Flooded Areas Detection Through SAR Images and U-NET Deep Learning Model
DOI:
https://doi.org/10.13053/cys-27-2-4624Palabras clave:
Deep learning and SAR, sentinel-1 SAR, flood detectionResumen
Floods are common in much of the world, this is due to different factors among which climate change and land use stand out. In Mexico they happen every year in different entities. Tabasco is an entity that is periodically flooded, causing losses and negative consequences for the rural, urban, livestock, agricultural and service industries. Consequently, it is necessary to create strategies to intervene effectively in the affected areas. Therefore, different strategies and techniques have been developed to mitigate the damage caused by this phenomenon. Satellite programs provide a large amount of data on the earth’s surface as well as geospatial information processing tools that are useful for environmental and forest monitoring, climate change impacts, risk analysis, natural disasters, among others. This paper presents a strategy for the classification of flooded areas using satellite images radar of synthetic aperture and the U-NET neural network. The study area is centered on Los R´ıos, region of Tabasco, Mexico. The partial results show that U-NET performs well despite the limited amount in the training samples. As training data and epochs increased, its accuracy increased.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.