A Partitional Clustering Approach for the Identification and Analysis of Coexisting Bacteria in Groups of Bacterial Vaginosis Patients
DOI:
https://doi.org/10.13053/cys-27-2-4621Palabras clave:
Clustering, bacterial vaginosis, coexisting bacteriaResumen
Bacterial vaginosis is a condition where there is a large ecosystem of microorganisms and an unclear pathogenesis, making it a disease complex in the dynamic of coexistence of bacteria in groups of patients. The main objective of this study is to provide a partitioning clustering model that allows further analysis of coexisting bacteria in a grouped way in BV-positive patients. K-Means variants (Lloyd, Forgy, Hartigan & Wong, and MacQueen) with three distance measures were applied to a BV dataset from an urban population in southeastern Mexico, which consists of 201 patient records with 15 attributes. In the clustering results obtained, it is possible to identify different notable groups of patients. The most prevalent coexisting bacteria between patients with BV were Atopobium + Gardnerella vaginalis with 31.37%, Atopobium + Megasphaera with 15.68% in the cluster that assigned all BV-positive patients. Whereas, the model that achieved to group BV-positive elements into different clusters, the coexisting bacteria were Atopobium + Gardnerella vaginalis with 56.25% and Atopobium + Megasphaera with 68.75% for group C1. The second group bacterial coexistence was Atopobium + Gardnerella vaginalis with 37.14%. Finally, we provided evidence that, using the partitioning algorithm, it was possible to create a clustering model that helps analyze the complex dynamics among bacteria in groups of patients with BV.Descargas
Publicado
Número
Sección
Licencia
Transfiero exclusivamente a la revista “Computación y Sistemas”, editada por el Centro de Investigación en Computación (CIC), los Derechos de Autor del artículo antes mencionado, asimismo acepto que no serán transferidos a ninguna otra publicación, en cualquier formato, idioma, medio existente (incluyendo los electrónicos y multimedios) o por desarrollar.
Certifico que el artículo, no ha sido divulgado previamente o sometido simultáneamente a otra publicación y que no contiene materiales cuya publicación violaría los Derechos de Autor u otros derechos de propiedad de cualquier persona, empresa o institución. Certifico además que tengo autorización de la institución o empresa donde trabajo o estudio para publicar este Trabajo.
El autor, representante acepta la responsabilidad por la publicación del Trabajo en nombre de todos y cada uno de los autores.
Esta Transferencia está sujeta a las siguientes reservas:
- Los autores conservan todos los derechos de propiedad (tales como derechos de patente) de este Trabajo, con excepción de los derechos de publicación transferidos al CIC, mediante este documento.
- Los autores conservan el derecho de publicar el Trabajo total o parcialmente en cualquier libro del que ellos sean autores o editores y hacer uso personal de este trabajo en conferencias, cursos, páginas web personal, etc.