A Mobile Architecture to Manage Residential Electricity Consumption Using IoT-based Smart Plugs and Machine Learning Algorithms

Autores/as

  • Ivonne Nuñez Universidad Tecnologica de Panama
  • Carlos Rovetto Universidad Tecnológica de Panamá
  • Edmanuel Cruz Universidad Tecnológica de Panamá
  • Dimas Concepcion Universidad Tecnológica de Panamá
  • Elia Esther Cano Universidad Tecnológica de Panamá

DOI:

https://doi.org/10.13053/cys-29-2-5034

Palabras clave:

Energy consumption prediction, Machine Learning, Internet of Things (IoT), smart plugs

Resumen

This paper proposes a mobile architecture for managing residential electricity consumption data using IoT-based smart plugs and machine learning algorithms. The main objective is to monitor, analyze, and predict electricity consumption in residential environments, aiming to improve energy efficiency and engage users through gamification elements, making energy saving more attractive and motivating. The research addresses these goals through specific questions, hypotheses, and methodological steps, including the analysis of electrical energy consumption data from various household appliances, the development of machine learning algorithms such as Holt-Winters, XGBoost, and Autoencoder LSTM to predict future consumption, and the creation of a prototype mobile application for visualizing and managing residential energy consumption. The Autoencoder LSTM model demonstrated superior accuracy in predicting energy consumption, highlighting its effectiveness. The results underscore the importance of integrating energy consumption prediction technologies and energy management tools in homes to promote sustainability and reduce environmental impact.

Biografía del autor/a

Ivonne Nuñez, Universidad Tecnologica de Panama

Msc. en Computación MóvilFacultad de Ingeniería de Sistemas ComputacionalesUniversidad Tecnologógica de Panamá

Carlos Rovetto, Universidad Tecnológica de Panamá

Facultad de Ingeniería de Sistemas Computacionales

Edmanuel Cruz, Universidad Tecnológica de Panamá

Facultad de Ingeniería de Sistemas Computacionales

Dimas Concepcion, Universidad Tecnológica de Panamá

Facultad de Ingeniería de Sistemas Computacionales

Elia Esther Cano, Universidad Tecnológica de Panamá

Facultad de Ingeniería de Sistemas Computacionales

Descargas

Publicado

2025-06-18

Número

Sección

Artículos