Named Entity Recognition (NER) for Sino-Tibetan Languages: A Comprehensive Review and Status
DOI:
https://doi.org/10.13053/cys-29-3-5896Palabras clave:
Named entity recognition, , natural language processing, sino-tibetan language, deep learning, low-resource languageResumen
As technology continues to advance at a rapid pace, there is a growing interest in Natural Language Processing (NLP) tools and applications. However, creating NLP tools that can effectively process natural languages presents numerous difficulties. One crucial aspect of NLP is Named Entity Recognition (NER), which involves identifying and classifying named entities in a text based on their surrounding context. Although there has been extensive research, NER tagging still struggles to accurately tag unfamiliar named entities. NER for Sino-Tibetan languages, such as Bodo and Myanmar, poses various challenges, including word segmentation, lack of resources, and ambiguity. In this paper, we review the state-of-the-art in NER for Sino-Tibetan Languages, focusing on the methods, datasets, and performances achieved. We also highlight underlying issues and future directions for NER research in this domain. Although there are not many works on NER related to Sino-Tibetan languages available, we tried to cover a good number of papers with a wide spectrum of languages, so that this review could be best utilised by researchers interested in NER studies and development for language technologies for languages from this group. As many as different works on Sino-Tibetan NER studies have been covered. We also tried to cover NER works with a variety of approaches and techniques ranging from rule-based to machine learning, deep learning, hybrid, and cross-lingual methods and highlighting their relevance towards the specific linguistic demands of Sino-Tibetan languages. Apart from these, we also reviewed a brief status on the NLP tasks for low-resourced languages, Bodo and Assamese. We have analyzed and presented in a structured way all the approaches, methods used, along with datasets, performances and challenges encountered. We hope that this paper can provide a comprehensive overview and a useful resource for the research community interested in NER for Sino-Tibetan languages.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.