Deep Learning Approaches to Bird’s-Eye View Transformation and RGB-Depth Fusion in Autonomous Vehicles

Autores/as

  • Daniel A. Martinez-Barba CIC
  • Luis M. Valentín Coronado Centro de Investigaciones en Óptica, A.C.
  • Israel Becerra Centro de Investigación en Matemáticas, A.C.
  • Sebastían Salazar Colores Centro de Investigaciones en Óptica, A.C.
  • Carlos Paredes Orta Consejo Nacional de Humanidades Ciencias y Tecnologías

DOI:

https://doi.org/10.13053/cys-29-1-5505

Palabras clave:

Sensor fusion, bird eye view, perspective transform, deep learning, autonomous vehicles

Resumen

Autonomous vehicles depend on accurateand efficient environment representations such assemantically segmented Bird’s Eye View (BEV) for pathplanning and decision-making to achieve safe navigation.Implementing deep learning techniques to generatefront-view to bird’s-eye view transformations with depthinformation and RGB images is often complex due tothe absence of real-world BEV datasets for training.Additionally, model’s performance is often affected bythe semantic class imbalance of the BEV maps at thepixel level. On this study, we propose a sensor fusionblock to integrate RGB and depth features to improveperspective transformation performance. Furthermore,we implement a layer-based data augmentation toaddress the class imbalance challenge. Experimentsto demonstrate that the proposed sensor fusion blockand the layer based data augmentation method improveperspective transformation performance on state of theart deep learning architectures.

Descargas

Publicado

2025-03-25

Número

Sección

Articles of the Thematic Section