is conformed by a set of judgments. These kinds of thoughts are outcome in everyday life at the moment 
individuals are surrounded by abstract and physical objects and phenomena. The properties of these entities shape the 
consciousnesses of the individuals and reveal the predicate of their judgments. According to the perceptions and 
beliefs of the individuals, the links of their judgments are established for outlining their thoughts. The baseline of 
such judgments is the cause-effect belief. Causality deals with events that are incidents that happen usually due to 
some reasons. 

A CM is the result of a cognitive process called: cognitive mapping. During this process the individual chooses 
the concepts that point out the issue to be analyzed. The variety and level of detail of the concepts lies on the 
interests of the person who carries out the CM model. Also, the process applies the causality for outlining the 
relationships between one or more cause events, that conjunctively or disjunctively, are able to trigger the occurrence 
of a consequence event according to a specific context of analysis.  

Causal reasoning is based upon the general definition for reasoning, inference and incomplete induction stated by 
Miguelena (2000). The reasoning is the kind of thought that takes one or more well-known judgments that are 
logically joined in order to yield a new judgment stated as conclusion. The reasoning uses the inference process to 
achieve a conclusion from a set of premises. The causal inference rests on inductive reasoning for arriving to a 
universal conclusion from a set of individual or partial judgments. However, the induction is incomplete as causal 
reasoning only considers one or quite few entities from the class of analysis.  

Cognitive mapping states a topology of the subject of study. This structure is sketched as a digraph of cause-
effect relationships between concepts. What is more, a CM pursues to simulate behavior and outcomes through 
causal reasoning. A CM draws causal conclusions based upon incomplete inductive reasoning. The knowledge 
induced depicts the variation about the degree of activation of the concept in the context domain, and traces the 
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dynamic behavior of the evolution of the concepts’ states along the time. In summary, a CM is a particular point of 
view about a subject that is qualitatively outlined by concepts linked by causal relations, which is oriented to predict 
causal behaviors and outcomes.  

CM’s are exposed by elements and grammatical structures stemmed from natural language. Although, the 
structure of the thought is the same for the individuals; no matter the place, time, cultural level and language; the 
same thought owns several forms for being expressed according to the language spoken by the individuals. 
Wherefore, concepts are expressed by terms that identify objects, phenomena, properties and relationships, whilst 
whole thoughts are pointed out by sentences.  

Thus cognitive mapping is an internalization-externalization [Leont’ev, 1978] process that represents qualitative 
knowledge, which is believed to be true according to the particular point of view of the individual. Usually, this kind 
of knowledge is characterized as: Unilateral, uncertainty, imprecise, unstable, incomplete and not universally 
sounded. However this type of knowledge is a mirror that reveals how the person thinks and beliefs. Besides it is a 
source of knowledge for explaining his/her behavior, assumptions and predictions. 
 
2.2 Cognitive Maps Formal Model 
Essentially, a CM is stated by equation (1), where the CM is a digraph fixed by concepts (C) and cause-effect 
relationships (A). Concepts are pictured as nodes, whilst causal relations are traced as arcs. A causal relation (cc  
ce) points out that: A cause concept (ci) exerts on an effect concept (cj). Usually the relationship states direction and 
intensity. Direction represents the nature of the bias, which can be positive, negative or neutral. Whereas, intensity 
expresses magnitude scales that are given away by qualitative values, crisps values or continuous values. A positive 
causal relation, as (ci + cj), means that: ci excites or enhances cj. Thus, when ci is biased positively, cj will be 
altered positively too. However, if ci is influenced negatively cj will be altered negatively too. Negative relationships, 
as (ck  - cm), declare that: ck inversely biases cm. Wherefore, if ck is activated negatively, then cm will be influenced 
positively. But, if ck is affected positively, cm will be altered negatively. Finally, neutral relationships claim that: No 
matter the direction of the bias on a cause concept cc, there will not be any bias on an effect concept ce.  
 
                                                                                  .),(: ACMC =                                                                          (1) 
 

Concepts depict qualitative measures about the state that the entities own in a given instant (ti). The values 
attached to the concepts’ states reveal intensities of activation regarding to variations or levels for the entities after a 
while. A variation value reveals the magnitude of the change occurred on a concept at the end of a period. A level 
value points out deviations from the normal state associated to the concept. These kinds of state values never depict 
the real value of the concept. However they are labeled by intuitive values, qualitative terms, crisp values or 
continuous values.  

The topology of the CM’s sets three types of causal relationships: Direct, indirect and feedback. When two 
concepts (ca  cz) hold a cause-effect relationship, it is said that a direct relation involved them, as in Fig. 1a. 
However, if at least one concept, cb, appears in the middle of the way between ca  cb ….  cz, it is acknowledge 
that an indirect relationship links them, in the way sketched in Fig. 1b. These kind of indirect relations are based 
upon the syllogism hypothetic. In regards to causal feedback, most CM’s models focus on cyclic flows, where at 
least two different concepts meet each other, as (ca  cb  … cz  cb). Although, only few versions consider self-
feedback as: ca  ca.  

 
 

 
. 

Fig. 1a

Ca + Cz 
Fig. 1b

Ca + Cb - Cz …

Fig. 1. Causal relationships: [1a] Direct relation between Ca and Cz; [1b] Indirect relation between Ca and Cz 
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Regarding with causal inferences, an underlying assumption states that given an event ca(ti), the event cb(tj) can 
only be a consequence from ca, if and only if ti < tj. Moreover, causal inferences estimate the alteration of the 
concepts’ states instead of real values. The mathematical reason is that the equations applied do not include the 
current state of the concept. In addition, causal inferences outline the accumulative effect that several causes exert on 
a given one. This kind of effect reveals an additional degree of intensity in the final effect outcome by two or more 
causes on a given effect concept. Generally, causal inferences are achieved under deterministic and monotonic 
paradigms.  

A simulation process estimates causal behavior and outcomes. Thus, a set of initial values for the concepts’ states 
are estimated and assigned to the concepts of the CM. Afterwards, it begins a cycle that is represented by discrete 
increments of time that gradually transform the values attached to the concepts’ states. During iterations (tj), causal 
effects are triggered according to the topology of the CM. As a result, new values for the concepts’ states are 
outcome. These values represent a pattern that corresponds to a point in a search space m1*m2*..*mn dimensional. 
Where n is the number of concepts, and mi the number of instances values for the concept i. The simulation breaks 
down when the process arrives at a stable situation, a pattern of values or a chaotic attractor. This means, that the 
simulation seeks convergence regions for the concepts. These regions represent stable situations where do not occur 
any more changes in the pattern. Otherwise, the simulation could meet chaotic attractors, which are regions where it 
is not possible to find out fixed patterns.  

The design of the CM is fulfilled by interviews, documental forms, structured methods and the grid technique. 
The first two methods identify relevant concepts and causal relationships from the opinions externalized by 
specialists. In regards structured methods, the modeler shows a relation of concepts to the specialists in the domain 
of study. So they proceed to choose the most relevant concepts and outline their causal relations. Whereas the grid 
technique is a semi-structured method oriented to represent an individual’s multiple perspectives. The baseline of 
this technique is the Personal Construct theory, stated by Kelly (1955). Based upon this approach a team of persons 
define dimensions about their subject of analysis. When the modeler of the CM is a group of individuals, two 
strategies are considered: Aggregation and global. Aggregation is a bottom-up strategy that integrates the 
individual’s opinions into a whole mental model [Aguilar, 2004]; whilst, the global strategy stems a consensus about 
an issue that is analyzed from several points of view.  
 
3 Qualitative Cognitive Maps  
 
Qualitative CM’s are devoted to depict purely causal relationships, without taking into account values for the 
concepts’ states. This kind of CM’s has been applied by Chaib-draa (2002) to deal with subjective views and by 
Eden (1979) in management sciences. What is more, Klein and Cooper (1982) worked with CM’s in game theory 
problems, whilst Montezemi and Conrath (1986) carried out information analysis through qualitative CM’s. Thus, in 
this section we bring out the underlying formal model for the qualitative CM’s. Afterwards we introduce an 
application of the qualitative CM’s for Student Modeling [Peña and Sossa, 2004; Peña 2005]. 
  
3.1 Qualitative Cognitive Maps Formal Model  
The source of the qualitative CM’s is the structure of decision that Axelrod (1976) fulfilled for modeling foreign 
affairs. Afterwards, the former model was enhanced by Nakamura et al., (1982) through their work for decision 
support using a causation knowledge base. Finally, Chaib-draa (2002) straightened some pitfalls founded in the 
former version. Wherefore, in the remainder of this section is summarized these contributions into a holistic formal 
model. 

The basic model for the CM’s labels causal relationships by the set ρ. It owns eight values ρ ={+, -. 0, ⊕, Ө, ±, a, 
?}, whose instances are explained in the Table 1. The manipulation of the set ρ of causal relations is achieved 
through four operators: Union (U), intersection (∩), multiplication (*), and addition ( | ). The laws of union and 
intersection, stated in the set of equations (2), are obtained by considering +, -. 0, ⊕, Ө, ±, ?, and a as shorthands for 
the sets {+}, {-}, {0}, {+, 0}, {-, 0}, {+, -}, {+, 0, -} and {} respectively.  

.:)2(;00)2(;0?)2(;)2(;0)2(;0)2( xxaxa fedcba =∪∀−∩=−∩+=∩+=−∪+∪=−∪+=±−∪=Θ+∪=⊕ (2) 
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The indirect relations are estimated through six laws of the multiplication {1a to 1f} set in Table 2a; whilst direct 
relations are stemmed from the six addition laws {2a to 2f} depicted in Table 3a. For instance, the causal chain (ca - 
cb  - cc) outcomes a final effect +, due to law {1d}. When a given concept cz is affected by two or more cause 
concepts, through their respective direct relationships, an accumulated total bias is outcome by the laws of sum, e.g., 
two paths (ca - cz) (cb  + cz) produces the final effect ? according to the law{2d}. 

Regarding the distributive laws {1e} and {2e}, these laws represent the use of the distributive property for any 
instance related with U. For instance, - | Θ = - | 0 U - = - | 0 U - | - = - U - = -. This equivalence depicts the value of 
the entry (-, Θ) in the Table 3b. This outcome is grown from the successive application of the equation (2b) and the 
laws {2e}, {2a} and {2c}.  

 
Table 1. Description of the labels for causal relationships of the qualitative CM’s 

Label Meaning 
Ca  + Cb Ca excites Cb. So an increment in Ca promotes Cb. Also, a decrement in Ca inhibits Cb
Ca  - Cb Ca hurts Cb. So an increment in Ca inhibits Cb. Also, a decrement in Ca promotes Cb
Ca  0 Cb Ca is neutral to Cb. So an increment or decrement in Ca has no effect on Cb  
Ca  ⊕ Cb Ca excites or is neutral to Cb. So Ca does not inhibits Cb

Ca  Θ Cb Ca hurts or is neutral to Cb. So Ca does not excites Cb
Ca  ± Cb Ca excites or hurts to Cb. So Ca is not neutral to Cb
Ca  ? Cb Ca excites or hurts or is neutral to Cb. So Ca has some effect on Cb
Ca  a Cb Ca does not excite, neither hurts nor is neutral to Cb. So Ca has an ambivalent relation with Cb

 
Table 2. Laws for the multiplication *: [2a] Specific Laws; [2b] Table stemmed from the laws of multiplication * 

2a. Specific Laws of multiplication *  2b ? ± Θ ⊕ - + 0 a 
For any x, y Є C  ? ? ? ? ? ? ? 0  
{1a}  + * y = y  ± ? ± ? ? ± ± 0 a 
{1b}  0 * y = 0  Θ ? ? ⊕ Θ ⊕ Θ 0  
{1c}   a * y = a, if y ≠  0  ⊕ ? ? Θ ⊕ Θ ⊕ 0  
{1d}   - * - = +  - ? ± ⊕ Θ + - 0 a 
{1e} * do U (distributive law)  + ? ± Θ ⊕ - + 0 a 
{1f}   x * y = y * x  0 0 0 0 0 0 0 0 0 
  a  a   a a 0 a 

 
Table 3. Laws for the addition |: [3a] Specific Laws; [3b] Table stemmed from the laws of addition | 

3a. Specific Laws of addition |   3b ? ± Θ ⊕ - + 0 a 
For any x, y Є C  ? ? ? ? ? ? ? ? a 
{2a}  0 | y = y  ± ? ± ? ? ? ? ± a 
{2b}  a | y = a  Θ ? ? Θ ? - ? Θ a 
{2c}   y | y = y  ⊕ ? ? ? ⊕ ? + ⊕ a 
{2d}   + | - = ?  - ? ? - ? - ? - a 
{2e} | do U (distributive law)  + ? ? ? + ? + + a 
{2f}  x | y = y | x  0 ? ± Θ ⊕ - + 0 a 
  a a a a a a a a a 

 
However, this formal model is not consistent for some instances of the laws of multiplication, due to few of them 

lead to contradictory results, whose entries in Table 2b have no value. For instance, based upon the law {1c} a * Θ= 
a. But, according to the successive application of the equation (2b), laws {1e}, {1b}, {1c}, and equation (2f), the 
outcome is 0, as follows: a * Θ = a * (0 U -) = a * 0 U a * - = 0 U a = 0. This kind of drawback is straightened by 
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Chaib (2002) through his model based upon relational algebra. What is more, Chaib states a semantic and enhances 
the sound of the formal model. 

The labels attached to the causal relationships are stored into an adjacency matrix (A), like the one stated in Table 
51. Matrix A owns a dimension of n * n, where n is the number of concepts and the entry Ai,k depicts the value of the 
link that goes from ci to ck. Based on the transformation of the matrix A, qualitative CM’s achieve the causal 
behavior and outcomes. 

Due to operators | and * are lifted to matrices, CM’s use the classic definitions for matrix addition, multiplication, 
and nth power, which are stated in (3a,b,c) respectively. So the total effect of one concept ca on another cz is achieved 
by the sum of the indirect effects of all paths stemmed form ca to cz. Wherefore, the total effect matrix At owns as it’s 
a, zth entry the total effect of the concept ca on the concept cz at step t, based on (4a). Because the addition operator |  
is monotonic, there is a k such that it represents the number of arcs in the longest path between c⊆ c and ce concepts, 
as is pointed out in (4b). 

 
                  (3) .*:;:)3();*(||)*()*()3(;|)|()3( 11

11
−==== nnc

necnecce
b

cecece
a AAAandAABABABABABA L

 
                                                                (4) .||||:)4(;|||:)4( 321321 k

t
b

t
a AAAAAAAAA LLLL ==

 
3.2 Case of Study  
As a tool for modeling causal phenomena from a pure qualitative perspective, in this section we introduce our CM’s 
approach for a Web-based Education System (WBES) [Peña 2005]. First of all, teaching-learning experiences 
delivered by a WBES can be studied as cause-effect events. Where, teaching corresponds to the cause and learning to 
the effect. In addition, qualitative CM’s can be used to model the planning of the sequencing of teaching experiences, 
the organization of the content, and the anticipation of the learning effects. Thus, in this section, we focus on the 
Student Modeling as the process devoted to point out a mental model of the individual and the knowledge about the 
domain of study.  

The approach for Student Modeling is based on a Multi-Agents System (MAS). These kinds of agents play a 
particular role for revealing the perspective of a given actor such as: Student, system, coach or peer. As a result, the 
point of view about a specific issue is different between the involved actors. Therefore, it is necessary to: Deal with 
multiple perspectives, pursue consensus, model a common view and simulate causal outcomes. Wherefore, as 
specified by the object oriented design (OO), the first task is fulfilled by agents that express the beliefs of the student 
and his/her coach about the teaching topic.. As a result, two CM’s are outcome; the first one corresponds to the 
student’s agent in Fig. 2a, and second one to the coach’s agent in Fig. 2b. 
 
 
 
 
 
 
 
 
 
 

(a) background                             +  (e) aims at encapsulate methods  +        
             +   in Java                                                   - 
                                          - (c)lacks of generalization 
                                              -          skills      -                      + 
                                   +                                                              (g) OO 
                                   (d) own abstraction +                          -   learning 
                                  +         skills 
         -                                                        + 
       (b) knows C                           +  (f) likes structured modules    - 
                                                                                                    

(a) background                          +  (j) dislike recursive functions   +        
     in Java               +                         + 
             +   
              (h)likes visual reasoning    +                                   -  
         -          -                                                                           (g) OO learning 
                                           -                                               - 
             (i) miss of mathematical reasoning - 
                              - 
                                                   +              
(b) knows C                          +    (f) likes structured modules      +                 

Fig. 2. Qualitative CM’s: [2a] Student’s agent point of view; [2b] Coach’s agent beliefs 
 
The CM’s brought out by the student’s agent, sketched in Fig. 2a, states seven concepts, labeled by letters (a) to 

(g). While, the CM generated by the coach’s agent depicts seven concepts too. However, only four concepts - (a), 
(b), (f), (g) - are common to both point of views. In regards with causal relationships, there are several coincidences 
as the corresponding to the relations between f -g, and g - f. But, according to particular beliefs there are causal 
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relations in one CM that are not included in the other one, e.g., in Fig. 2a there are recursive relationships between 
concepts (a), (b) that are not taken into account by the coach’s agent in Fig. 2b.  

The analysis of the opinions of both agents is done through the adjacency matrix A sketched in Table 4, where, 
rows correspond to the cause concepts and columns represent effect concepts. Entries, as Ac,e, with no value mean 
that both views agree that there is none causal relationship from the cause concept c to the effect one e. Entries with 
only one value reveal partial perspectives. When only the left value is instantiated, e.g., Aa,b = +,  it means that 
student’s agent owns a belief that its coach’s pair ignores. In the opposite side, entries with only the right value, e.g., 
Ab,h = ,-; identifies partial opinions stemmed from coach’s agent, which are not know by student’s agent. Finally, 
entries with a couple of values reveal the perspective of both agents regarding the belief that the cause concept exerts 
on effect concept. When both values are labeled by the same causal sign, e.g., Ab,f = +,+; is acknowledge as a 
coincidence, otherwise is stated as a disagreement, as Af,h = -,+. 

In order to achieve a consensus from multiples perspectives, we can use mechanisms such that: Negotiation, 
mediation and auctions. A negotiation schema underlines the relevance of some concepts and causal relationships 
with the purpose that actor’s agents reach an agreement. A mediation approach tries to surround consensus and 
particular point of views among the agents [Chaib-draa, 2002]. Auctions, involve deliberative processes under 
changing conditions constrained by uncertainty and time [Noriega, 1997]. Thus, the application of these kinds of 
strategies yields holistic perspectives, as the one sketched in Fig. 3. In such figure, appears a qualitative CM that 
mixes the views from Student’s and Coach’s agents. 

Table 4. Multiples views adjacency matrix 

4 a b c d e f g h i j 
a  -, -, +, +,     ,+    ,+ 
b +,   +,  +,+    ,-    ,-  
c     -,      
d   -,   +,     
e       +,    
f       -,+    
g   -, +, +, -,-    ,+   ,-   ,+ 
h   ,+          ,-  
i        ,+    ,-   
j         ,-    

 
 
 

 

 

 

 

 

Fig. 3. Qualitative CM with a holistic view from Student’s and Coach’s agents 

(a) background                              +  (e) aims at encapsulate methods +    
       +   in Java                                                          - 
                                        - (c)lacks of generalization 
                                        -          skills    -                               + 
                               +                                                                              (g) OO 
                                 (d) own abstraction +                                   -   learning 
                               +    skills                                                                  - 
                                                                     + 
                    -       - (h)likes visual reasoning 
                                                                    -                                + 
                        (i) miss of mathematical     -  (j) dislike recursive  
                     -      reasoning                          +    functions 
  - 
(b) knows C                                        +  (f) likes structured modules   ? 

 
The simulation of the causal behavior is done by successive transformations over the adjacency matrix A, as 

follows: Firstly, the initial adjacency matrix A1, stated in Table 51, is stemmed from the values attached to the causal 
relationships of the CM. Afterwards, based upon (3c), the process takes up the estimation of indirect causal effects 
achieving the second adjacency matrix A2, which is illustrated in Table 52. The simulation carries out consecutive 
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adjacency matrices A3..t that are depicted in Tables 53 to 57. In this case, the simulation breaks down when it meets a 
pattern of values, as the one identified in Table 58. Finally, the total effect between each couple of concepts is the 
sum of the indirect affects of all paths that join them according with the total effect adjacency matrix At brought 
about by the set of equations (4). 

 
Table 5. Set of adjacency matrices: [51] Initial adjacency matrix A1; [52] Second adjacency matrix A2, after step 1 

51 a b c d e f g h i j  52 a b c d e f g h i j 
a  - - + +       a -  - - + - + + +  
b +   +  +  - -   b  - -  + +  - + + - 
c     -       c       -    
d   -         d     +      
e       +     e   - + + ?  + -  
f       -     f   + - - ?  - +  
g   - + + ?  + -   g   -  +  ? + - - 
h         -   h        +  - 
i        -  +  i       -  +  
j       -     j   + - - ?  - +  

 
Table 5. (Continuation) set of adjacency matrices: Tables 53 to 58, correspond to adjacency matrices A3..A8 after steps 2 to 7 
respectively 
 
53 a b c d e f g h i j  54 a b c d e f g h i j 
a  + ? ? ? ? + ? - +  a +  ? + ? ? ? ? ? - 
b -  ? - ? ? + ? ? +  b  + ? ? ? ? ? ? ? ? 
c   + - - ?  - +   c   +  -  ? - + + 
d       +     d   - + + ?  + -  
e   -  +  ? + - -  e   ? ? ? ? + ? ? - 
f   +  -  ? - + +  f   ? ? ? ? - ? ? + 
g   ? ? ? ? + ? ? -  g   ? + ? ? ? ? ? ? 
h       +  -   h   - + + ?  + - - 
i   + - - ?  - + +  i   +  -  ? - + + 
j   +  -  ? - + +  j   ? ? ? ? - ? ? + 

 
55 a b c d e f g h i j  56 a b c d e f g h i j 
a  - ? ? ? ? ? ? ? ?  a -  ? ? ? ? ? ? ? ? 
b +  ? ? ? ? ? ? ? ?  b  - ? ? ? ? ? ? ? ? 
c   ? ? ? ? - ? ? +  c   ? - ? ? ? ? ? ? 
d   -  +  ? + - -  d   ? ? ? ? + ? ? - 
e   ? + ? ? ? ? ? ?  e   ? ? ? ? ? ? ? ? 
f   ? - ? ? ? ? ? ?  f   ? ? ? ? ? ? ? ? 
g   ? ? ? ? ? ? ? ?  g   ? ? ? ? ? ? ? ? 
h   -  +  ? + - -  h   ? ? ? ? + ? ? - 
i   ? ? ? ? - ? ? +  i   ? - ? ? ? ? ? ? 
j   ? - ? ? ? ? ? ?  j   ? ? ? ? ? ? ? ? 

 
57 a b c d e f g h i j  58 a b c d e f g h i j 
a  + ? ? ? ? ? ? ? ?  a +  ? ? ? ? ? ? ? ? 
b -  ? ? ? ? ? ? ? ?  b  + ? ? ? ? ? ? ? ? 
c   ? ? ? ? ? ? ? ?  c   ? ? ? ? ? ? ? ? 
d   ? + ? ? ? ? ? ?  d   ? ? ? ? ? ? ? ? 
e   ? ? ? ? ? ? ? ?  e   ? ? ? ? ? ? ? ? 
f   ? ? ? ? ? ? ? ?  f   ? ? ? ? ? ? ? ? 
g   ? ? ? ? ? ? ? ?  g   ? ? ? ? ? ? ? ? 
h   ? + ? ? ? ? ? ?  h   ? ? ? ? ? ? ? ? 
i   ? ? ? ? ? ? ? ?  i   ? ? ? ? ? ? ? ? 
j   ? ? ? ? ? ? ? ?  j   ? ? ? ? ? ? ? ? 
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The process for achieving the early adjacency matrices A1..8 consist of the multiplication of matrices stated in (3c). 
Thus, for each cycle the current causal effect n is estimated as: An = A1 * An-1. The outcome is stemmed from 
equations (3a) and (3b), and by the laws {1a..f} and {2a..f}. These computations are applied over An as follows:  

In Table 51, A1 points out the direct causal relations between each pair of concepts, e.g., entry Aa,c= - corresponds 
to the arc ca - cc of the CM. Also, couples of concepts with neutral relations, as ca 0 cf, own entries with no value, 
as Aa,f =  .  

In regards the second adjacency matrix A2, sketched in Table 5b, it is the result of the shortest indirect causal 
effect between a pair of concepts. This means that the length of the path between the involved concepts includes just 
one intermediary concept. For instance, although concepts cb and ce are joined by two causal paths cb +ca + ce 
and cb + cd - cc - ce, the entry A2

b,e = + gives away only the outcome of the first path according with {1a}. 
What is more, when there are more than one path with the same length, their causal effects are added into the 
respective entry, e.g., concepts cb and cc are linked by two paths cb +ca  -cc and cb + cd - cc. So entry A2

b,c 
becomes = - | - = + based on  {1a, 1a, 2c}. 

Regarding the third to the seventh adjacency matrices A3 to A7, these matrices contain the total causal effect 
corresponding to the respective length of the path(s) that join each pair of concepts. So in A3

h,g = + corresponds to the 
causal path ch -ci +cj - cg, due to {1a, 1d}. Moreover, the value of the entry A4

h,d = +, corresponds to the effect 
of the path ch -ci +cj - cg + cd, because of {1a, 1d, 1a}. However, in the step 5 the total effect for these 
concepts is none, or neutral, A5

h,d = , why? There is no path of length 5 between concepts ch and cd. But, one step 
ahead the outcome is A6

h,d = ?, what happened? We can see that there are three paths of length 6 with the following 
description: ch -ci +cj - cg + ce + cg + cd = +; ch -ci -ch - ci + cj -cg + cd = +; ch -ci +cj - 
cg ?cf -cg + cd = ? Thus, the sum of the three outcomes is + | + | ? = ?, since {2c, entry +, ? of Table 3}. One step 
further, the entry A7

h,d = +, due to there is only one path of length 7, such that: ch -ci +cj - cg - cc - ce + cg 
+ cd = +, owing to {1a, 1d, 1a,1d, 1a, 1a}. 
Finally, A8 presents the first matrix of a set of four matrices that conforms a pattern of values of a convergence 

region. So the difference among the four matrices corresponds to four entries: Aa,a, Aa,b, Ab,a, and Ab,b, whose 
respective values for matrices  A8, A9, A10, and A11, are: {+, 0, -, 0}, {0, -, 0, +}, {0, +, 0, -}, and {+, 0, -, 0}. The rest 
of the entries for each matrix is ? This means that since the eighth iteration, paths with this length or larger give away 
the same causal effects. 
 
4 Fuzzy Cognitive Maps  
 
Many times, the cognitive mapping is constrained to deal with uncertainty in order to model real issues with more 
accuracy. So in this section we introduce the fuzzy version for the CM’s, which were stated by Kosko (1986). 
According with this approach, the causal relationships bring out different gray levels of intensity. Moreover, it is 
possible to take over the changes on the state of the concepts during the simulation process. The background of the 
fuzzy CM’s comes from fuzzy logic and neural networks. The diversity of the fuzzy CM’s applications includes: 
Cognitive ergonomy [Parenthoën, et al., 2002], managing synergies [Koulouriotis et al., 2003], and Virtual reality 
[Mohr, 1997]. Whereby, we get down setting the formal model and afterwards we carry on with the former case of 
study since its fuzzy point of view [Peña et al., 2005a]. 
 
4.1 Cognitive Maps Former Model  
Basically the fuzzy causal modeling is achieved from two perspectives: Qualitative and quantitative. Firstly, the 
designer depicts concepts and relations as linguistic variables. Where, concepts outline the change of the state or the 
deviation from its normal level of the entity that they represent, and causal relationships give away the tendency and 
magnitude of the bias. Later on, a universe of domain is attached to each concept and to the whole set of causal 
relations in order to state the set of instance values. Thus, concepts are instantiated with linguistic values such that: 
Increase, decrease, low, very high and so on. Whereas causal relationships are measured by fuzzy values, as: Positive 
strong, negative weak, ignores, etc. Next, a fuzzyfication function is set to convert qualitative terms to quantitative 
values, which can be crisp or continue. Usually, crisp values are bivalent or trivalent, as {0, 1} or {-1, 0, 1}, and 
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continues values fall into a range as [0, 1] or [-1, 1]. Finally, a threshold function is applied to the concept’s state 
value in order to normalize it into the corresponding set or range. 

The data structure used for the fuzzy CM’s includes a state vector (S) and an adjacency matrix (A). The vector S 
owns a dimension of n that corresponds to the number of concepts. Vector S holds the initial state values assigned to 
the concepts, as a result of the fuzzyfication. During the simulation, new vectors S(t) are outcome as a consequence 
of the iterations. Wherefore, the causal behavior is stemmed from the variations recorded into the several versions of 
vector S. In regards with the adjacency matrix A, this matrix has a dimension of n*n for storing the value of the 
relationships. However, A remains static through the cycle of causal inferences, in contrast with qualitative CM’s.  

The simulation process is accomplished during discrete time series, when iteratively the inference engine applies 
the summation and threshold processes to the state vector S(t). The state of a given concept si(t) is obtained from the 
prior states of all causal concepts sk(t-1). These concept’s states sk(t-1) are multiplied by the value of the causal 
relationship aik, where the antecedent concept ck bias to the consequent concept ci. The sum of these products ri(t) is a 
rough value that is normalized by a threshold function u. This function constrains the new state values S(t) to a set or 
a range of permissible values according with the type of value attached to the concept. The application of u gives up 
the possibility of quantitative results, but it supports the comparison between concept’s states.  

Whereby prior to get down to the simulation, the initial state vector S(1) is set with the outcome of the 
fuzzification of the qualitative terms. Moreover, the adjacency matrix A is fixed with the quantified relation values. 
Afterwards, the fuzzy causal engine takes over the simulation through successive increments of time t=1, t=2,.. At 
each step (t), the current version for the vector S(t) is estimated through equation (5a), where the entry si(t) is the new 
state value for the concept ci that the threshold function u yields from the rough state value ri(t). The value ri(t) is 
fulfilled according with (5b). This rough value brings out the accumulated influence that antecedent concepts ck put 
on consequent concept ci. The causal bias grows from the product between the value of the causal relationship aik and 
the former value of the antecedent concept sk(t-1). Afterwards, ri(t) is normalized by one of the following threshold 
functions u: (6a) achieves crisps bivalent values, (6b) carries out crisps trivalent values, (6c) puts in continues values 
into the range [0, 1], and (6d) yields continues values into the range [-1, 1]. Equations (6c) and (6d) set up logistic and 
tangent signals with c =5 as a degree of fuzzification [Mohr, 1997]. 
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The equilibrium state of a fuzzy CM is met when one or more state vectors S(m..) occur repetitively since a given 
iteration m. If this situation happens, the process has reached an equilibrium state and the simulation is broken down. 
Thus, a Fuzzy CM with crisp values own a high chance to reach an equilibrium state, due to their threshold functions 
force rough values to discrete ones. Whereas, a fuzzy CM that uses continues values may become nonlinear under 
complex feedback dynamics, unless it lacks of feedbacks. If such condition is held, the stability is checked in terms 
of the eigenvalues of the adjacency matrix. Therefore, if all the eigenvalues have negative real parts, the CM 
achieves some form of stability.  
 
4.2 Case of Study  
Based on the application introduced in section 3.2, now the qualitative CM for the holistic Student Model is turned 
into its fuzzy version. Wherefore, it is necessary to depict the sign values of the causal relations to fuzzy terms and 
afterwards to crisp or continue values. Moreover, the concepts are measured by linguistic values, that later on they 
are stated as real or integer values. These tasks bring out a fuzzy CM, its corresponding adjacency matrix and four 
versions of the initial state vector.  Thus, in Fig. 4 is shown the fuzzy CM, whilst in Table 6 appears its adjacency 
matrix A. Also, in the Table 7 appears four series of state vectors with bipolar, trivalent, and real values into the 
ranges [0, 1] and [-1, 1]. These series are organized in four tables, Table 71..4. At each table 7i, the columns 
correspond to the concepts state values, whilst rows to the iteration carried out during the simulation. This means, 
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that a given Table7i depicts the outcomes achieved by a specific scenario of study according to the type of the value. 
Thus, the first row represents the initial state values estimated for the concepts and the following rows to the 
successive states values which were fulfilled by the set of equations (5) and (6).  

 
Table 6. Fuzzy adjacency matrix for the Fuzzy CM in Fig. 4 

                                                                                                  A a b c d e f g h i j 
a  -.2 -1 0.6 0.9        
b 0.5   0.4  0.3   -.1 -.7  
c     -.9      
d   -.7        
e       0.5    
f       -1    
g   -.3 0.2 0.7 0.1  0.4 -.8 0.4 
h           -.4  
i        -.7  0.9 
j        -.6    

 
 
 

 

 

 

(a) background                               0.9 (e) aims at encapsulate methods     
0.5   in Java                                                          -0.9                   0.7 
                              -1      (c)lacks of generalization 
                                   -0.7         skills    -0.3                         0.5 
                      0.6                                                                     (g) OO 
                       (d) own abstraction skills 0.2                              learning 
             0.4                                                                         -0.6       -1 
                        (h) likes visual reasoning   0.4 
                     -0.1       -0.7   
                                                -0.4   -0.8                          
                        (i) miss of mathematical       (j) dislike           0.4  
                 -0.7      reasoning                    0.9 recursive functions 
-0.2 
(b) knows C                                     0.3 (f) likes structured modules 0.1  

 

 

 

 

 

 

Fig. 4. Fuzzy CM with a holistic view from Student’s and Coach’s agents 

Table 7. Set of vector states: [71] Bivalent; [72] Trivalent; [73] Logistic signal for [0, 1], [74] Tangent signal for [-1, 1] 

71 a b c d e f g h i j  72 a b c d e f g h i j 
0 0 1 1 0 0 1 0 1 1 1  0 -1 1 1 -1 -1 1 -1 1 1 1 
1 1 0 0 1 0 1 0 0 0 1  1 1 0 1 0 -1 0 -1 -1 0 1 
2 0 0 0 1 1 0 0 0 0 0  2 0 0 -1 0 -1 0 -1 0 1 0 
3 0 0 0 0 0 0 1 0 0 0  3 0 0 0 0 0 0 -1 -1 1 1 
4 0 0 0 1 1 1 0 1 0 1  4 0 0 0 0 -1 0 -1 -1 1 1 
5 0 0 0 0 0 0 0 0 0 0  5 0 0 0 0 -1 0 -1 -1 1 1 
6 0 0 0 0 0 0 0 0 0 0             

 
73 a b c d e f g h i j  74 a b c d e f g h i j 
0 0 1 1 0 0 1 0 1 1 1  0 -1 1 1 -1 -1 1 -1 1 1 1 
1 .92 .50 .50 .88 .01 .82 0.0 .02 0.0 .99  1 .99 .76 1 -.96 -1 .76 -1 -1 -.91 .99 
2 .78 .28 0.0 .98 .87 .68 0.0 .44 .14 .50  2 .96 .76 -.09 1 -1 .56 -1 .67 1 -1 
3 .67 .31 0.0 .95 .97 .60 .06 .35 .13 .65  3 -.96 -.74 -1 .35 .84 -.93 -.98 -1 1 .99 
4 .68 .34 0.0 .94 .96 .62 .07 .38 .12 .67  4 -.95 .74 1 -1 -1 -.92 1 -1 1 .99 
5 .70 .34 0.0 .94 .96 .63 .06 .39 .10 .66  5 .95 .74 1 -.35 -1 .95 -.7 -.95 -1 1 
6 .70 .33 0.0 .94 .97 .63 .06 .40 .10 .64  6 .95 -.74 -.99 1 -.99 .64 -1 .94 .97 -1 
7 .70 .33 0.0 .94 .97 .63 .07 .40 .10 .64  7 -.95 -.74 -1 .35 1 -.92 -.99 -1 1 .98 
8 .70 .33 0.0 .94 .97 .63 .07 .41 .10 .64  8 -.95 .74 1 -1 -1 -.92 1 -1 1 .99 
9 .70 .33 0.0 .94 .97 .63 .07 .41 .09 .64  9 .95 .74 1 -.35 -1 .95 -.7 -.95 -1 1 
10 .70 .33 0.0 .94 .97 .63 .07 .42 .09 .63  10 .95 -.74 -.99 1 -.99 .64 -1 .94 .97 -1 
11 .70 .33 0.0 .94 .97 .63 .07 .42 .09 .63  11 -.95 -.74 -1 .35 1 -.92 -.99 -1 1 .98 
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In Table 71 we analyse the evolution of the CM through bivalent values, where 0 means that the concept’s state is 
not perturbed in that moment – inactive -, and 1 reveals that the concept’s state is altered in the current time –active-. 
The simulation estimates the behavior of the concepts during five steps, because the process converges since the fifth 
iteration. So the variations occurred on the concepts' states can be stemmed as follows: Concepts b, c, and i arrive to 
their final state after just one step. But, concepts d, e, f, h, and j carry on with changing until the fifth step. Along the 
process, these concepts meet ups and downs, e.g., concept f brings about active states, after inactive, next active and 
finally inactive. 

Semantically speaking the CM brings out predictions such that: Although concept a, background in Java, is 
primary stimulated, after that it is not more biased. Regarding concepts b, c, and i, they initially revel that the student 
is familiarized with C, but he/she lacks of generalization skills and he/she miss of mathematical reasoning. However, 
these factors remain inactive during the simulation, why? Because of these concepts are not enough reinforced by 
their incoming stimulus. As a consequence, they became irrelevant for the learning of Object Oriented paradigm. In 
regards with concept g, this goal is achieved after three cycles, due to the input influences, stemmed from concepts a 
and b, it wastes three steps for biasing the learning of OO. Finally, as a consequence of the feedback outcome by the 
objective, concepts d, e, f, h and j are strengthened. Thus, the abstraction skills, the aim at recursive functions, the 
attraction for structured modules, the visual reasoning and the dislike for recursive functions are encouraged. After 
that, all the concepts remain inactive. 

Regarding with trivalent scenario, the values 1, 0, -1 correspond respectively to: Positive active, indifferent and 
negative activation states. The simulation converges at the fourth cycle, as it is shown in Table 72. The results give 
away several behavior patterns. For instance, at the beginning concepts as b and f own positive activation. Next they 
change their state to indifferent and during the process they remain with such value. This pattern brings out that the 
student knows C language and he/she likes structured programming, but these factors are not reinforced during the 
process. Also, the whole fuzzy CM brings out that the goal, related to learn OO, is not enough stimulated, wherefore 
it stays with a negative activation. In addition, concepts e, i, and j are turn back to their original state after to bear 
with a change of state. This means that student maintains his/her former dislike for encapsulate methods and 
recursive functions. What is more, the simulation reveals that he/she has not improved his/her mathematical 
reasoning. 

In Table 73, it is given away the study based on the logistic signal that yields real values into the range [0, 1], 
where nearby values to 1 depict active states and neighbouring numbers to 0 mean that the concept is inactive. At 
step 10, the simulation converges into a stable vector. The results bring out predictions such that: The learning OO 
will be fulfilled with a minimal achievement, whilst the lack of generalization skills and mathematical reasoning will 
quickly loss relevance. Nevertheless, the student’s abstraction skills will be stimulated very high. 

Finally, the analysis of the CM based upon tangent signals brings about real values into the range [-1, 1]. Close 
values to -1 depict negative activations, quantities around 0 reveal indifference, and numbers near to 1 claim positive 
activations. The simulation breaks down at cycle number 4. Since them, a pattern of four state vectors is repeated 
with concepts’ values that ups and downs alternatively. This result is alike the four pattern convergence region met 
by the qualitative CM, whose most of its causal influences are ?. Thus, what is the reason of this phenomenon? 
According with the topology of the CM, there are two input concepts a and b. None of the other concepts of the CM 
bias to ca nor cb. However, these input concepts own direct and indirect relationships with the remaining concepts. 
As a consequence, concepts a and b affect the behavior of the whole CM. Indeed, ca and cb hold a deviation-
countering loop. This kind of recursive relation, such as ca - cb + ca = -,  or  cb + ca - cb = -, leads to stabilize 
the whole fuzzy CM through series of increments followed by decrements. According with Chaib-draa (2002), in a 
wholistic approach, the whole constrains the concepts and the relations. Thus, it is possible to watch this kind of 
pattern along the set of four state vectors stated in the group of rows 4-7, 8-11 of the Table 74. 
 
5 Rule-Base Fuzzy Cognitive Maps  
 
As a result of the PhD dissertation achieved by Carvalho (2001), the classical fuzzy CM’s were enhanced to Rule 
Base Fuzzy Cognitive Maps (RB-FCM’s). This kind of CM meets causal relationships and causal effects with fuzzy 
logic. Also, RB-FCM’s brings up fuzzy causal relations (FCR’s) and a fuzzy carry accumulation (FCA). FCR’s 
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define causal relationships through fuzzy rule bases, whilst a FCA estimates the accumulative effect that an 
antecedent concept yields on a consequent concept. Shortly, RB-FCM’s join the fuzzy logic with the qualitative and 
fuzzy CM’s by means of the formal model introduced next. Moreover, this approach is applied to the Student 
Modeling, early introduced  [Peña et al., 2006]. 
 
5.1 Formal Model  
First of all, RB-FCM’s work into a couple of inference lines: Causal and fuzzy. Due to causality is seen as a 
variation upon the state of a given concept; whilst fuzzy line is met as an influence that imposes a level on the state 
of a concept. This perspective brings out the statement of two kinds of concepts: Variations and levels. Whereby, 
RB-FCM’s deal with two kinds of relationships: Causal and influence. A FCR sets up a causal relationship between 
just one antecedent concept and only one consequent variation concept, whereas, a fuzzy influence relationship (FIR) 
estimates the classical fuzzy effect that one or more antecedent concepts exert on just one consequent concept. The 
type of effect brought out by FCR’s and FIR’s is accumulative and aggregative respectively. An accumulative effect 
gives away the displacement of the consequent linguistic terms along the universe of discourse (UoD) based upon 
their membership degree. Meanwhile, an aggregative effect just adds the membership degrees of the involved 
consequent linguistic terms without any shifting over the UoD.  

Concepts are stated as linguistic variables that are instantiated by linguistic terms. These fuzzy values are grown 
from the UoD attached to the concept. According with the nature of the concepts, the instances of their respective 
UoD identify variations or levels of the state’s value. A variation reveals the direction and intensity of the change on 
the state’s value of the entity after a while, i.e., variation values for the inflation concept are: Increases much and 
decrease few. A level concept claims the absolute state’s value of the entity in a given time, i.e., the level values for 
the taxes concept: Low and high.   

Linguistic terms are sketched as fuzzy sets by membership functions. Fuzzy sets own physical properties as 
support set, area, and many more that are pictured in Fig. 5a. Based upon the qualitative intensity or fuzzy level 
stated by the fuzzy terms, their corresponding fuzzy sets are allocated along the UoD’s x-axis. The identification of 
the point in the x-axis of the UoD where a given fuzzy set is allocated, it is done by a mapping between its linguistic 
term and a normalized value. This kind of value gives away a degree of incertitude. The normalized value is usually 
represented by a discrete number into the range [-1, 1], which corresponds to the scale of UoD’s x-axis. For instance, 
in Fig. 5b some variation fuzzy terms are illustrated along the UoD of a concept as follows: At the left side are: 
Decrease much, medium and low. As central point is the value maintains. Finally, at the right side appear: Increase 
low, medium and much.   

Moreover, all the fuzzy sets S associated to the fuzzy values x in the UoD X attached to a linguistic variable own 
a membership function µ. This function yields a membership degree given by: µF(x):X [0, 1], x∈X. This value 
corresponds to the scale for the y-axis of the UoD. Furthermore, neighboring fuzzy sets are considered 
complementary. So, their point of intersection x in the UoD’s x-axis owns as a membership degree y = 0.5 for each 
of them. Thus, for any point x a maximum of two fuzzy sets corresponds to it. As a result, any point x into the UoD’s 
x-axis owns 1 in the y-axis as the membership degree outcome by the sum of its corresponding fuzzy sets. Thus, as 
much is the linguistic variation stated by the fuzzy set, larger will be the length of its support set and its area. These 
kinds of constraints are illustrated in Fig. 5b. 
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Fig. 5. Fuzzy Set: [5a] Fuzzy Set Properties; [5b] Linguistic Terms of Linguistic Variable 

In regards to the FCR’s, they are depicted by fuzzy rule-bases. A fuzzy rule establishes that: If the cause concept 
owns the linguistic term identified in the antecedent; then the effect concept is instantiated with the fuzzy value of 
the consequent. What is more, the membership degree of the antecedent fuzzy set is attached to the consequent one. 
A FCR between two concepts is fully stated when: For each linguistic term owned by the antecedent concept there is 
just one fuzzy rule. Thus, the set of fuzzy rules for the FCRc-e between two concepts, c  e, is organized into a fuzzy 
rule-base (FRBc-e). A FCR does not estimate the real value for the concept as it does a derivate; only it express the 
qualitative perturbation that supposes will occur. Also, an accumulative effect is achieved on a given concept when it 
is biased simultaneously by several antecedent concepts. So a FCA shifts the fuzzy set of the consequent concept 
towards the direction of causal bias over its UoD.  

On the matter of FIR’s, these relationships impose a variation or level value on the state of a consequent concept. 
A FIR is fully stated by a rule base that defines one fuzzy rule for each linguistic term, or combination of fuzzy 
values, owned by the antecedent concept(s). According with the linguistic term(s) that hold(s) the antecedent 
concept(s) in a given time, a specific linguistic value is assigned to the consequent concept. Moreover, an 
aggregative effect is applied on a specific concept when it is simultaneously instantiated with the same linguistic 
term by several FIR’s. This reinforcement event adds the membership degree of the effect concept over the y-axis. 
Generally, this type of fuzzy inference is brought out by classic methods as Max-Dot and Max-Min. 

In relation to the inference mechanism, its mathematical baseline is widely demonstrated by Carvalho (2001). 
However, in this section the baseline is summarized as follows: The fuzzy causal inference grows from a Causal 
Output Set (COS) and a Variable Output Set (VOS). Firstly, for each FCR between a couple of concepts, c  e, is 
carried out a COSc-e. Therefore, a COSc-e is outcome from one or a maximum of two fuzzy rules that simultaneously 
fire. When just one rule fires, the consequent fuzzy set, stated in the rule, becomes the COSc-e with a membership 
degree of 1.  
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But, when two rules fire, the COSc-e is grown from the involved consequent fuzzy values. If both consequents 
represent the same linguistic term, as in Fig. 6a, the two consequent fuzzy sets are added into a single COSc-e with a 
membership degree of 1, as is shown in Fig. 6b.  Otherwise, the consequent fuzzy sets are different, see Fig. 6c, so 
they are turned into a result set (U), as in Fig. 6d, by the Max-Dot method. Next, the result set Uc-e is transformed into 
a COSc-e, just like in Fig. 6e. 
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Fig. 6. COS outcome: [6a] Same fuzzy values; [6b] New COS; [6c] Different fuzzy values; [6d] Result set U; [6e] New COS 

 
Secondly, a VOSe is fulfilled based upon the number of FCR’s that simultaneously arrive to the consequent 

concept e. Thus, two sceneries are possible: When only just one antecedent concept c biases e, the COSc-e becomes 
the VOSc-e. Otherwise, there are several antecedent concepts, ci: c1, c2, .., cn, that exert e. Therefore, the final VOSe is 
the result of successive accumulations of the sets COSc

i
-e. This process initializes VOSe with the first COSc1-e. Next, 

it takes up a loop to process the remaining COSc
2..n

-e. At each step i, the COSc
i
-e is compared with the current VOSe, 

as in Fig. 7a. The fuzzy set with less variation is shifted towards the one with the greatest change. Moreover, it is 
added an extra area for describing the carrying of the causal accumulation, this effect is sketched with a dotted line 
in Fig. 7b.  

As a consequence of the successive accumulation of the sets COSc
i
-e over the VOSe, it is necessary to take over 

the possible saturation of the VOSe. This issue happens when the support set of the current VOSe is extended far 
away of the limit for the x-axis, -1 or 1, as occurs in Fig. 7c. So it is estimated the length of the overflow in order to 
cut away the corresponding area. As a result, the exterior declination is aligned with the point that corresponds to the 
limit. Also, the interior declination is moved towards the limit a proportion equivalent to the surplus length, as is 
illustrated in Fig. 7d. Therefore, an area alike the leftover area is taken off in the internal side of the current VOSe. 
Finally, the VOSe brought out the process of the last COSc

n
-e becomes the fuzzy set assigned as the linguistic term to 

the consequent concept e.  
 
 
 
 
 
 
 
 

 

Fig. 7. VOS estimation: [7a] Comparison COSi-e against VOS(i-1)-e; [7
b] Shift the fuzzy set with less variation to achieve the new 

VOSi-e; [7
c] Identification the exceeding area to the x-axis’ limit; [7d] Elimination of the exceeding area of both sides of the VOSi-

e; 
Basically, a FCA between two fuzzy sets M and N is stated in equation (7) as M@N, where, (M, N∈ F(X)), and X 

is a discrete interval between [0, 1]. This interval can be extended away the limit 1, whether saturation occurs. Also, 
sets M and N depict positive variations VOS’s+. But the variation stated by N is lesser or equal than the one pointed 
out by M. So prior taking over the saturation event, xi is a discrete point that acquires values from 0 until the 
maximum value of the support set of the VOS. What is more, the FCR equation is supported by two functions: Shift 
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and carry. The shift function estimates in (8) the final point in x-axis where N will be displaced towards M. This 
value grows from the difference between the minimal value of the core set attached to M, and the minimal value of 
the support set of N. In regards with the carry function, its equation is set in (9). The carry function brings out the 
accumulation effect in each point xi of UoD’s x-axis.  

 
                                                                                    (7) )}.()()(,1min{)( 1@N −− ++= ishiftNiNiMiM xcarryxxx μμμ
                                                     .)min()min( NSupportMNshift i −=                                                             (8) 
                              .0)(},1)()(,0max{)( 1 =−+= −− xcarryandxxxcarry shiftNiNiMi μμ                                    (9) 
 
5.2 Case of Study  
As concerns the Student Model application introduced in section 3.2, we put in to develop the version based upon 
RB-FCM’s. Firstly, in Fig. 8 is sketched the early CM, with the acronym rb and a consecutive number as the label 
for the causal relationships; its meaning corresponds to the rule base number that states the fuzzy rule base 
corresponding to the FCR. Also, in Table 8 is given away the adjacency matrix with the number of the rule bases in 
order to make easy the identification of each FCR. What is more, the initial states values attached to the concepts are 
brought out in Table 9a, where appear the variation value that corresponds to ten linguistic variables. Those initial 
variation values grown from the causal influences that it is believed that occur when the student takes his/her first 
lecture for Object Oriented learning. Thus, these kind of suppositions are stated as initial linguistic terms, e.g., it is 
believed that his/her background in Java decrease much as result of some missconceptions, and his/her aims at 
encapsulate methods increase quite few. Moreover, an instance of a RB is outlined in Table 9b. Such table 
corresponds to the FCR between the antecedent concept miss of mathematical reasoning and the consequent concept 
dislike recursive functions. In the left column are stated the linguistic terms attached to the antecedent concept, whilst 
in the right column are brought out the fuzzy values for the consequent concept.  
 

Table 8. Fuzzy adjacency matrix for the RB-FCM in Fig. 8 

A a b c d e f g h i j 
a  1 2 3 4      
b 5   6  7  8 9  
c     10      
d   11        
e       12    
f       13    
g   14 15 16 17  18 19 20 
h         21  
i        22  23 
j       24    

 
 
 

 

 

 

 
 
 

(a) background                              rb4(e) aims at encapsulate methods       
rb5   in Java                                                        rb10                   rb16 
                             rb2      (c)lacks of generalization 
                                   rb11         skills    rb14                      rb12 
                      rb3                                                                     (g) OO 
                       (d) own abstraction       rb15                            learning 
             rb6          skills                                                      rb23     rb13 
                        (h) likes visual reasoning   rb18 
                      rb8       rb22   
                                               rb21   rb19                      
                        (i) miss of mathematical       (j) dislike        rb24  
                 rb9      reasoning                    rb20 recursive functions 
rb1 
(b) knows C                                   rb7(f) likes structured modules rb17 

Fig. 8. RB-FCM with a holistic view from Student’s and Coach’s agents 
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Table 9. Definition of the RB-FCM: [9a] Vector of initial states; [9b] Rule base for the FCR20 

9a Concept Initial Linguistic Term  9b miss of mathematical reasoning dislike recursive functions 
a background in Java decrease much  1 If increase too much Then increase much 
b knows C increase medium  2 If increase much Then increase medium 
c lacks of generalization increase quite few  3 If increase medium Then increase few 
d own abstraction skills decrease few  4 If increase few Then increase quite few 
e aims at encapsulate methods increase quite few   5 If increase quite few Then maintains 
f likes structured modules increase few  6 If maintains Then maintains 
g OO learning increase quite few  7 If decrease quite few Then decrease few 
h likes visual reasoning increase much  8 If decrease few Then decrease medium 
i miss of mathematical reasoning decrease quite few  9 If decrease medium Then decrease much 
j dislike recursive functions increase medium  10 If decrease much Then decrease too much 
    11 If decrease too much Then decrease too much 

 
Based on a plenty of equations like the (7) to (9), the RB-FCM engine fulfills the causal behavior. Along the 

simulation fuzzy-causal inferences are achieved. Prior to start the process, the concepts’ state values are initialized 
according with the linguistic terms stated in Table 9a. Next, it takes up successive increments of discrete time t are 
done. At each step, the causal effects that simultaneously exert the concepts are accumulated according to the causal 
paths sketched in Fig. 8. 

 Thus, new concepts’ state values are computed over the UoD of the linguistic variables through the execution of 
the FCA’s. As a result, a kind of histogram, like the one pictured in Fig. 9, is accomplished along the cycles. The 
graph shows the evolution of the concepts’ state values during several iterations. In the y-axis appears the 
normalization values for the concepts in the range [-1, 1]; whilst, in the x-axis are given away the number of the 
cycles. Furthermore, the state value owned for a given concept in an instant t is sketched by a dot.  

The image for the whole RB-FCM in any time t is grown from the appreciation of the values that all the concepts 
own in t. The behavior of any concept is stemmed after compare its values along several cycles. During a while, it is 
evidenced the succession of increments–decrements of the concept’s state values, which represent the causal 
behavior. So it is possible to appreciate several behavior patterns characterized by ups and downs, as the case of the 
concept d, own abstraction skills.  

Thus, it is possible to appreciate several behavior patterns characterized by ups and downs, as the case of the 
concept d, own abstraction skills. What is more, some concepts, as background in Java and learning OO, bring out 
ascendant inertias. Although, in this particular case there are not concepts that hold their initial stated because all of 
them receive at least one causal influence. 
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Fig. 9. Concepts’ State Histogram.  The graphic points out the evolution of the concept’s states 
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The process breaks down when the fuzzy values meet a fixed value. Thus, in Fig. 10 appears the final value 
reached for the ten concepts that compound the CM. Wherefore, it is revealed that the background in Java is less 
deficient than its initial value. Due to, it starts with decrease much, and it ends with a normalized value of -0.4, that 
corresponds to decrease few. 
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Fig. 10. Stability. It is the region where a fixed value for all the concepts is found 
 
The behavior of the concepts, and the whole RB-FCM, are given away from two analyses: 1) Transformation 

upon the concepts’ state values during the iterations. 2) The final state reached by the concepts’ states values. As a 
result of this kind of interpretation, the prediction about the causal behavior and outcome are done. Wherefore, based 
on this CM the Student Model is able to anticipate the casual effects that a given teaching-learning experience yields 
on the student. 
 
6 Discussion and Further Work 
 
The CM’s stated in this paper are a paradigm for giving away the causal phenomenon. They are acknowledged as 
cognitive, due to bring out a way of thought of the individuals. CM’s are a tool devoted to externalize how a person 
understands a given issue. They make easy the analysis of a subject domain in order to explain earlier results since 
the cause-effect view.  
      Moreover, CM’s support the process for making decisions due to they stem causal predictions about the behavior 
and outcomes of the problem to solve. Wherefore, a CM is a graphical representation regarding to the mental model 
that an individual owns about a real matter. 

CM’s are an alternative approach for modeling qualitative systems dynamics as the one proposed by Forrester 
(1968). Because of they sketch workflows and feedbacks between the entities of a system through cause-effect 
relationships. Also, CM’s achieve qualitative processing instead of using quantitative methods that some times result 
complex and inaccurate. 

In regards to the qualitative version of CM’s, this model focuses on the analysis of the causal relationships 
exclusively. In this approach, the state of the concepts is not specified exactly, nor the changes that occur on them. 
The key point is to estimate the type of influence that bias on a given concept at iteration t. Wherefore, the simulation 
exclusively remains on the adjacency matrix manipulation. Thus, the interpretation of the causal behavior of the CM 
is grown from the values stored in the different versions of At. Nevertheless, qualitative CM’s lack of precise 
meaning nor a sound treatment of causal relations. In addition, the formal model owns some pitfalls in the 
multiplication operation for the causal value a. Due to the laws of multiplication are inconsistent for cases as: a * ⊕, 
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a * Ө, and a * ?. So alternative paradigms, as the relational model proposed by Chaib (2002), are worthy to be 
considered. 

On the matter of fuzzy CM’s, they are the most spread version of CM’s. Whereby, their applications are 
heterogeneous as the radiation therapy systems, and the study of political-economical issues in Cyprus. The main 
contribution of the fuzzy CM’s is the attempt to introduce the fuzzy logic to the CM’s arena. But, this intention 
became the major pitfall for this kind of CM’s. Because of the former linguistic representation of the concept’s states 
and relation values is lost as a result of the “fuzzification” process. Wherein, the whole mathematical simulation is 
exclusively brought out numerically. During, the simulation the fuzzy engine never applies a defuzzification process 
nor it does a classic fuzzy inference. The early goal to deal with linguistic terms stemmed from the natural language 
is not accomplished. Furthermore, other drawback of the fuzzy CM’s is the lack of a method for estimate stability 
conditions that could happen during the simulation process. 

Regarding RB-FCM’s their virtue is to provide a meeting point where fuzzy logic and CM’s collaborate to model 
causal phenomena. This version retakes the former ideal of the fuzzy CM’s in order to manipulate linguistic terms 
with a sound baseline. RB-FCM’s are a paradigm for dealing with qualitative knowledge that allows to state 
concepts and relations through natural language terms. Also, they offer a dual engine for achieving fuzzy inferences 
according with the kind of relationships, causal or influence. However, the cognitive mapping is more complex than 
the other versions. Moreover, the inference produces overhead.  Furthermore, the approach does not mix opposite 
effects, negative with positive, at the generation of the final VOSe.  

As a workline to carry on with the research of the CM’s, we propose: The study of the natural methods that 
explain how the individual chooses the concepts and the causal relations involved in a CM. Also, the analysis of the 
intuitive procedures that reveal how is accomplished the causal reasoning in the mind. Moreover, it is required to go 
forward methods that elicit individual’s causal beliefs, algorithms that outcome automatically CM’s, and guidelines 
to set criteria and procedures to validate the predictions given by the CM’s. Finally, it is desirable some 
enhancements for the CM’s, as: A sound theory that is well founded, specialized tools that make easy the 
development of applications, mechanism for gathering evidences that support the predictions and a holistic model to 
take advantage of the strengths of the versions.  

Particularly, as further work to be done is considered: The organization of an ontology about the teaching-
learning experiences, the development of a predictive Student Model based upon Cognitive Maps, the experimental 
use of the Cognitive Maps into the Web-based Education Systems, and the recopilation of empirical data to be 
studied by analysis of variance and covariance upon independent, dependent and nuisance variables [Chin, 2001]. 

Besides the early stated philosophical principle, the causal phenomenon owns some grounds given away from 
physical and spiritual sources, as the cause-effect Newton’s law, and the Biblical verse that claims: Be not deceived, 
God can not be not mocked; for whatsoever a man soweth, that he also reap [Galatians, 6.7].  
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