Human Emotion and Sentiment Analysis using Machine Learning
DOI:
https://doi.org/10.13053/cys-29-2-5041Palabras clave:
Emotion, Machine Learning, Sentiment Analysis, Polarity, SubjectivityResumen
Emotion recognition is an essential field of study in the current scenario that can be useful for variety of purposes. Emotions is indicated in several forms such as speech, facial expressions, gestures, and written text etc. Emotion recognition from text is considered under content-based classification and is a category of Natural Language Processing (NLP). In this work, authors tried to predict the human emotions from twitter text data which can be useful for human emotion prediction and interpretation of sentiment analysis. The dataset used in this work was downloaded from Kaggle open source repository and Python was used for implantation. The subjectivity and polarity of the sentiments were also analyzed using Python TextBlob. The Machine Learning (ML) algorithms such as Naïve Bayes (NB), Logistic Regression (LR), Bagging, and Support Vector Machine (SVM) was applied on the original dataset to measure the efficiency of these algorithms. We had also analyzed the presence of amount of types of emotion present in the dataset and then we removed those data which were present in less amount. Again on the reduced dataset, we applied these same ML algorithms and measured the efficiency using parameters like recall, precision, F-measure etc. The accuracies obtained for LR, NB, Bagging, and SVM classifier are found to be 85%, 69%, 84%, and 86% respectively in the original dataset and it was found to be 93%, 85%, 92%, and 94% respectively in the reduced dataset. From the experimentation, it was found that SVM performed better in both the cases and for each of the considered algorithm the accuracy was improved in the reduced dataset as compared to the considered dataset.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.