Deep Learning-Based Classification and Segmentation of Sperm Head and Flagellum for Image-Based Flow Cytometry
DOI:
https://doi.org/10.13053/cys-27-4-4772Palabras clave:
Deep learning, sperm, segmentation, classification, image-based flow cytometryResumen
Image-Based Flow Cytometry (IBFC) is a potent tool for the detailed analysis and quantification of cells in intricate samples, facilitating a comprehensive understanding of biological processes. This study leverages the ResNet50 model to address IBFC’s object-defocusing issue, an inherent challenge when imaging a 3D object with stationary optics. A dataset of 604 mouse sperm IBFC images (both bright field and fluorescence) underpins the exceptional capability of the ResNet50 model to reliably identify optimally focused images of the sperm head and flagella (F1-Score of 0.99). A U-Net model was subsequently employed to accurately segment the sperm head and flagellum in images selected by ResNet50. Notably, the flagellum presents a significant challenge due to its sub-diffraction transversal dimensions of 0.4 to 1 micrometers, resulting in minimal light intensity gradients. The U-Net model, however, demonstrates exceptional efficacy in precisely segmenting the flagellum and head (dice = 0.81). The combined ResNet50/U-Net approach offers significant promise for enhancing the efficiency and reliability of sperm analysis via IBFC, and could potentially drive advancements in reproductive research and clinical applications. Additionally, these innovative strategies may be adaptable to the analysis of other cell types.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.