PoSLemma: How Traditional Machine Learning and Linguistics Preprocessing Aid in Machine Generated Text Detection

Autores/as

  • Diana Jimenez CIC
  • Marco A. Cardoso-Moreno Instituto Politécnico Nacional
  • Fernando Aguilar-Canto Instituto Politécnico Nacional
  • Omar Juarez-Gambino Instituto Politécnico Nacional
  • Hiram Calvo Instituto Politécnico Nacional

DOI:

https://doi.org/10.13053/cys-27-4-4778

Palabras clave:

Generative text detection, text generation, AuTexTification, logistic regression, support vector machine (SVM), classification

Resumen

With the release of several Large Language Models (LLMs) to the public, concerns have emerged regarding their ethical implications and potential misuse. This paper proposes an approach to address the need for technologies that can distinguish between text sequences generated by humans and those produced by LLMs. The proposed method leverages traditional Natural Language Processing (NLP) feature extraction techniques focusing on linguistic properties, and traditional Machine Learning (ML) methods like Logistic Regression and Support Vector Machines (SVMs). We also compare this approach with an ensemble of Long-Short Term Memory (LSTM) networks, each analyzing different paradigms of Part of Speech (PoS) taggings. Our traditional ML models achieved F1 scores of 0.80 and 0.72 in the respective analyzed tasks.

Biografía del autor/a

Diana Jimenez, CIC

Centro de Investigacion en Computación

Marco A. Cardoso-Moreno, Instituto Politécnico Nacional

Centro de Investigacion en Computación

Fernando Aguilar-Canto, Instituto Politécnico Nacional

Centro de Investigacion en Computación

Omar Juarez-Gambino, Instituto Politécnico Nacional

Centro de Investigacion en Computación

Hiram Calvo, Instituto Politécnico Nacional

Centro de Investigacion en Computación

Descargas

Publicado

2023-12-17

Número

Sección

Artículos