Flood Prediction with Optimized Attributes and Clustering
DOI:
https://doi.org/10.13053/cys-27-4-4643Palabras clave:
Feature selection, PSO, clustering techniques, classification, Manhattan distance, emergency, predictionResumen
An emergency is a situation that poses an immediate risk to health, life, property, or environment. Most emergencies require urgent intervention to prevent a worsening of the situation. So, it is always better to predict the emergency before its happening and to take action for optimizing the loss. In this work, we tried to predict the flood by analysing the monthwise rainfall index of a particular area. First, we tried to find the months which have more contributions towards predicting the flood. For this, we used Particle Swarm Optimization (PSO) as feature selection technique and then applied classification algorithms such as J48 and Random Forest (RF). The experimentation was done for both without and with feature selection on the considered dataset. The results obtained without feature selection indicate that 70.34% and 78.81% of data are correctly classified and with feature selection 66.10% and 76.27% respectively in J48 and RF. Then we removed the class attribute from the dataset to see the effect of results when the class is not available and we applied K-mean and Density Based clustering techniques on the same dataset. It was observed from the results that Kmean with manhattan distance approach and Density Based clustering without feature selection classifies accurately 72.03% and 72.88% of data respectively. Similarly, when Kmean and Density Based clustering were used with feature selection, it was found that Kmean and Distanced Based clustering result in correct classification of 70.03% and 68.64% of data. We had also compared the model building time for both classification and clustering techniques using without and with feature selection. It was noticed that although the accuracy percentage was decreased with feature selection in both the cases, however, the model building time was reduced by 29%, 50%, 78%, and 60% in case of j48, RF, K-Mean, and Density Based techniques respectively.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.