Deep Learning-Based Sentiment Analysis for the Prediction of Alzheimer's Drugs
DOI:
https://doi.org/10.13053/cys-27-4-4634Palabras clave:
Anti-amyloid, anti-tau, clinical medication trials, neuroinflammation, neuroprotection, alzheimer’s diseaseResumen
A growing public health concern, Alzheimer's disease (AD) affects millions of people globally and has a yearly economic impact of billions of dollars. We examine the pipeline of pharmaceuticals and biologics undergoing AD clinical studies. The majority of the time and money spent on clinical trials of potential therapies for Alzheimer's disease (AD) have yielded disappointing results. The Alzheimer’s research community is continually looking for new biomarkers and other biologic indicators to describe the course of the illness or serve as clinical trial outcome indicators. One upshot of these efforts has been a substantial body of literature presenting sample size estimates and power calculations for future cohort studies and clinical trials with the longitudinal rate of change outcome measures. To be as useful as possible, statistical methodologies, model assumptions, and parameter estimations used in power calculations are frequently not disclosed in sufficient depth. Most dementia cases (60–70%) are caused by Alzheimer’s disease (AD). The need for discovering effective medicines to treat AD has increased due to the severity of the condition and the ongoing growth in patient numbers. The medications now used to treat AD can only temporarily reduce the symptoms of dementia; they cannot halt or reverse the course of the illness. Many international pharmaceutical companies have tried numerous times to develop an amyloid-clearing medication based on the amyloid hypothesis but without success. To offer a comprehensive understanding of clinical trials and medication development for AD, we looked at some new impacts to categorize the medication with the help of deep learning techniques for a better and innovative result to reduce the rate of changes of severity. Using a deep learning framework and big data analytics, we developed a strategy called "drug repurposing in Alzheimer's disease" that quantifies the connection between a list of medicine names and the stage of AD as assessed by sentiment analysis.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.