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Abstract 
 
This paper presents the optimal regulator for a linear system with time delay in control input and a quadratic 
criterion. The optimal regulator equations are obtained using the duality principle, which is applied to the optimal 
filter for linear systems with time delay in observations. Performance of the obtained optimal regulator is verified in 
the illustrative example against the best linear regulator available for linear systems without delays. Simulation 
graphs and comparison tables demonstrating better performance of the obtained optimal regulator are included. The 
paper then presents a robustification algorithm for the obtained optimal regulator based on integral sliding mode 
compensation of disturbances. The general principles of the integral sliding mode compensator design are modified 
to yield the basic control algorithm oriented to time-delay systems, which is then applied to robustify the optimal 
regulator. As a result, the sliding mode compensating control leading to suppression of the disturbances from the 
initial time moment is designed. The obtained robust control algorithm is verified by simulations in the illustrative 
example. 
Keywords: Linear time-delay system, Optimal control, Filtering, Sliding mode regulator. 

 
Resumen 
 
Este artículo presenta el regulador óptimo para un sistema lineal con retardo en la entrada de control y un criterio 
cuadrático. Las ecuaciones del regulador óptimo se obtienen usando el principio de dualidad, el cual es aplicado al 
filtro óptimo para sistemas lineales con tiempo de retardo en las observaciones. El desempeño de el regulador óptimo 
obtenido es verificado en el ejemplo ilustrativo contra el mejor regulador disponible para sistemas lineales sin 
retardo. Se incluyen las gráficas de simulación mostrando mejor desempeño del regulador óptimo obtenido.  El 
artículo también presenta un algoritmo de robustificación para el regulador óptimo obtenido basado en compensación 
de perturbaciones con modos deslizantes integrales. Los principios generales del diseño del compensador con modos 
deslizantes integrales se modifican para dar el algoritmo básico de control oritnetado a sistemas con retardo en el 
tiempo.  Como resultado, se diseña el control compensador con modos deslizantes llevando a la supresión de las 
perturbaciones desde el momento del tiempo inicial. El algoritmo de control robusto obtenido es verificado con 
simulaciones en el ejemplo ilustrativo. 
Palabras Clave: Sistemas lineales, Retardo, Control óptimo, Filtrado, Regulador, Modos deslizantes. 

 
1  Introduction 
 
Although the optimal control (regulator) problem for linear system states was solved, as well as the filtering one, in 
1960’s, [22,15], the optimal control problem for linear systems with delays is still open, depending on the delay type, 
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specific system equations, criterion, etc. Such complete reference books in the area as [20,21,25,10,7] note, discussing 
the maximum principle [19] or the dynamic programming method [26] for systems with delays, that finding a particular 
explicit form of the optimal control function might still remain difficult. A particular form of the criterion must be also 
taken into account: the studies mostly focused on the time-optimal criterion (see the paper [27] for linear systems) or the 
quadratic one [13,9,35]. Virtually all studies of the optimal control 
in time-delay systems are related to systems with delays in the state (see, for example, [1]), although the case of delays 
in control input is no less challenging, if the control function should be causal, i.e., does not depend on the future values 
of the state. A considerable bibliography existing for the robust control problem for time delay systems (such as [12,24]) 
is not discussed here. 
 

The first part of this paper concentrates on the solution of the optimal control problem for a linear system with delay 
in control input and a quadratic criterion, which is based on the duality principle in a closed-form situation [3] applied to 
the optimal filter for linear systems with delay in observations obtained in [5]. Taking into account that the optimal 
control problem can be solved in the linear case applying the duality principle to the solution of the optimal filtering 
problem [23], this paper exploits the same idea for designing the optimal control in a linear system with time delay in 
control input, using the optimal filter for linear systems with delay in observations. In doing so, the optimal regulator 
gain matrix is constructed as dual transpose to the optimal filter gain one and the optimal regulator gain equation is 
obtained as dual to the variance equation in the optimal filter. The results obtained by virtue of the duality principle can 
be rigorously verified through the general equations of the maximum principle [30,20] or the dynamic programming 
method [7,27] applied to a specific time-delay case, although the physical duality seems obvious: if the optimal filter 
exists in a closed form, the optimal closed-form regulator should also exist, and vice versa [3]. 

It should be noted, however, that application of the maximum principle to the present case gives one only a system of 
state and co-state equations and does not provide the explicit form of the optimal control or co-state vector. So, the 
duality principle approach actually provides one with the explicit form of the optimal control and co-state vector, which 
should be then substituted into the equations given by the rigorous optimality tools and thereby verified. 
 

Finally, performance of the obtained optimal control for a linear system with time delay  in control input and a 
quadratic criterion is verified in the illustrative example against the best linear regulator available for linear systems 
without delays. The simulation results show a definitive advantage of the obtained optimal regulator in both the criterion 
value and the value of the controlled variable. 
 

The paper then presents a robustification algorithm for the obtained optimal regulator  based on integral sliding mode 
compensation of disturbances. Conventional (non-integral) sliding modes are widely used for uncertainties 
compensation (see, for example, [37]). On the other hand, time delay effects that take place in relay and sliding mode 
control systems must be taken into account for the systems analysis and control design 
[37,2]. 
 

It is also known that time delays do not allow to design the sliding mode control in the space of state variables. 
Moreover, papers [17,18] show that even in the simplest one-dimensional delayed relay control system only oscillatory 
solutions can occur. That is why there are the two following main research directions in sliding mode uncertainties 
compensation for delay systems. 
 
a. Time Delay Compensation 
 
Pade approximation of delay reducing the relay delay output tracking problem to the sliding mode control for 
nonminimum phase systems was suggested in [35]. In [12,24,33], the sliding mode control in the space of predictor 
variables was realized. However, subsequent research [19,34] has demonstrated that the conventional sliding mode 
control design in the space of predictor variables 
 

• cannot compensate even for the matching uncertainties; 
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• in the case of square systems, if the dimensions of state space and control are the same, sliding mode design in 
the space of predictor variables can remove the uncertainties in the space of predictor variables but cannot 
guarantee suppression of uncertainties in the space of state variables. 

 
 b. Sliding Mode Control Design Via Feedback Control 
 
In a series of papers (see for example, [32,29]), the conventional sliding modes in the space of state variables of delayed 
systems are specifically used for elimination of uncertainties. An original idea of combining the sliding mode and high-
gain observer design for stochastic systems is recently claimed in [31]. Recently, application of the integral sliding mode 
to time-delay systems has been initiated: in [4], the integral sliding mode is used for robustification of optimal filters 
over observations with delay. 
 

The second part of this paper presents an integral sliding mode regulator robustifying the optimal regulator for linear 
systems with multiple time delays in control input. The idea is to add a compensator to the known optimal control to 
suppress external disturbances deteriorating the optimal system behavior [37,9]. The integral sliding mode compensator 
is realized as a relay control in a such way that the sliding mode motion starts from the initial moment, thus eliminating 
the external disturbances from the beginning of system functioning. This constitutes the crucial advantage of the integral 
sliding modes in comparison to the conventional ones. 
 

Although the optimal control to be robustified is designed for a system with time delay in control input and is causal, 
i.e., depends on the delayed system state, the sliding mode control-compensator is designed without delay, since there is 
the only way to make it capable of eliminating external disturbances in real time. This sequence of actions corresponds 
to the following technical problem. Let us assume that the optimal control program using the delayed control has already 
been inserted into the actuator (for example, at the factory). However, in field conditions, the system behavior is affected 
by external disturbances, such as vibrations or industrial pollution. The task of the field team is to eliminate the 
influence of external disturbances, directing a system trajectory to the optimal one (which is obtained using the delayed 
optimal control) by all available means. Of course, in this situation, all kinds of control-compensator functions, 
including those depending on the current time state, could be used. This is exactly a situation where the obtained robust 
integral sliding mode regulator is helpful. 
 

The paper is organized as follows. Section 2 states the optimal control problem for a linear system with time delay in 
control input and describes the duality principle for a closed-form situation [3]. For reference purposes, the optimal 
filtering equations for a linear state and linear observations with delay [5] are briefly reminded in Section 3. The optimal 
control problem for a linear system with time delay in control input is solved in Section 4, based on application of the 
duality principle to the optimal filter of the preceding section. 
The paper then presents a robustification algorithm for the obtained optimal regulator based on integral sliding mode 
compensation of disturbances [37]. Section 5 outlines the 
general principles of the integral sliding mode compensator design, which yield the basic algorithm applied then to 
robustify the optimal regulator. As a result, the sliding mode compensating control leading to suppression of the 
disturbances from the initial moment is designed in Section 6. This control algorithm actually guarantees all-time 
coincidence of the disturbed state with the optimally controlled one. Section 7 presents an example illustrating the 
quality of control provided by the obtained optimal regulator for linear systems with time delay in control input against 
the best linear regulator available for systems without delays. Simulation graphs and comparison tables demonstrating 
better performance of the obtained optimal regulator are included. This section then presents an example illustrating the 
quality of disturbance suppression provided by the obtained robust integral sliding mode regulator against the optimal 
regulator under the presence of disturbances. Satisfactory results are obtained. 
 
2  Optimal Control Problem for Linear System with Time Delay in Control Input 
 
Consider a linear system with time delay in control input 
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with the initial condition x(s) = �(s), s  [-h,0], where  is the system state,   is the control 
variable, and �(s) is a piecewise continuous function given in the interval [-h,0]. Existence of the unique solution of the 
equation (1) is thus assured by the Caratheodori theorem (see, for example, [15]). The quadratic cost function to be 
minimized is defined as follows: 
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where  is a given vector, R is positive and �, L are nonnegative definite symmetric matrices, and T >  is a certain 
time moment. 

1x 0t

 
The optimal control problem is to find the control u(t), t [ ]Tt ,0∈ , that minimizes the criterion J along with the 

trajectory x*(t), t , generated upon substituting u*(t) into the state equation (1). To find the solution to this 
optimal control problem, the duality principle [23] can be used. For linear systems without delay, if the optimal control 

[ Tt ,0∈ ]

exists in the optimal control problem for a linear system with the quadratic cost function J, the optimal filter exists for 
the dual linear system with Gaussian disturbances and can be found from the optimal control problem solution, using 
simple algebraic transformations (duality between the gain matrices and between the gain matrix and variance 
equations), and vice versa (see [23]). Taking into account the physical duality of the filtering and control problems, the 
last conjecture should be valid for all cases where the optimal control (or, vice versa, the optimal filter) exists in a closed 
finite-dimensional form [3]. This proposition is now applied to the optimal filtering problem for linear system states 
over observations with delay, which is dual to the stated optimal control problem (1), (2), and where the optimal filter 
has already been obtained (see [5]). 
 
3  Optimal Filter for Linear State Equation and Linear Observations With Delay 
 
In this section, the optimal filtering equations for a linear state equation over linear observations with delay (obtained in 
[5]) are briefly reminded for reference purposes. Let the unobservable random process x(t) be described by an 
ordinarydifferential equation for the dynamic system state 
 

(3) ),()())()()(()( 10 tdWtbdttxtatatdx ++=   00 )( xtx = , 
 
and a delay-differential equation be given for the observation process: 
 

(4) ),()())()()(()( 20 tdWtFdthtxtAtAtdy +−+=  
 
where  is the state vector,  is the observation process, the initial condition  is a 

Gaussian vector such that , ,  are independent. The observation process y(t) depends on the delayed 
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state x(t-h), where h is a fixed delay shift, which assumes that collection of information on the system state for the 
observation purposes is possible only after a certain time h. 

The vector-valued function  describes the effect of system inputs (controls and disturbances). It is assumed 

that A(t) is a nonzero matrix and  is a positive definite matrix. All coefficients in (3)--(4) are deterministic 
functions of appropriate dimensions. 

)(0 sa
)()( tFtF T

 
The estimation problem is to find the estimate of the system state x(t) based on the  observation process 

, which minimizes the Euclidean 2-norm { tssytY ≤≤= 0),()( }
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at each time moment t. In other words, our objective is to find the conditional expectation 
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As usual, the matrix function 
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is the estimate variance. 
 

The solution to the stated problem is given by the following system of filtering equations, which is closed with 
respect to the introduced variables, m(t) and P(t): 
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The system of filtering equations 5) and (6) should be complemented with the initial conditions (
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0
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t
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|)()()()(()( 00000 −−= . As noted, this system is very 
similar to the conventional Kalman-Bucy filter, except the adjustments for delays in the estimate and variance equations, 
calculated due to the 
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Cauchy formula for the linear state equation. 
 

In the case of a constant matrix a in the state equation, the 
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Thus, the equation (5) (or (7)) for the optimal estimate m(t) and the equation (6) (or (8)) for its covariance matrix P(t) 
form a closed system of filtering equations in the case of a linear state equation and linear observations with delay. 
 
4  Optimal Control Problem Solution 
 
Let us return to the optimal control problem for the linear state (1) with time delay in linear control input and the cost 
function (2). This problem is dual to the filtering problem for the linear state (3) and linear observations with delay (4). 
Since the optimal filter gain matrix in (5) is equal to 
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the gain matrix in the optimal control problem takes the form of its dual transpose 
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and the optimal control law is given by 
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where the matrix function Q(t) is the solution of the following equation dual to the variance equation (6) 
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with the terminal condition Q(T)= �. 
 

Upon substituting the optimal control (9) into the state equation (1), the optimally controlled state equation is 
obtained 
 

×++= − )()()(()()()(()( 1
0 tBtRtBtxtatatdx T  

 

,)()())((exp dthtxtQdssa
t

ht

T −
⎭
⎬
⎫

⎩
⎨
⎧

− ∫
−

 .)( 00 xtx =  

 
The results obtained in this section by virtue of the duality principle are proved (the proof is given in the Appendix) 

using the general equations of the Pontryagin maximum principle [29,19]. (Bellman dynamic programming [6,26] could 
serve as an alternative verifying approach). It should be noted, however, that application of the maximum principle to 
the present case gives one only a system of state and co-state equations and does not provide the explicit form of the 
optimal control or co-state vector. So, the duality principle approach actually provides one with the explicit form of the 
optimal control and co-state vector, which should be then substituted into the equations given by the rigorous optimality 
tools and thereby verified. 
 
5  Robustification of Motions in the Delay Control Systems Via Integral Sliding Modes 
 
For given control system with delay 
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where is the state vector and is the control input of rank B=m, suppose that there exists a 

differentiable in x state feedback control law 
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and has certain desired properties. 
 

However, in practical applications, system (11) operates under uncertainty conditions that may be generated by 
parameter variations and external disturbances. Let us consider the real trajectory of the closed loop control system 
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where  are smooth uncertainties presenting perturbations and nonlinearities in system (11). For , the 

standard matching conditions are assumed to be held: 
21 , gg 21 , gg

Bgg span, 21 ∈ , or, in other words, there exist smooth 

functions  such that 21 , gg
),),(()),(( 11 ttxBttxg γ=  
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The following initial conditions are assumed for system (11) 
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where )(θϕ  is a piecewise continuous function given in the interval [-h,0]. 
 

Thus, the control problem now consists in robustification of control design in system (12) with respect to 
uncertainties : to find such a control law that the trajectories of system (13) with initial conditions (14) coincide 

with the trajectories  with the same initial conditions (14). 
21 , gg

)(0 tx
 
5.1 Design Principles 
 
Let us redesign the control law for system (11) in the form 
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where   is the ideal feedback control designed for (12), and  is the relay control generating 

the integral sliding mode in some auxiliary space to reject uncertainties . Substitution of the control law (15) into 
the  system (13) yields 
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Define the auxiliary  function 
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The philosophy of integral sliding mode control is the following: in order to achieve  at all 

, the sliding mode should be organized on the surface 

)()( 0 txtx ≡
),( ∞−∈ ht

s(t), since the following disturbance compensation should have been obtained in the sliding mode motion 
 

)).),(()(())),(()(()()( 211 ttxtBttxtBtutB eq γγ −−=  
 

Define the auxiliary variable z(t) as the solution to the differential equation 
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with the initial conditions ),()()( θϕθθ =−= sz for [ ]0,h−∈θ . Then, the sliding manifold equation takes the form 
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Finally, to realize sliding mode, the relay control is designed 
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The next section presents the robustification of the designed optimal control (3). This robust regulator is designed 
assigning the sliding mode manifold according to (17)--(18) and subsequently moving to and along this manifold using 
relay control (19). 
 
6  Robust Sliding Mode Control Design for Linear System with Time Delay in Control Input 
 
Consider again the linear system (1) with time delay in control input, whose behavior is now affected by smooth 
uncertainties  presenting perturbations and nonlinearities in the system (1) 21 , gg
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with the initial condition ),()( ssx ϕ= [ ]0,hs −∈ , where )(sϕ  is a piecewise continuous function given in the 
interval [-h,0]. It is also assumed that the disturbances satisfy the standard matching conditions 
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providing reasonable restrictions on their growth. The quadratic cost function (2) 
is the same as in Section 2. 
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uThe problem is to robustify the obtained optimal control (9), using the method specified by (17)--(18). Define this new 
control in the form (15): ),())(()( 10 tuhtxutu +−=  where the optimal control  coincides with (9) 

and the robstifying component  is obtained according to (19) 
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and the auxiliary variable z(t) satisfies the delay differential equation  

[ ]))(()()()()()()( 00

.
htxutBtxtatatGtz −++−=   
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where Q(t) is the solution of the Riccati equation (4). 
 
7  Example 
 
This section presents an example of designing the optimal regulator for a system (1) with a criterion (2) usin
scheme (9)--(10), comparing it to the regulator where the matrix Q is selected as in the optimal linear regulator
system without delays, disturbing the obtained optimal regulator by a noise, and designing a robust sliding 
compensator for that disturbance using the scheme (21)--(23). 
 

Let us start with a scalar linear system 
 

),1.0()()(
.

−+= tutxtx  
with the initial conditions x(s) = 0 for [ )0,1.0−∈s  and x(0)=1. The optimal control problem is to find the contro
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where T = 0.25, and x* = 10 is a large value of x(t)  a priori unreachable for time T. In other words, the optimal c
problem is to maximize the state x(t) using the minimum energy of control u. 
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Let us first construct the regulator where the optimal control law and the matrix Q(t) are calculated in the same 
manner as for the optimal linear regulator for a linear system without delays in control input, that is 

, (see [22] for reference). Since B(t)=1 in (24) and R(t)=1 in (25), the optimal control is 
actually equal to 

)()()()( 1 txtQBtRtu T
opt

−=

 
u(t)= Q(t)x(t),  (26) 

 
where Q(t) satisfies the Riccati equation 
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with the terminal condition Q(T)= ψ. Since a(t)=1, B(t)=1 in (24), and L=0 and ψ =1 in (25), the last equation turns to 
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Upon substituting the optimal control (26) into (24), the controlled system takes the form 
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.
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The results of applying the regulator (26), (27) to the system (24) are shown in Fig. 1, which presents the graphs of 
the controlled state (28) x(t) in the interval [0,T], the shifted ahead by 0.1 criterion (25) J(t-0.1) in the interval 
[0.1,T+0.1], and the shifted ahead by 0.1 control (26) u(t-0.1) in the interval [0,T]. The values of the state (28) and the 
criterion (25) at the final moment T=0.25 are x(0.25)=1.5097 and J(0.25)=36.2598. 
 

Let us now apply the optimal regulator (3)--(4) for linear systems with time delay in control input to the system (24). 
Since a(t)=1, B(t)=1, and h=0.1 in (24) and � =1, R(t)=1, 

and L=0 in (25), hence,  and the optimal control law (9) takes the form { )1.0(exp))((exp =
⎭
⎬
⎫

⎩
⎨
⎧

− ∫
−

t

ht

T dssa }

{ } ),()()1.0(exp)( txtQtuopt =  (29) 
where Q(t) satisfies the Riccati equation 
 

{ } ,))()1.0((exp)(2)( 2
.

tQtQtQ −−=   Q(0.25)=1. (30) 
Upon substituting the optimal control (29) into (24), the optimally controlled system takes the form 

 

{ } ),1.0()1.0()1.0(exp)()(
.

−−+= txtQtxtx   
 

The results of applying the regulator (29),(30) to the system (24) are shown in Fig. 2, which presents the graphs of 
the optimally controlled state (31) x(t) in the interval [0,T], the shifted ahead by 0.1 criterion (25) J(t-0.1) in the interval 
[0.1,T+0.1], and the shifted ahead by 0.1 optimal control (29) )1.0( −tuopt  in the interval [0,T]. The values of the state 

(31) 

(31) and the criterion (29) at the final moment T=0.25 are x(0.25)=1.668 and J(0.25)=35.3248. 
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The next task is to introduce a disturbance into the optimally controlled system (31). This deterministic disturbance 
is realized as a constant: g(t)=-2. The matching conditions are valid, because state x(t) and control u(t) have the same 
dimension: dim(x)=dim(u)=1. The restrictions on the disturbance growth hold with 01 =q  and , since ||g(t)|| = 
2. The disturbed system equation (31) takes the form 

21 =p

 

{ } )1.0()1.0()1.0(exp)(2)(
.

−−++−= txtQtxtx  
 

The system state behavior significantly deteriorates upon introducing the disturbance. Figure 3 presents the graphs of 
the disturbed state (32) x(t) in the interval [0,T], the shifted ahead by 0.1 criterion (25) J(t-0.1) in the interval 
[0.1,T+0.1], and the shifted ahead by 0.1 control (29) u(t-0.1) in the interval [0,T]. The values of the state (32) and the 
criterion (29) at the final moment T=0.25 are x(0.25)=1.0514 and J(0.25)=40.4596. The state (32) does almost not 
increase from its initial value x(0)=1, although it shouldbe maximized, and the criterion value does also almost not 
decrease and becomes much larger than in the preceding cases. 

(32) 

 
Let us finally design the robust integral sliding mode control compensating for the introduced disturbance. The new 

controlled state equation should be 
 

{ } ),()1.0()1.0()1.0(exp)(2)( 1

.
tutxtQtxtx +−−++−=  (33) 

where the compensator  is obtained according to (19) )(1 tu
 

[ ])()),(),(()(1 tssignthtxtxMtu −−=  (34) 
 

The sliding mode manifold s(t) is defined by (21) 
 

)),(()()( 0 txstzts +=   
 
where 
 

{ } )()()1.0(exp))(())(( 00 txtQtxutxs == , 
 
and the auxiliary variable z(t) satisfies the delay differential equation 
 

[ ] { }[ ])()1.0()1.0(exp)()())(()()()( 0

.
htxtQtxtGhtxutxtGtz −−+−=−+−= , 

with the initial conditions z(s) = 0 for  and z(0)=-1. In accordance with (18), the matrix G(t) is equal to [ )0,1.0−∈s
{ } ),()1.0(exp)(/))(()( 0 tQtdxtxdstG ==  

 
where Q(t) is the solution of the Riccati equation (30). 
 

Upon introducing the compensator (34) into the state equation (33), the system state behavior is very much 
improved. Figure 4 presents the graphs of the compensated state (33) x(t) in the interval [0,T], the shifted ahead by 0.1 
criterion (25) J(t-0.1) in the interval [0.1,T+0.1], and the sum of the shifted ahead by 0.1 control (29) and the 
compensator (34), u(t-0.1)+ , in the interval [0,0.25]. The values of the state (33) and the criterion (25) at the final 
moment T=0.25 are x(0.25)=1.6779 and J(0.25)=36.9207. Thus, the value of the controlled state after applying the 
compensator (34) is only insignificantly less than those values for the optimal regulator (29)—(30) for linear systems 

)(1 tu
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with time delay in control input, and much better than the values for the disturbed system (32). Of course, the criterion 
value here is worse than for the optimal regulator (although it is 70 percent improved in comparison to the disturbed 
state), since an additional control energy is required to suppress the disturbance. 
 
8  Conclusions 
 
It was shown in this paper that, using the duality principle, the results obtained in [5]for optimal filters can be applied to 
the control problem given in (1). In order to robustify the solution against disturbances, integral sliding modes were 
used. The only requirement for the disturbances to be compensated is that they must hold the matching conditions given 
in section 5. An illustrative example was given where it can be clearly seen the system behavior under three relevant 
conditions for comparison: Using the optimal control law proposed without disturbances, the system including 
disturbances without compensator and the disturbed integral sliding mode compensated system. It could be seen that the 
state behavior with disturbances without compensator deteriorates compared to that without disturbances. Using the 
compensator, the state behaves exactly as that of the system without disturbance and, as expected, in order to deal with 
the disturbance, the control effort is bigger with the integral sliding mode compensator.  
 
 
 
9  Appendix 
 
Proof of the optimal control problem solution.Define the Hamiltonian funcion [29,19] for the optimal control problem 
(1), (2) as 
 

[ ],)()()()()()(),,,( 110 uutBxtataqxtLxutRutquxH TTT ++++=  (35) 
 
where . Applying the maximum principle condition )()(1 htuuu −= 0/ =∂∂ uH  to this specific Hamiltonian 
function (35) yields 
 

.0)()()/)(()()(0/ 1 =∂∂+⇒=∂∂ tqtButututRuH TT  

Upon denoting   the optimal control law is obtained as ,)/)(( 1 Mutu =∂∂
 

)()()()(* 1 tqtBMtRtu TT−=  
 
Taking linearity and causality of the problem into account, let us seek q(t) as a linear function in x(t) 
 

(36) q(t)=-Q(t)x(t), 
 
where Q(t) is a square symmetric matrix of dimension n. This yields the complete form of the optimal control 
 

(37) )()()()()(* 1 txtQtBMtRtu TT−= . 
 

Note that the transversality condition [29,19] for q(T) implies that )()(/)( TxTxJtq ψ−=∂−∂= and, therefore, 
Q(T)=ψ. 
Using the co-state equation xHdttdq ∂−∂= //)( , which gives 
 

(38) ),()()(/)( 1 tqatxtLdttdq T+=−  
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and substituting (36) into (38), we obtain 
 

).()()()(/))(()()( 1

.
txtQatxtLdttxdtQtxQ T−=+  (39) 

 

Substituting the expression for  from the state equation (1) into (39) yields )(
.

tx
 

).()()()()()()()()()( 11

.
txtQatxtLhtutBtQtxatQtxQ T−=−++  

 
In view of linearity of the problem, differentiating the last expression in x does not imply loss of generality. Upon 

taking into account that  )()()()()(/)())((/)(()(/)( 1 tQtBMtRtMtxtutuhtutxhtu TT−=∂∂∂−∂=∂−∂

(40) 

 and differentiating the equation (40) in x, it is transformed into the Riccati equation 
 

).()()()()()()()()()( 1
11

.
tQtBMtRtMtBtQtQatatQtLQ TTT −−−−=   

 
Let us find the value of matrix M(t) for this problem. First of all, let us note [22] that the Hamiltonian function 

H(x*,u*,q*,t) is constant in t for the optimal control (37) u*(t), the corresponding optimal state (1) x*(t) and co-state 
q*(t) satisfying (36), and Q(t) satisfying the equation (41), and equal to 

(41) 

 
(42) const./*))(*(*)(**)(*)*,*,*,( ==++= CdtxtQxdxtLxutRutquxH TTT  

Integrating the last equality from t-h to t yields 
 

[ ] .)(*)()(*)(*)()(*)(*)()(*)(*)()(* ChhtxhtQhtxtxtQtxdssxsLsxsusRsu TT
t

ht

TT =−−−−++∫
−

 

Differentiating the obtained formula respect to x*(t) and u*(t) and taking into account the optimal control 
expressions for u*(t) and u*(t-h) given by (37), we obtain 
 

,)(exp)()()()()()()( 111

⎭
⎬
⎫

⎩
⎨
⎧

−−−= ∫
−

−−−
t

ht

TTTTT dssahtBhtMhtRtMtBtMtR  (43) 

also using that 
 

.)(exp)(/)(
⎭
⎬
⎫

⎩
⎨
⎧

=−∂∂ ∫
−

t

ht

T dssahtxtx  

 
The last formula follows from the Cauchy formula for the solution of the linear state equation (1) 

 

,)()(),()(),()(),()( 0 ∫∫
−−

−Φ+Φ+−−Φ=
t

ht

t

ht

dhuBtdathtxhtttx τττττττ  

where Φ(t,τ) is the matrix of fundamental solutions of the homogeneous equation (1), that is solution of the matrix 
equation 
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),,()(),(
τ

τ tta
dt
td

Φ=
Φ

 ,),( Itt =Φ  

where I is the identity matrix. In other words,  
⎭
⎬
⎫

⎩
⎨
⎧

=−Φ ∫
−

t

ht

T dssahtt )(exp),(

Furthermore, it can be noted, differentiating twice the formula (42) with respect to x*(t), that the expression 
 does actually not depend on B(t) or  as functions of time t. Thus, the value of the matrix 

M(t) for this problem can be determined from (43) assuming that time t-h is equal to t in the matrix function 
. Finally, the formula (43) gives the following equality for calculating M(t) 

)()()(1 tBtMtR TT− )(1 tR −

)()()(1 htBhtMhtR TT −−−−

 

⎭
⎬
⎫

⎩
⎨
⎧

= ∫
−

t

ht

TTTT dssatBtBtM )(exp)()()(  (44) 

 
Substituting the formula (44) into (37) and (41) yields the desired formulas (9) and (10) for the optimal control law 

u*(t) and the matrix function Q(t). The optimal control problem solution is proved. 
 
 
 

 
Fig. 1.Best linear regulator available for linear systems without delays. Graphs of the controlled state (28) x(t) in 

 the interval [0,0.25], the shifted ahead by 0.1 criterion (25) J(t-0.1) in the interval [0.1,0.35], and  
the shifted ahead by 0.1 control (26) u(t-0.1) in the interval [0,0.25]. 

 

 
Fig. 2. Optimal regulator obtained for linear systems with time delay in control input. Graphs of the optimally controlled state (31) 

x(t) in the interval [0,0.25], the shifted ahead by 0.1criterion (25) J(t-0.1) in the interval [0.1,0.35], and  
the shifted ahead by 0.1  optimal control (29) )1.0( −tuopt  in the interval [0,0.25]. 
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Fig. 3. Controlled system in the presence of disturbance. Graphs of the disturbed state (32) x(t) in the interval [0,0.25], 

 the shifted ahead by 0.1 criterion (25) J(t-0.1) in the interval [0.1,0.35], and the shifted ahead by 0.1 control (29) u(t-0.1)in 
 the interval [0,0.25]. 

 
 

 
Fig. 4. Controlled system after applying robust integral sliding mode compensator. Graphs of the compensated state (33) x(t) in the 

interval [0,0.25], the shifted ahead by 0.1 criterion (25) J(t-0.1) in the interval [0.1,0.35], and the sum of the shifted head by 0.1 
control (29) and the compensator (34), u(t-0.1)+  (equivalent sliding mode control), in the interval [0,0.25]. )(1 tu
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